
Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 276–281,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

276

Grounding NBA Matchup Summaries

Tadashi Nomoto
National Institute of Japanese Literature

Tachikawa Tokyo 190-0014, Japan
nomoto@acm.org

Abstract
The present paper summarizes an attempt we
made to meet a shared task challenge on
grounding machine generated summaries of
NBA matchups.1 In the first half, we discuss
methods and in the second, we report results,
together with a discussion on what feature may
have had an effect on the performance.

1 Introduction

What led Reiter and Thomson (2020) to launch a
shared task competition in 2020 was a concern that
fact-checking automatically generated texts (ma-
chine texts, or M TEXTs) in the context of data to
text generation (Wiseman et al., 2017), is hugely
labor intensive, making it virtually impossible to
run it at a scale. In an effort towards putting it un-
der control, the project asks participants to find a
way to do the assessment automatically, without
any human intervention. The problem is set out as
follows: you receive M TEXTs, along with other
external information such as box scores and hu-
man created summaries (or H TEXTs). Your goal
is to locate factual mistakes in M TEXTs and clas-
sify them according to a pre-defined scheme of er-
ror types (‘word,’ ‘number,’ ‘name,’, ‘context,’ ‘not
checkable’).

2 Method

The following sections detail our approach, which
in essence is a multi-pronged strategy. We deploy
separate mechanisms to deal with different types
of error.

2.1 Detecting Word/Name Errors
We split an M TEXT into three parts, LEAD, MID-
DLE, TAIL (Figure 1), and use a separate set of
rules targeting a particular part of the text, to iden-
tify errors with word or name.

1https://github.com/ehudreiter/accuracySharedTask.git

2.1.1 Lead Section
For the lead section, we focus on date (day of
week, DOW) and venue, in particular those lo-
cated in the first 3 sentences of an M TEXT. We
compare each sentence (call it an m-sentence)2

in the lead against names of US basketball arenas
listed in Wikipedia3 to get one most similar (based
on how much they overlap) and use it as a canon-
ical name. We locate a date expression by going
through each token in an m-sentence and pick one
that best matches a DOW name we prepared be-
forehand. We report a name error if there is any
conflict between M TEXT and H TEXT in DOW
or in venue. We do not work with a full sentence.
Rather, we work with a clause, a minimal senten-
tial unit that serves a building block of a complex
sentence.4 This is meant to ensure that we have no
more than one occurrence of a venue and a date in
an input we feed to the process. We call a clause
contained in ‘m-sentence,’ an m-clause and that
in h-sentence (see Fn. 2), an ‘h-clause.’ See Al-
gorithm 1 for a more precise picture of what we
do here. search(X,Y ) goes over each of strings
given in X to tell if it exists in Y .

2.1.2 Middle Section
In this part, we intend to determine whether a state
of affairs described by a cue word holds up, by
querying box-office scores. Cue words include
words like ‘next,’ ‘led,’ ‘bench,’ and ‘defeated,’
which make a specific verifiable statement about
players and teams. We go through each sentence,
to see if it has a player name together with a cue

2Similarly we mean by ‘h-sentence’ a sentence that oc-
curs in H TEXT.

3https://en.wikipedia.org/wiki/List of National
Basketball Association arenas

4 We identify and isolate clauses by breaking up a sen-
tence using a dependency tag ‘mark’ provided by spaCy
(https://spacy.io/). For details on what the tag means, consult
https://universaldependencies.org/docs/en/dep/mark.html.



277

document starts document ends

LEAD

TAIL

MIDDLE

Figure 1: We apply rule based heuristics to different parts of the text to identify errors.

Table 1: Cue Words

single-word cues next, bench, reserve, starter, led, leader, leads, best, paces, pace, pacing, paced
multi-word cues player of the game, team - high, high - point, double figures, double - double, triple

- double

Algorithm 1 Finding a name error in LEAD

Input: m-clause, h-clause, DOWs, Venues
Output: True or False
H ← h-clause ▷ String
M ← m-clause ▷ String
D ← DOWs ▷ Pre-def. List of Strings
V ← Venues ▷ Pre-def. List of Strings
dh ← search(D,H) ▷ returns a date in H
dm ← search(D,M) ▷ returns a date in M
vh ← search(V,H) ▷ returns a venue in H
vm ← search(V,M) ▷ returns a venue in M
if dh ̸= dm or dh ̸= dm then

return False
else

return True
end if

Algorithm 2 Finding a word error in MIDDLE
Input: m-clause, Box-Scores, Cue Words, Player

Names
Output: True or False
S ← m-clause ▷ String
X ← pd load(Box Scores) ▷ Load into Pandas
C ← Cue Words ▷ Pre-def. List of Strings
P ← Player Names ▷ Pre-def. List of Strings
for each c ∈ C do

for each p ∈ P do
if match(s, S) & match(p, S) then

T ← ask pandas(c, p,X ) ▷ Ask
Pandas if X supports what c says about p.

return T
end if

end for
end for

word. If found, we go to the box score to decide
whether it supports the statement. For example,
if the text says that player A is off the bench, we
know that for it to be true, the player should not
be listed under starter. Or if the text states that
the team is led by player A, it has to be the case
that the player scored the most points. We flag
the statement as correct or incorrect depending on
whether it is supported by the box-office scores.

Listed in Table 1 are cue words we used, each
of which indicates a particular state of affairs that
can be checked with the box scores (which we
have done using Pandas.)5 We also break a sen-
tence where possible into clauses (see Fn. 4). Al-
gorithm 2 gives a general idea of how the pro-
cess works. match(X,Y ) is a boolean function
that holds true if X is found in Y . We load the
box scores into a Pandas’ data frame prior to the
loop operation. ask pandas handles a query for
the data frame, returns true if it finds a piece of
data that matches the query and false if not. The
code shown in Table 2, for instance, asks whether
a player started off the bench.

2.1.3 Tail Section
For this part, our goal is to see if there is any er-
ror about future matchups. We gather matchup
information, such as date (day of week), home
name, visitor name from the last two sentences of
M TEXT and check them against a correspond-
ing part of H TEXT. Specific operations involved
are shown in Algorithm 3. find matchup looks
for home name, visitor name and date in a clause
given as input. It works on both m- and h-clause.

5https://pandas.pydata.org/



278

Table 2: A code in Pandas

data frame.loc[[’START POSITION’],[player name]].values.flatten()[0]

Algorithm 3 Finding a name error in TAIL

Input: m-clause, h-clause, DOWs, Team Names
Output: True or False
H ← h-clause ▷ String
M ← m-clause ▷ String
D ← DOWs ▷ Pre-def. List of Strings
N ← Team Names ▷ Pre-def. List of Strings
ma,mb,mc = find matchup(M,N ,D)

▷ ma,mb,mc represent home name, visitor
name, date found in m-clause, respectively
ha, hb, hc = find matchup(H,N ,D)

▷ ha, hb, hc represent home name, visitor
name, date found in h-clause, respectively.
if ma ̸= ha and mb ̸= hb and mc ̸= hc then

return Not Checkable
end if
if ma ̸= ha or mb ̸= hb or mc ̸= hc then

return False
else

return True
end if

In case the search is successful with m-clause but
not with h-clause (meaning that none of the tar-
gets was found in h-caluse), we stop, reporting
that they are unverifiable or uncheckable. Other-
wise, we look for a discrepancy between triplets
in m- and h-clause, and report an error if any is
found.

We collectively call a set of rules we brought to-
gether for detecting word/name mistakes, ‘WED,’
hereafter.

2.2 Detecting Number Errors

2.2.1 Building Training Data
In detecting number errors, we essentially rely
on data utils.py6 (UTL, hereafter) which extracts
from the Rotowire dataset, what we call ‘relation
quadruples’ (relQs), each of which contains infor-
mation on who scored what points in what cate-
gory.7 Having relQs at hand is a useful first step

6https://github.com/harvardnlp/data2text/
7UTL works by locating a player name and a number in

a sentence and searching box office scores for records that
match the name and the number. It returns all the matches,
together with relevant categories, e.g. points, rebounds, as-
sists, steals, blocks, threes, field-goal percentage, free-throw

towards error detection as they can tell us where to
look for potential errors. For example, given a sen-
tence “Marco and Spencer came off the bench to
combine for 31 points, eight rebounds and 10 as-
sists as well.”, UTL would output relQs like those
shown in Table 4. OFFSET indicates where the
relevant number starts in the sentence.

We recognize however two problems with UTL:
(1) it allows a number to get associated with more
than one relation; (2) it could fail to assign any
relation at all. Our plan is to avoid these annoy-
ances by bootstrapping UTL with a neural model
to predict a correct relation given a player name,
a number and a context, i.e. a sentence, in which
they occur.

In a move in this direction, we transform relQs
into source-label pairs of the form shown in Ta-
ble 3. The process involves acquiring an m-
sentence where a relQ comes from, replacing a
player name with ‘@’ and a target number (one
for which we are trying to find a relation) with ‘#,’
with all other numbers reduced to ‘⟨NUMBER⟩.’

In addition, we made sure that each relQ we
use for training is supported by the box-office
scores, that is, evidence exists in the box scores
that demonstrates the veracity of the relQ. This
means that we accept relQs in Table 4 as train-
ing data only if there are records in the box scores
showing that Macro had 31 points, 8 rebounds,
and 10 assists. If not, they are all discarded. Also
dismissed are relQs where a number occurs ahead
of a player name (Table 5).

Moreover, in case a number gets assigned to
more than one relQ, the preference is given to one
that is consistent with a word that immediately fol-
lows that number (shots, rebounds, assists). For
example, if we have a sentence ‘Macro led the
team with a spectacular output of 31 points.’ for
which UTL may give (‘Marco’, OFFSET 0, ‘31’,
‘PTS’) and (‘Marco’, OFFSET 0, ’31’, ‘AST’),
we will take the first relQ and drop the second,
as it contradicts what the sentence says about how
the number came about (it is not about how many
assists he made).

percentage, etc. If the search fails, it returns a relQ with a
category named ‘NONE.’ Throughout the paper, we refer to
categories as relations, following Wiseman et al. (2017).



279

Table 3: Source Label Pairs. ‘@’ is a proxy for a person name and ‘#’ that for a numeral of interest.

SOURCE LABEL

@ and Spencer came off the bench to combine for # points , ⟨NUMBER⟩
rebounds and ⟨NUMBER⟩ assists as well .

PTS

@ and Spencer came off the bench to combine for ⟨NUMBER⟩ points , #
rebounds and ⟨NUMBER⟩ assists as well .

REB

@ and Spencer came off the bench to combine for ⟨NUMBER⟩ points ,
⟨NUMBER⟩ rebounds and # assists as well .

AST

Table 4: Relation Quadruples, each composed of player
name, location, number (points), and label (i.e. cate-
gory in which points are earned).

(‘Marco’, OFFSET 0, ‘31’, ‘PTS’ )
(’Marco’, OFFSET 1, ’8’, ‘REB’ )
(’Marco’, OFFSET 2, ’10’, ‘AST’ )

2.2.2 Model
The training data are fed into an LSTM-based Se-
quence to Label classifier (bidirectional, batch-
normalized with the RELU non-linearity):

o = softmax(r(ℓ2(r(ℓ1(m(W)) (1)

W is an input (a sequence of words that repre-
sents a sentence (see Table 3)) where each token
is replaced by a word embedding from GloVe,8

r(·) denotes the RELU activation, ℓ(·) a fully con-
nected layer and m(·) a bidirectional LSTM, all of
which were built with PyTorch.9

After processing the test set in the same way
as we did with the training set, we run the model
(Eqn. 1), making a prediction about the relation for
each relQ instance we find in the text. We label a
relQ instance as wrong if it is predicted to have a
relation inconsistent with one given by UTL.10 We
refer to the model described here as ‘NED.’

3 Resolving Coreference

Given the way UTL works, it is important that
we make explicit what a referring expression
points to, in order for UTL to successfully build
a relQ. To this end, we make use of NeuralCoref
4.0,11 which operates as an add-on functionality

8https://nlp.stanford.edu/projects/glove/
9https://pytorch.org/

10For instance, we take the following situation as mistake.
UTL ouptut: (‘Marco’, 0, ‘31’, ‘NONE’)
Prediction: (‘Marco’, 0, ‘31’, ‘PTS’)

11https://github.com/huggingface/neuralcoref.git

Table 5: Player name has to appear ahead of number.
‘w’ represents an arbitrary word.

ALLOW DISALLOW

w w @ w w # w w w w w w w w # w @ w
@ w w w w # w w w w w w w w # @ w w
w @ w w w # w w w w w w w w # w w @

for spaCy.12 Resolving coreferences with Neural-
Coref (NC) results in every referring expression
(r-expression, hereafter) in a text being replaced
with a corresponding root entity (i.e. its canoni-
cal name). This can be troublesome though, be-
cause it may disrupt the way in which words are
originally laid out, which we need to retain in or-
der to report results conformant to the shared task
format policy (which asks to report errors by indi-
cating where they are in the original position). In
response, we pursued an approach where we rep-
resented a text with a linked list structure in which
each word is represented as a node which contains
information on what node it is preceded by and
what it is followed by, in addition to where it oc-
curs relative to others.13 For each r-expression NC
found, we replaced a token string held by a rele-
vant node with its antecedent while keeping other
information (occurrence site, forward/backward
connections) in tact (Fig. 2). Furthermore, we re-
stricted an r-expression subject to replacement, to
be among ‘their,’ ‘they,’ ‘he,’ ‘his,’ ‘its,’ ‘it,’ and
‘him.’

4 Setup and Results

The training data that NED used are sourced
from part of the Rotowire corpus (Wiseman et al.,
2017),14 called ‘train.json,’ which contains 3,398
matchup results each with a summary manually

12https://spacy.io/
13A node is a structure schematically defined as:

node := ⟨word-token, preceded-by, followed-by, position⟩
14https://github.com/harvardnlp/boxscore-data.git



280

He scored a new high for the season. Kevin Durant scored a new high for the season.

co-ref resolution

He scored a new Kevin Durant scored a new

Figure 2: Doing coreference resolution without disrupting the token position

Table 6: Comparison of Per-Type Performance: Coref. vs. Non-Coref. (Shared Task 2021 Train)

Coref.
Mistake Token

recall precision recall precision
name 0.356 0.958 0.259 0.958

number 0.781 0.561 0.764 0.561
word 0.398 0.364 0.311 0.394

context 0.000 - 0.000 -
not checkable 0.000 - 0.000 -

macro summary 0.549 0.556 0.410 0.553

Non-Coref.
Mistake Token

recall precision recall precision
0.356 0.958 0.259 0.958
0.641 0.476 0.628 0.476
0.398 0.364 0.311 0.394
0.000 - 0.000 -
0.000 - 0.000 -
0.496 0.511 0.375 0.514

Table 7: Results on Shared Task 2021 Test

Mistake Token
model recall precision recall precision

WED/NED 0.523 0.494 0.349 0.505

created, providing 116,579 source-label pairs in
total. The official test set, carved out of the Ro-
towire corpus, contained machine generated 30
matchup reports and associated box records. We
trained NED for 50 epochs on the extracted pairs,
achieving the classification accuracy of 0.461 on
the test set (over 34 labels). We ran WED on sum-
maries included in the test set (M TEXTs). It also
made use of human summaries provided as part
of the Rotowire data (H TEXTs). Results on Ac-
curacy Shared Task 2021 Test (30 M TEXTs) are
shown in Table 7. The figures are in macro pre-
cision and recall. Table 6 gives a per-type com-
parison of coreference enabled (CrE) versus dis-
abled (CrD) approach, on the train part of 2021
Shared Task (60 M TEXTs), which reveals a clear
advantage of CrE over CrD in the number category
(highlighted in blue and red).15

15It implies that NeuralCoref, by making NED more accu-
rate in predicting relations in relQs, may have pushed higher
the system’s performance in detecting number errors. We
were not able to find any meaningful difference between CrE

5 Conclusion

This paper gave an overview of the approach we
took to meet the shared task challenge for 2021,
which is essentially a combination of hand crafted
rules (WED) and machine learning (NED): it re-
lied on rule based heuristics to identify errors in
name and word while bringing in a neural model
to locate number errors. The rule based part con-
sisted of ‘translating’ a cue expression into a pro-
cedure to query box scores for its veracity, while
the machine learning part was driven by a neu-
ral model, whose predictions allowed us to de-
tect inconsistencies in number related statements
in M TEXTs.16

and CrD on the 2021 Test.
16Response to Organizers’ Question (which is about how

we would cope with unknown player names, venues and
teams). Bringing up to date the database we use for WED,
of players, teams and venues through Wikipedia and sources
devoted to NBA conferences (e.g. box-office scores), could
lessen a possible negative impact due to the lack of exposure
to data not available at the time of training. If that does not
work, we may go to some off-the-shelf NE tool such as one
by spaCy, though we expect it may hurt name error detection
(due to its reduced accuracy), and to a lesser degree word er-
ror detection as it does not involve the recognition of venue
names (player and team names can easily be picked by look-
ing at box-office scores which we assume are available all
the time). Cue expressions we used were fairly generic. It is
highly unlikely that they become less effective on summaries
beyond the training data, though we recognize the need to
expand the list.



281

References
Ehud Reiter and Craig Thomson. 2020. Shared task on

evaluating accuracy. In Proceedings of the 13th In-
ternational Conference on Natural Language Gen-
eration, pages 227–231, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Sam Wiseman, Stuart M. Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.


