
Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 266–270,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

266

Shared Task in Evaluating Accuracy:
Leveraging Pre-Annotations in the Validation Process

Nicolas Garneau and Luc Lamontagne
Université Laval, Québec, Canada

{nicolas.garneau,luc.lamontagne}@ift.ulaval.ca

Abstract

We hereby present our submission to the
Shared Task in Evaluating Accuracy (Reiter
and Thomson, 2020) at the INLG 2021 Con-
ference. Our evaluation protocol relies on
three main components; rules and text classi-
fiers that pre-annotate the dataset, a human an-
notator that validates the pre-annotations, and
a web interface that facilitates this validation.
Our submission consists in fact of two submis-
sions; we first analyze solely the performance
of the rules and classifiers (pre-annotations),
and then the human evaluation aided by the
former pre-annotations using the web interface
(hybrid). The code for the web interface and
the classifiers is publicly available1.

1 Introduction

Evaluating Data-to-Text natural language genera-
tion (NLG) systems is a very important task despite
its notorious difficulty (Thomson and Reiter, 2020).
Reiter and Thomson introduced a Shared Task in
Evaluating Accuracy which consists of factually
assessing the accuracy of basketball games sum-
maries produced by an automatic (neural) language
generator. The underlying Data-to-Text dataset was
originally created by Wiseman et al..

Evaluating the accuracy of a game’s summary
relies on identifying the errors within the generated
text. Borrowing the same terminology as Reiter
and Thomson, the set of possible errors comprises 6
different categories; Number, Named entity, Word,
Context, Not Checkable, and Other. We refer the
reader to the original paper for more details about
these different error categories.

As part of the shared task, participants were
asked to propose an automatic evaluation metric
(or algorithm) and/or an evaluation methodology
that could be followed by humans in order to assess

1https://github.com/ngarneau/
accuracySharedTask

the accuracy of a given generated text. In our case,
we proposed both, i.e. a hybrid approach where the
evaluation methodology leverage pre-annotations
in order to accelerate (and hopefully improve) the
evaluation process.

2 Evaluating Accuracy

Our evaluation methodology relies on the pre-
annotation of game summaries and a validation
procedure that we describe in the following sec-
tions.

2.1 Pre-Annotation of Game Summaries

In order to accelerate the task of evaluating the ac-
curacy, we propose to pre-annotate the game sum-
maries (i.e. identify potential errors) using a set of
rules and text classifiers. To this end, we followed
the hierarchical proposition specified by Reiter and
Thomson2 and designed our system accordingly.

We then separate the set of errors into two groups.
The first group contains Number and Name errors,
where every instance can easily be identified (not
necessarily validated) by an algorithm. This in-
cludes names beginning with a capital letter and
numbers consisting of either digit (1, 2, etc.), writ-
ten words (one, two, etc.) or ordinals (first, second,
etc.). The second group contains all other error
types, i.e. Word, Context, and Not Checkable 3. We
illustrate the distribution of errors on the develop-
ment set in Table 1

For the first group of errors, we designed two
simple rules. Given the set of n Number in-
stances {ui|i ∈ 1 . . . n} and m Name instances
{aj |j ∈ 1 . . .m} in a given sentence, we check for
the following;

2Number > Name > Word > Context > Not Checkable >
Other

3Since the Other type of error does not provide many
examples and it was designed for nonsensical text, we do not
consider it in our submission.

https://github.com/ngarneau/accuracySharedTask
https://github.com/ngarneau/accuracySharedTask


267

Error Type Count
Number 474
Name 317

Word 334
Context 51
Not Checkable 37

Table 1: Distribution of error types in the development
set for the first group (Number and Name) and the sec-
ond group (Word, Context, and Not Checkable).

1. For every pair (ui, aj), find a correspondence
(row–column wise) in the Box Score. If the
check fails, we consider it is a Number error.

2. For every aj , find a correspondence (any-
where possible) in the Box Score. If the check
fails, we assume it is a Name error.

These checks are done to pre-annotate sentences
with Number and Name errors which are later vali-
dated by the annotators. We provide more details
on the validation step in Section 2.2.

The errors of the second group are much more
difficult to identify. Since the annotators might
not be native English speakers or might have lit-
tle knowledge about the basketball lexical field,
we help them with two textual classifiers that are
trained on the development set released along with
the task. The first classifier predicts if a sen-
tence may contain errors belonging to the second
group or not (i.e. a binary classification). The
second classifier predicts which type(s) of errors
may be present within a sentence positively la-
beled to the second group. Hence it is a multi-
class, multilabel classifier. It takes as input only
the sentence, no contextual information from the
box score. This classifier uses unigrams, TF-IDF
weights (Sparck Jones, 1988) and a multinomial
logistic regression model. The regression model
assigns to each word wi in the vocabulary a score
specific to a class cj , namely si,j . Using the TF-
IDF weight ti and a classification threshold τ , we
classify a word as being erroneous w.r.t. a specific
class cj as follows:

ci,j =

{
1, if ti · si,j ≥ τ
0, otherwise

ci,j is thus used as a pre-annotation to the word wi.
If multiple error labels can be associated with a

word, we take the one with the highest importance.
We used τ > 0.5 in our experiments.

The binary and multilabel classifiers have been
trained using the scikit-learn library (Pedregosa
et al., 2011) and achieve respectively 0.63 and 0.76
F1-scores on the development set.

2.2 Evaluation Procedure

Our evaluation procedure is composed of three
steps, where the first and the last are fully auto-
mated while the second is performed by a human.

Importing games data and pre-annotation.
The annotator first imports the games’ data into the
validation database with a python script. Then, the
game summaries are automatically pre-annotated
using the classification models described in Sec-
tion 2.1. The games are then ready to be validated
manually.

Validating pre-annotations. The list of games
to validate is displayed through the web interface
to the annotator. The annotator selects the game
to annotate and begins with the first sentence. To
provide a little more context, we include links to
the box score, to each team’s respective pages, and
to the current calendar showing the dates from the
month in which the game was played. We also
present the previous and next sentences to the cur-
rent one, if there are any. Then, a list of all the
words of the sentence under study is presented,
with a dropdown list filled with pre-annotations
that lets the user select the possible error a given
word might be associated with. The annotator is
asked to follow the evaluation guidelines provided
by Reiter and Thomson. Once the validation is
done, the user can save them and move onto the
next sentence until the summary is fully validated.
We illustrate in Figure 1 the main interface pro-
posed to the annotator.

Preparing submission file. Once all the games
have been validated, the annotator needs to prepare
a submission file. This file is created using a python
script and made available to the evaluators.

3 Results

3.1 Pre-Annotations

We can see from Table 2 that the pre-annotations
offer a basic coverage for the Number and Name er-
rors. Recall that these pre-annotations rely strictly
on two simple rules.



268

Links to contextual data

Sentence under study 
with previous and next 
sentences

Pre-annotations & form 
to validate and save 
annotations to the 
database

Figure 1: The main interface for the annotator used to validate the pre-annotations. Links to the box score, teams’
statistics, and current calendar are available at the top. The previous and next sentences are shown to the annotator
to provide more context. The annotator validates the pre-annotations by updating the dropdown lists in the form.

Pre-Annotations Human Validation

Error Num. Name Word Cont. N/C Avg. Num. Name Word Cont. N/C Avg.

D
E

V Precision 0.38 0.67 0.20 0.00 0.10 0.31 0.65 0.78 0.33 0.08 0.16 0.49
Recall 0.30 0.53 0.58 0.00 0.60 0.49 0.58 0.69 0.67 0.16 0.60 0.66

T
E

S
T Precision 0.35 0.79 0.14 0.00 0.19 0.33 0.88 0.94 0.73 0.40 0.39 0.88

Recall 0.44 0.59 0.36 0.00 0.50 0.50 0.86 0.92 0.68 0.75 0.24 0.84

Table 2: Precision and Recall results for every error types on the development and test set. We present the difference
between the pre-annotations only, and the human validation.

The classifiers, however, struggle to precisely
identify erroneous words (while having a decent
recall). During validation of the summaries, we no-
ticed that the classifiers acted more like pointers. In-
deed, when there were potential Word/Context/Not
Checkable errors, the classifiers flag non-erroneous

words. Take for example the sentence in Figure 1.
The classifier identified the first words like “re-
mains” and “place” as being Not Checkable errors.
While these words do not correspond to the exact
error (“third place”), it does give a pointer to the
annotator that there is something to verify within



269

this particular phrase. Nonetheless, it did help the
annotator to give more serious attention to these
sentences, and especially to detect Context errors.

We can see from Table 2 that there are negli-
gible differences across error types between the
development and test set. This suggests that the
pre-annotations did not overfit.

3.2 Human Evaluation

The human evaluation was conducted in two sub-
sequent stages; the annotator first validated the
development set and then the test set, and a dif-
ference in the results obtained for these two data
sets can be observed in Table 2. This difference is
attributable to the fact that the annotator gained do-
main knowledge throughout the annotation process.
This is especially true for the Word and Context er-
rors. Overall, on the test set, we achieve interesting
(and surprisingly high) precision and recall scores
of 0.88 and 0.84 respectively. It would have been
interesting to validate the test set with an annotator
that did not have any prior knowledge on the task
and domain i.e. had not seen the development set.

3.3 Evaluation Time

Familiarisation with the problem, the dataset, and
the domain took roughly 4 hours. The develop-
ment of the evaluation interface, rule modeling,
and creation of the classifiers represent an effort of
one day (8 hours). The training time of the clas-
sifiers is near-instantaneous, and the computing
power needed is CPU only. The evaluation time
required for one game is between 10 to 15 min-
utes. Since we save the normalized annotations
within the database, it is easy to generate the sub-
mission file with a simple script that takes seconds
to run. Overall, considering the validation of both
development and test sets, conducting the whole
experiment took around 30 to 35 hours. Originally,
the protocol took around 30 minutes per annota-
tor and used 3 relatively knowledgeable annotators
to achieved good results. We thus considerably
reduced the manual effort.

4 Discussion

As previously mentioned, evaluating the accuracy
of generated text in a Data-to-Text setting is a very
hard task. In this experiment, the annotators found
the task especially difficult since they are not native
English speakers and basketball game descriptions
are not (or were not!) a domain with which they

were familiar.
While the following example may seem trivial, it

took several summaries for the annotator to under-
stand that “led the bench” means that it is targeting
non-starting players (one could easily assume that
every player starts on the bench). Also, an annota-
tor who knows which player plays for which team
will greatly improve and accelerate the evaluation
process. This is something that the annotator just
barely began to get comfortable with towards the
end of the task.

Our experiments, due to the lack of time and
resources, do not explicitly expose the benefits of
having pre-annotations. It would have been in-
teresting to see if, given two annotators with the
same prior knowledge4, the pre-annotations helps
them to solve the task both in a matter of time
and accuracy, hence evaluating the inter-annotator
agreement. Nonetheless, the pre-annotations did
help the annotators through the evaluation process
in three different ways;

1. get familiar with the task, domain, and dataset
by seeing which potential word may be erro-
neous;

2. identify errors that the annotator would have
missed;

3. save time and effort.

We decided to design our own annotation tool in-
stead of using WebAnno (Yimam et al., 2013), the
one initially used by the authors of the task. This
decision was mainly motivated by the flexibility of
storing and pre-annotating the game summaries. In
future works, we would consider more robust text
classifiers coupled with active learning in order to
improve the pre-annotations, while executing the
task. We would also consider adding contextual in-
formation from the box score for the classification.

References
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

4Then again, it is hard to measure prior knowledge on a
specific domain.



270

Ehud Reiter and Craig Thomson. 2020. Shared task on
evaluating accuracy. In Proceedings of the 13th In-
ternational Conference on Natural Language Gener-
ation, pages 227–231, Dublin, Ireland. Association
for Computational Linguistics.

Karen Sparck Jones. 1988. A Statistical Interpretation
of Term Specificity and Its Application in Retrieval,
page 132–142. Taylor Graham Publishing, GBR.

Craig Thomson and Ehud Reiter. 2020. A gold stan-
dard methodology for evaluating accuracy in data-
to-text systems. In Proceedings of the 13th Inter-
national Conference on Natural Language Genera-
tion, pages 158–168, Dublin, Ireland. Association
for Computational Linguistics.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Seid Muhie Yimam, Iryna Gurevych, Richard
Eckart de Castilho, and Chris Biemann. 2013.
WebAnno: A flexible, web-based and visually
supported system for distributed annotations. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: Sys-
tem Demonstrations, pages 1–6, Sofia, Bulgaria.
Association for Computational Linguistics.

https://www.aclweb.org/anthology/2020.inlg-1.28
https://www.aclweb.org/anthology/2020.inlg-1.28
https://www.aclweb.org/anthology/2020.inlg-1.22
https://www.aclweb.org/anthology/2020.inlg-1.22
https://www.aclweb.org/anthology/2020.inlg-1.22
https://doi.org/10.18653/v1/D17-1239
https://www.aclweb.org/anthology/P13-4001
https://www.aclweb.org/anthology/P13-4001

