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Abstract
The task of Sentence Ordering refers to re-
arranging a set of given sentences in a co-
herent ordering. Prior work (Prabhumoye
et al., 2020) models this as an optimal graph
traversal (with sentences as nodes, and edges
as local constraints) using topological sorting.
However, such an approach has major limita-
tions – it cannot handle the presence of cycles
in the resulting graphs and considers only the
binary presence/absence of edges rather than
a more granular score. In this work, we pro-
pose an alternate formulation of this task as
a classic combinatorial optimization problem
popular as the Traveling Salesman Problem (or
TSP in short). Compared to the previous ap-
proach of using topological sorting, our pro-
posed technique gracefully handles the pres-
ence of cycles and is more expressive since it
takes into account real-valued constraint/edge
scores rather than just the presence/absence
of edges. Our experiments demonstrate im-
proved handling of such cyclic cases in result-
ing graphs. Additionally, we highlight how
model accuracy can be sensitive to the order-
ing of input sentences when using such graphs-
based formulations. Finally, we note that our
approach requires only lightweight fine-tuning
of a classification layer built on pre-trained
BERT sentence encoder to identify local rela-
tionships.

1 Introduction

A logical and coherent structure is an important
characteristic of easily comprehensible text. As
such, modeling the structure of coherent texts has
been an important problem in NLP (Barzilay and
Elhadad, 2002). In this paper, we work on the task
of sentence ordering, wherein given an unordered
set of sentences, the aim is to generate the most
coherent ordering among them (Table 1). It es-
sentially arises in situations where the information
available in parts (sentences) is to be presented as a

Input

s1: Our son really likes his new bike.
s2: It’s almost Christmas time.
s3: They really love what they got.
s4: We had a very fun time.
s5: The Children begin to open their presents.

Correct Output Sequence: s2 → s5 → s3 → s1 → s4

Table 1: An instance of the Sentence Order Generation
Task. Given a set of incoherently arranged sentences as
input, the goal is to output a coherent ordering. (Story
from the SIND dataset)

whole in a coherent and logical ordering. Correctly
ordering sentences has applications for summariza-
tion (Barzilay and Elhadad, 2002; Nallapati et al.,
2017; Narayan et al., 2018), constructing natural
language explanations (Jhamtani and Clark, 2020),
automatic scoring of an essay (Attali and Burstein,
2006; Farag et al., 2018; Amorim et al., 2018), and
automatic generation and evaluation of a narrative
(See et al., 2019; Jhamtani and Berg-Kirkpatrick,
2020; Gangal et al., 2021; Sakaguchi et al., 2021).

Much prior work has formulated sentence or-
dering as a sequence prediction task (Gong et al.,
2016; Cui et al., 2020), by first encoding the in-
put sentences, and then predicting the ordering or
numbering of the sentences. There have also been
attempts to model the task as a ranking problem
(Kumar et al., 2020). More recently, Prabhumoye
et al. (2020) model this as a constraint-solving prob-
lem, wherein they first identify the relative order-
ing between pairs of sentences using a BERT-based
(Devlin et al., 2019) classifier. Thereafter, they
formulate it as performing a topological sort on a
graph, wherein each sentence is a node in a graph,
and each directed edge represents a pairwise con-
straint. Compared to prior work, it simplifies the
decoding process by using a graph traversal for-
mulation. However, the topological sort algorithm
used for translating constraints into the final order
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leads to major limitations. Firstly, it cannot han-
dle cycles in the resulting graph, and picks some
arbitrary ordering in such cases (Figure 1). Our
analysis shows that cycles were present in more
than 54% of the graphs across the four datasets un-
der consideration. Secondly, though the underlying
classifier can provide more fine-grained scores, the
scores are discretized/binarized to run the topologi-
cal sorting algorithm. This leads to a loss of useful
information in the decoding process.

In this work, we propose a reformulation of Neu-
ral Sentence Ordering as the classical Traveling
Salesman Problem, while leveraging the recent
progress in large pre-trained models such as BERT.
We build upon the classification model used in Prab-
humoye et al. (2020) and overcome the limitations
in their approach by making better use of the infor-
mation yielded by the classifier, taking into account
global dependencies by employing a combinato-
rial minimization objective, and working with an
overall framework that can handle cycles in the
resulting graph.

Our contributions can be summarized as fol-
lows. Firstly, we provide a novel formulation of
the sentence ordering task as the Traveling Sales-
man problem. Compared to the previous graph-
based approach of using topological sorting, our
proposed technique gracefully handles the presence
of cyclic constraints. Moreover, it is more expres-
sive since it admits real-valued soft constraints as
opposed to hard binary constraints. Secondly, ex-
periments with multiple datasets demonstrate im-
proved results under some setups compared to the
baselines using alternative graph-based formula-
tion. Finally, we observe how certain choices in
data pre-processing in graph-based approaches for
sentence ordering can affect accuracy scores. We
propose and use a more robust data processing and
evaluation. The code is publicly available. 1

2 Background

In this section, we first formally describe the task
of Sentence Ordering. Then we discuss its formu-
lation as a constrained graph traversal, and discuss
limitations of prior formulations of the task as a
graph traversal problem.

2.1 Problem Formulation

Consider an ‘unordered’ set of n sentences: S =
{s1, s2, ..., sn}. Our aim is to find a permutation

1https://github.com/vkeswani/BerTSP

s1 Getting ready to dive from the pier.
s2 A dive into the cold lake.
s3 Two friends enjoy the refreshing lake.
s4 Noodles at the ready for a fun fight.ww�

s1 → s2 s1 → s3 s1 → s4 s2 → s1
s2 → s3 s2 → s4 s3 → s1 s3 → s2
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n2 − n = 12 ordered pairs possible in this caseww�
BERT Sentence-Pair Classification Model

Outputs probability P for ordered-pair si → sj :
Label L = I(P > 0.5)L = I(P > 0.5) & Distance D = 1− PD = 1− Pww�

LL Pair P DD

11 s1 → s2 0.8 0.20.2
0 s1 → s3 0.2 0.80.8
11 s1 → s4 0.5 0.50.5
0 s2 → s1 0.0 1.01.0
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11 s3 → s4 0.8 0.20.2
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Figure 1: Graph-traversal based formulation for
sentence ordering task: Such approaches first com-
pute local pairwise constraints using next sentence pre-
diction probability from a fine-tuned BERT classifier.
(a) Topological Sort (Prabhumoye et al., 2020) dis-
cretizes the edges (0/1) and then runs topological sort-
ing to get the final output sequence. However, such
an approach is likely to pick an arbitrary ordering
in the case of cycles. (b) In the proposed Travel-
ing Salesman ATSP formulation, classifier probabili-
ties are used to derive soft constraint scores between
pairs of nodes, thus making use of more expressive fine-
grained scores.

https://github.com/vkeswani/BerTSP
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P = {i1i2...in} such that the resulting ‘ordered’
sequence is S∗ = {si1 , si2 , ..., sin} is coherent.

Formulation as a Graph Traversal: Prabhu-
moye et al. (2020) propose to first identify binary
constraints between all pairs of sentences. More
specifically, given a pair of sentences {si,sj}, they
aim to extract whether si should follow sj or the
other way around. Thereafter, they decode the
global ordering by treating the decoding as topo-
logical sorting in a graph, wherein sentences are
treated as nodes, and pairwise constraints denote
presence/absence of edges (i.e. there is an edge
from si to sj if a constraint states that sj should
follow si.). A high-level outline of this approach is
shown in Figure 1.

2.2 Topological Sorting and its Limitations

To the best of our knowledge, (Prabhumoye et al.,
2020) is the only work till now that utilizes a graph
based formulation of Sentence Order Prediction on
top of pairwise scores from a BERT-based classifier.
Though it succeeds in achieving a light and efficient
method for this task with minimal training, there
are some inherent issues in this approach which
we discuss below. Next, we will describe these
limitations.

Discretization of edges: Prior work utilizes a
BERT based classifier to predict local ordering con-
straints between pairs of sentences. However, to
run the topological sorting, the classifier proba-
bility is converted a 0/1 prediction, which gov-
erns merely the direction of the edge i.e. the fine-
grained probability scores are thereafter not used.
This leads to loss of valuable information about the
likelihood of the edge, thus making it a significant
issue. Since only binary constraints are learned and
no score is attached to any order, it misses out on
learning a rich global structure.

Cyclic constraints: The Topological Sort algo-
rithm inherently cannot deal with cycles as it oper-
ates only on DAGs (Directed Acyclic Graphs). To
deal with such cases, one can pick an arbitrary or-
dering of the nodes and edges, and delete edges that
result in any cycles. However, such an approach
will pick random orderings at best. For example,
in Figure 1, the resulting graph has cycles, and the
final output is a random ordering among the nodes.

Neutral pairs: To determine the direction of the
edge between a pair of nodes, prior work feeds the

pair of sentences to the classifier either as s1 → s2
or as s2 → s1 (both are equally likely). For in-
stance, if s1 → s2 is selected, the classifier pre-
dicts P (s1 → s2). If P (s1 → s2) > 0.5, then
the edge is directed from s1 to s2 in the graph (i.e.
s1 → s2). Otherwise, it is directed from s2 to s1
(i.e. s2 → s1). Due to the lack of information
in some sentence pairs or the limited efficacy of
the classifier, the left out possibility is also prob-
able. In such cases, both P (s1 → s2) > 0.5 and
P (s2 → s1) > 0.5 are possible. We call such pairs
neutral. The baseline approach does not consider
breaking ties for neutral pairs. Datasets contain
up to 50% samples with one or more neutral pairs.
Note that s1 → s2 and s2 → s1 are not comple-
mentary events. Both lead to different input repre-
sentations being fed to the classifier giving rise to
different outputs (Section 3.3).

3 Sentence Ordering as the Traveling
Salesman Problem

As mentioned previously, our objective is to work
with soft constraints rather than binary constraints.
To enable the use of such soft constraints, we cast
the sentence ordering task as a Traveling Salesman
traversal with respect to the graph denoting sen-
tences as nodes, and constraints as edges. In the
rest of this section, we first briefly describe the
Traveling Salesman Problem (TSP) (Section 3.1),
then describe how we reduce the sentences order-
ing as TSP (Section 3.2). Thereafter, we discuss
the procedure to identify soft constraints using a
classifier built on BERT representations. Finally,
we discuss the solutions to solve TSP given a graph
(Section 3.4).

3.1 Traveling Salesman Problem

The Traveling Salesman Problem is one of the more
well-known problems studied in combinatorial op-
timization. In terms of graph theory, given an undi-
rected weighted graph, it aims to find the shortest
Hamiltonian Cycle, i.e. the cycle with the least
weight that visits each node of the graph exactly
once. Additionally, for our purpose and other prac-
tical applications, the graph is complete. Formally,
we are given a complete undirected weighted graph
G = (V,E,W ) where V denotes the set of ver-
tices, E denotes the set of edges and W denotes
the matrix containing weights for every edge.
V = {vi} ∀i∈{1,2,...,n}
E = {eij} ∀i,j∈{1,2,...,n}
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W = {wij} ∀i,j∈{1,2,...,n}
For G and a source vertex vs (s ∈ {1, 2, ..., n}),

we need to find a cyclic permutation or a Hamil-
tonian cycle P = {si1i2...in−1} for which the fol-
lowing summation is minimized:

wsi1 + wi1i2 + ...+ win−2in−1 + win−1s

Since the permutation is cyclic, the summation is
independent of the choice of s. This is the formu-
lation of symmetric TSP for which wij = wji, i.e.
distance from vi to vj is exactly the same as the
distance from vj to vi. However, for some practical
applications including ours, the two distances may
not be equal. This is the case of asymmetric TSP.

3.2 Asymmetric TSP and Sentence Ordering
In the Asymmetric formulation of the Traveling
Salesman Problem, wij 6= wji. These cases may
arise in case of one-way traffic, accidental block-
age, etc. The graph is still complete but directed
with two edges between each pair of vertices in
either direction. For the purpose of Sentence Or-
dering, we train a classifier that learns the probabil-
ity of sentence i being followed by sentence j in
the correct order and vice-versa. These probabili-
ties give us the weights for the two edges between
nodes vi and vj . Since the traditional TSP is pro-
posed as a distance/cost minimization problem, a
high probability should correspond to low distance.
Hence, we use the probability of the complement
(i.e. 1− P ) as the weight.

wij = 1− P (si → sj)
wji = 1− P (sj → si)

Since the ground truth for the classifier is 1 for
a correct pair-order and 0 for an incorrect pair-
order, it is reflected in the predicted probabilities
and hence, P (si → sj) 6= P (sj → si). Intuitively,
if sentence i is followed by sentence j in the correct
order, the distance from i to j should be less than
the distance from j to i, i.e. wij < wji. TSP re-
quires the source to be pre-specified, for which we
introduce a dummy node (Additional description
about dummy node can be found in Appendix).

This way, each sentence serves as a vertex of
graph G and the probabilities serve as entries of
the weight matrix W . We use W to find the exact
or heuristic solutions of the asymmetric TSP which
eventually results in the correct Sentence Ordering.

In the TSP formulation, all of the issues with
topological sorting are overcome. Firstly, the solu-
tion for TSP is independent of the order in which
the input sentences are fed, hence preventing any

sensitivity to the order in which sentences are pro-
cessed. The graph constructed for every sample is
cyclic and it does not have an inherent issue with
cycles. This is reflected in its performance on sam-
ples with cycle(s) (table 2). Secondly, in the case
of asymmetric TSP, weighted edges in both direc-
tions are required. This way both P (s1 → s2) and
P (s2 → s1) make it to the weight matrix and the
ambiguity of neutral pairs (local relationship) is
resolved via their dependencies with other nodes
(global relationship). Thirdly, since exact prob-
ability values are used as weights to arrive at a
final order, there is no loss of information via dis-
cretization. Lastly, the order with the minimum
cost arrangement is chosen which takes care of the
global context. We refer to our method as BerTSP.

3.3 Learning Soft Constraints
We leverage BERT (Devlin et al., 2019) base-
uncased configuration to obtain sentence pair rep-
resentations. Specifically, we train a multi-layer
feed-forward neural network that operates on sen-
tence representation from pre-trained BERT, and
makes a binary prediction about the relative order-
ing of the sentence pair. For every pair, it gives the
probability of the first sentence (si) being followed
by the second sentence (sj). This way we obtain
P (si → sj) and consequently wij . It differs from
(Prabhumoye et al., 2020) as it makes a prediction
for either direction for a sentence pair (si → sj
and sj → si) while Prabhumoye et al. (2020) pick
any one direction with a probability of 0.5 and use
the binary label to define a constraint (unweighted
edge). This way, for a set of n sentences, we obtain
2×Cn

2 = n2−n scores which serve as off-diagonal
elements of the distance matrix (diagonal elements
are set to 0 as P (si → si) = 0). This matrix is aug-
mented with a row and a column of 0s to account
for the dummy node discussed in the previous sec-
tion and appendix. This augmented matrix serves
as input for TSP.

In practice, we use the ’BertForSequence-
Classification’ module (Wolf et al., 2019)
which takes the following sequence as input
[ti1, t

i
2, ..., t

i
n,‘SEP’, tj1, t

j
2, ..., t

j
m]. Here, the tis

represent tokens of sentence i and tjs represent
tokens of sentence j. ’SEP’ represents the separa-
tor which is a special token used by BERT.

3.4 Solution of ATSP
To produce an ordered sequence from the learned
weight matrices, we delve into exact and approxi-
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mate solutions to the Asymmetric TSP. The exact
solution involves starting from the source node and
calculating the cost of all permutations for the re-
maining nodes. This method is straightforward
but expensive with a runtime complexity of O(n!),
where n is the number of sentences in the para-
graph. Note that the above-mentioned complexity
is only for the decoding process – the soft con-
straint computation involves running BERT only
once per sentence i.e. number of forward passes on
BERT scales linearly with the number of sentences
(O(n)).

Approximation Algorithm for solving TSP:
The popular approximate solvers available for TSP
pose some limitations for our problem. They
mainly focus on minimizing cost without regard
to order. Their efficacy relies on the fraction of
cost added to the optimal cost. They require as-
sumptions such as triangle inequality. Hence, we
consider a lightweight heuristic solution for the
TSP problem where we simply sort the nodes
(sentences) in the increasing order of the sum
of soft-constraint scores arising at a given node.
For example, for ith node, the computed score is∑j!=i

j P (si → sj) . (Additional details about the
employed approximation are provided in the ap-
pendix.) Since this process involves simple sorting,
its runtime complexity for n sentences is O(nlogn)
(Same as the worst-case complexity for the topo-
logical sorting). We refer to this version of our
method as BerTSP-Approx.

Ensemble Approach: Since the exact solution
is expensive but generally more accurate while the
above-mentioned approximation is computation-
ally much cheaper but slightly less accurate in prac-
tice, we use a combination of these two as per the
following criteria: We use the exact solution for
samples with up to 10 sentences and the heuris-
tic approximation for samples with more than 10
sentences. This gives us a practical solution that
is feasible and almost optimal. We refer to this
version of our method as BerTSP-Ensemble.

4 Experiments

4.1 Datasets

Stories: We use the textual portion of the Sequen-
tial Image Narrative Dataset or SIND (Huang et al.)
which has been used in most of the previous studies
on Sentence Ordering. It contains stories (image
captions) with 5 sentences each.

Abstracts: We experiment on three research pa-
per abstracts datasets, namely NIPS, AAN, and
NSF, commonly used for this task. These are
derived from NIPS conference papers, ACL An-
thology Network corpus and NSF research award
abstract dataset respectively (Logeswaran et al.,
2018). (See appendix for data-split information.)

4.2 Evaluation
We employ the following five metrics to evaluate
our approach. For all these metrics, a higher value
corresponds to better performance.

Perfect Match Ratio (PMR) (Chen et al., 2016)
measures the percentage of predicted orders that
exactly match the correct order. It does not discount
for minor differences.

Sentence Accuracy (ACC) (Logeswaran et al.,
2018) measures the number of sentences having
correct absolute positions in the predicted order. It
is less strict than PMR.

Kendall’s Tau (TAU) (Lapata, 2003) or Tau ac-
counts for the pairwise relative order of sentences.
Tau=1-2I/T where I represents the number of incor-
rect pair-orders in the predicted order and T rep-
resents total number of pair-orders in the correct
order.

Rouge-S (R-S) (Chen et al., 2016) measures the
number of skip-bigrams with the correct relative or-
dering in the predicted order as a percentage of the
total number of skip-bigrams in the correct order.
Here, skip-bigrams are pairs of sentences which
may or may not be consecutive in the respective
orders.

Longest Common Subsequence (LCS) (Gong
et al., 2016) calculates the percentage of the longest
common subsequence (not necessarily consecutive)
between the predicted and the correct orders.

4.3 Call for Careful Data Pre-processing
We observe a potential risk of ground truth la-
bel leakage when employing graph-based methods.
More specifically, if indexing of nodes (sentences)
is performed in the same ordering as ground truth
sequence, then the graph algorithms can inadver-
tently exploit this information. We demonstrate
this through an illustrated example in Figure 2,
wherein we show how the results of topological
sorting change when indexing order of nodes is
changed. In other words, if the input sentences
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——–any edge in the graph – – –edge in a detected cycle - - - -edge deleted to break the cycle
(A) Correct: {0, 1, 2, 3, 4} Predicted: {0, 1, 2, 3, 4}

0 1 2 3 4

a. Initial graph, made from constraints

0 1 2 3 4

b. Step 1: Cycle detected, s2 → s0 deleted

0 1 2 3 4

c. Step 2: Cycle detected, s4 → s2 deleted

0 1 2 3 4

d. Final acyclic graph, input to Topo. Sort

Figure 2: Need for careful data pre-processing and eval-
uation: When dealing with cycles in a graph, consider an
implementation to handle cycles that always traverses nodes
in the order t = {0, 1, 2, 3, 4}. For every node j ∈ t, cycle de-
tection begins from j and if an edge sk → sj is encountered,
it is deleted. As the traversal is in ascending order, for every
deleted edge sk → sj j < k. Hence, edges that oppose the
ascending order (t) are deleted and t is always favored. (A) In
this case, the correct order is the same as t. Since t is favored,
the predicted order is correct. (B) In this case, the correct
order is the reverse of t (the rest of graph e is equivalent to a).
Since t is favored, the predicted order is incorrect.

are indexed/fed as per the ground truth ordering,
there is an information leak from the index num-
bers. To analyze the potential impact of such a
pre-processing issue, we feed the input in the exact
reverse of the correct order {n−1, n−2, ..., 0}, and
present corresponding results for B-TSort (Prabhu-
moye et al., 2020) in Table 2. We observe that the
accuracy values for methods like B-TSort can vary
a lot based on the index ordering. From a practi-
cal use perspective, we are interested in analyzing
the worst-case results across orderings. So from
this point onward, we report results for B-TSort
considering worst performance across orderings.

4.4 Results

We experiment with both variants of the proposed
method. Additionally, we consider B-TSort method
(Prabhumoye et al., 2020) as a baseline. (To the

(B) Correct: {4, 3, 2, 1, 0} Predicted: {0, 2, 4, 3, 1}

4 3 2 1 0

e. Initial graph a. with reversed indices

4 3 2 1 0

f. Step 1: Cycle detected, s1 → s0 deleted

4 3 2 1 0

g. Step 2: Cycle detected, s4 → s0 deleted

4 3 2 1 0

h. Step 3: Cycle detected, s3 → s0 deleted

4 3 2 1 0

i. Step 4: Cycle detected, s3 → s2 deleted

4 3 2 1 0

j. Final acyclic graph, is different from d.

best of our knowledge, Prabhumoye et al. (2020) is
the only work till now that delves into Graph The-
ory for Sentence Order Prediction like us.). We do
not compare against non-graph based formulations
since our aim is to improve upon the limitations of
prior graph traversal based formulations.

We present the performance of B-TSort and
BerTSP on the subsets of data that have cycles
(as per discrete edge-based graphs used in B-TSort)
in Table 2. The results demonstrate that the output
of B-TSort varies as per the index ordering. Since
the variation in the 3 presented outputs is very high,
we prefer to use the worst-case output with BerTSP
instead of the average case, henceforth. As shown
in the table, we obtain significant worst-case im-
provements for both BerTSP-Approx and BerTSP-
Ensemble, particularly the Perfect Match Ratio.

In Table 3, we present the results for whole
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PMR ACC TAU R-S LCS PMR ACC TAU R-S LCS

SIND - 12.74% AAN - 12.84%

B-TSort
Correct 26.71 55.37 0.64 81.88 78.97 28.87 57.42 0.79 87.54 81.18
Shuffled 12.08 39.39 0.42 70.94 70.91 11.79 43.66 0.65 81.98 74.87
Reverse 0.00 27.42 0.18 59.05 63.63 0.00 33.01 0.52 76.35 70.22

BerTSP
Approx 7.14 38.70 0.41 70.78 68.82 6.84 42.74 0.63 80.56 71.79
Ensemble 12.42 39.19 0.41 70.62 71.06 12.50 43.26 0.64 80.89 74.50

NIPS - 17.41% NSF - 70.47%

B-TSort
Correct 25.71 54.64 0.78 87.45 80.18 4.44 31.72 0.65 82.02 66.71
Shuffled 12.00 43.50 0.67 82.97 74.71 1.61 22.99 0.51 76.18 60.64
Reverse 0.00 33.93 0.56 78.01 70.54 0.00 19.18 0.37 70.30 58.05

BerTSP
Approx 10.00 44.11 0.64 82.24 71.96 0.75 20.98 0.45 71.76 54.23
Ensemble 14.29 43.39 0.64 81.48 72.32 1.65 20.92 0.44 71.49 54.76

Table 2: Results for data subset containing cycles as per graph representations used in B-TSort: Percentage of cyclic
cases and comparison of performance when using topological sorting on cyclic cases for three orderings in which inputs are fed:
first is the correct order {0, 1, ..., n− 1}, second is randomly shuffled order, and the third is the reverse of the correct order, i.e.
{n− 1, n− 2, ..., 0}. The results demonstrate that if not properly handled, method outputs can depend highly on the indexing
order of nodes. The two variants of BerTSP improve significantly on the reverse ordering output as depicted in the table.

datasets, comparing B-TSort and BerTSP on the
worst case. We observe that BerTSP outperforms
B-TSort on all metrics across all datasets (except
LCS on NSF dataset). The improvements are also

Model PMR ACC TAU R-S LCS

SIND

B-TSort 16.28 48.29 0.54 77.04 75.08
BerTSP-Approx 17.01 49.96 0.57 78.65 75.60
BerTSP-Ensemble 19.54 49.75 0.56 78.11 76.35

NIPS

B-TSort 27.36 56.42 0.77 86.91 81.01
BerTSP-Approx 32.09 59.86 0.79 88.27 81.75
BerTSP-Ensemble 32.59 59.36 0.79 87.75 81.79

AAN

B-TSort 46.67 64.54 0.79 86.61 83.81
BerTSP-Approx 48.09 66.44 0.81 87.81 84.19
BerTSP-Ensemble 48.81 66.41 0.81 87.59 84.57

NSF

B-TSort 6.84 24.22 0.45 71.32 61.05
BerTSP-Approx 6.99 25.57 0.50 72.61 57.69
BerTSP-Ensemble 7.79 25.11 0.48 72.17 58.02

Table 3: Result for B-TSort and BerTSP on all 4
datasets. Both BerTSP-Approx and BerTSP-Ensemble
outperform the baseline B-TSort for overall dataset re-
sults. (Results for BTSort are different from Prab-
humoye et al. (2020) since we analyze the worst-
case results considering all possible orderings for pre-
processing (Section 4.3) ).

statistically significant with p < 0.05. It achieves
up to 20% improvement on Perfect Match Ratio,
11% on Kendall Tau and 6% on position-wise Sen-
tence Accuracy. It also improves on Rouge-S and
LCS. Since these two metrics do not penalize gaps,
their values are on the higher end and consequently,
the improvements are less as compared to the other
metrics. We also provide some qualitative exam-
ples in the appendix.

We also note that both the variants of the pro-
posed method outperform B-TSort. Among the
two, BerTSP-Ensemble is consistently better as per
PMR. For all the other metrics, both show competi-
tive performance and BerTSP-Approx even beats
BerTSP-Ensemble for some metrics/datasets. This
shows that our simple heuristic approach works
pretty well even though it is computationally inex-
pensive. This could be attributed to the fact that
averages (or sums, equivalent in this case) tend to
discount the bad predictions. They regress the over-
all representation of a sentence towards the good
predictions (correctly predicted pair-orders) if they
are in majority. This way we get a single-valued
representation for a sentence that has information
from both the local and global contexts.

5 Analysis and Discussions

In this section, we analyze our model on additional
parameters including scalability, end-point perfor-
mance, and displacement. Note that in this section,
we use the BerTSP-Approx method for comparison
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Dataset Model PMR ACC TAU R-S LCS

NIPS B-TSort 0.00 28.30 0.59 78.67 63.52
BerTSP 0.00 34.59 0.67 83.11 64.15

AAN B-TSort 0.00 28.48 0.53 74.63 65.63
BerTSP 0.00 29.41 0.55 76.06 64.09

NSF B-TSort 0.04 17.29 0.41 70.96 56.43
BerTSP 0.01 17.96 0.45 71.69 51.31

Table 4: Results for cases with more than 10 sentences.

with B-TSort as the BerTSP-Approx variant can be
uniformly applied across all the datasets under con-
sideration, as opposed to BerTSP-Ensemble which
is a mixture of two methods.

5.1 Longer Sequences

To compare the scalability of models, we present
the results for samples with more than 10 sentences.
NIPS, AAN, and NSF qualify for this analysis
while SIND doesn’t as all samples in SIND have
exactly 5 sentences. Table 4 shows the results on
all metrics. BerTSP is dominant over B-TSort. For
NIPS, we obtain a 22% improvement in position-
wise sentence accuracy and 14% in Kendall Tau as
compared to 6% and 3% respectively for all sam-
ples showing that the relative improvement is more
for longer sequences.

5.2 First and Last Sentences

Table 5 shows the accuracy of prediction of first
and last sentences of the sequence. This analysis
is important as the end-points are crucial positions
of the sequence and the first prediction is often
decisive to the prediction of the rest of the sequence.
BerTSP clearly overtakes B-TSort across all the
datasets. For the NSF dataset which primarily has
longer sequences (mean length ∼ 9), it achieves
improvements of 10% and 16% on the prediction
of first and last sentences respectively showing its
efficacy for longer sequences.

5.3 Sentence Displacement

We perform sentence displacement analysis where
we find the percentage of sentences for which the
predicted position is within a window W (forward
or backward) of its position in the correct order. For
instance, if the correct position is 5 and W = 1,
the predicted position should be within 4 to 6 to
be included in the percentage. Naturally, a larger
window allows for more displacement and hence

Model First Last First Last

Dataset SIND NIPS

B-TSort 77.19 57.03 89.55 74.38
BerTSP 78.85 59.33 92.54 74.63

Dataset AAN NSF

B-TSort 88.76 78.78 61.13 40.55
BerTSP 90.10 79.55 66.95 47.13

Table 5: Prediction accuracy for first and last sentences.

the percentage is higher compared to smaller win-
dows. Table 6 shows the results for W = 1, 2, 3.
BerTSP clearly outperforms B-TSort across all
datasets and window sizes. The improvement is
generally more pronounced for smaller window
sizes. Note that this metric is essentially a gener-
alization of position-wise Sentence Accuracy for
which W = 0.

5.4 Qualitative Examples
We also present three examples from the SIND
captions dataset where BerTSP improves on
B-TSort. The predicted orders for each example
by B-TSort and BerTSP are also shown (Table 7).

6 Related Work

In the recent past, numerous neural approaches
have been proposed for Sentence Ordering. Chen
et al. (2016) used a pairwise ranking model (Zheng
et al., 2007) that assigns a score to the relative or-
dering of every pair of sentences. Prabhumoye
et al. (2020) train a classifier to predict an order
constraint between any two sentences and use sort-
ing based on these constraints to predict the final
order. Zhu et al. (2021) construct multiple con-
straint graphs which are integrated into sentence
representations by Graph Isomorphism Networks
and ranked via ListMLE. The use of a pointer de-
coder for sequential prediction (Gong et al., 2016;
Logeswaran et al., 2018; Wang and Wan, 2019; Oh
et al., 2019) along with an intermediate paragraph
encoder (Cui et al., 2018; Yin et al., 2019, 2020;
Cui et al., 2020) for better capturing the global de-
pendencies has been proposed in many variants.
Kumar et al. (2020) replace the pointer decoder
with a feed-forward neural network and use rank-
ing loss to enable simultaneous prediction of scores
for all sentences.

The pairwise approaches generally suffer from
lack of global interactions while pointer-based ap-
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Dataset SIND NIPS AAN NSF

Model W=1 W=2 W=3 W=1 W=2 W=3 W=1 W=2 W=3 W=1 W=2 W=3

B-TSort 79.44 93.20 98.69 85.19 93.35 97.02 87.64 92.82 97.77 49.29 64.55 74.59
BerTSP 81.28 94.37 99.11 86.08 94.35 97.72 88.81 95.78 98.19 49.57 64.62 74.48

Table 6: Results of displacement analysis of sentences on all datasets (W=Window size)

Example 1
s1: We went to the park and a deer followed us.
s2: We pet it and took pictures with it.
s3: Then we traveled to the marvelous hotel.
s4: The grounds were so immaculate.
s5: We also got great pictures of the outside decor.

B-TSort: s2 → s1 → s3 → s5 → s4

BerTSP: s1 → s2 → s3 → s4 → s5

Example 2
s1: I went on vacation last year.
s2: It was a beautiful place.
s3: There were a lot of flower stores.
s4: The buildings were very old.
s5: There were a lot of other tourists there too.

B-TSort: s1 → s3 → s2 → s5 → s4

BerTSP: s1 → s2 → s3 → s5 → s4

Example 3
s1: There were many people at the protest.
s2: They had many signs.
s3: And flags as well.
s4: They did not like the war.
s5: And made this known before leaving.

B-TSort: s1 → s2 → s3 → s5 → s4

BerTSP: s1 → s2 → s3 → s4 → s5

Table 7: Qualitative comparison of B-TSort & BerTSP

proaches lag in utilizing the local pairwise context.
The more recent works try to overcome this by in-
corporating the local relative ordering information
into the pointer decoder (Yin et al., 2020; Cui et al.,
2020). Also, likelihood-based decoding is prone to
degeneration (Holtzman et al., 2020) especially for
longer sequences of sentences and paragraph en-
coders can only capture limited information from
every sentence. Lastly, the large memory require-
ment is the underlying issue with common neural
approaches. In particular, (Cui et al., 2020) show
better results compared to our approach (BerTSP)
but methods such as BerTSP are much more mem-
ory efficient (Prabhumoye et al., 2020).

We have proposed a Traveling Salesman Prob-
lem based formulation for sentence ordering. The

use of such graph-based optimizations have been
explored in past work in NLP such as ARM-to-text
generation (Song et al., 2016), opinion summa-
rization (Nishikawa et al., 2010), multi-document
summarization (Al-Saleh and Menai, 2018), etc.

7 Conclusion

We demonstrate the potential of a simpler, cheaper
yet effective approach for the task of Sentence Or-
dering. Our reformulation of the task as an asym-
metric TSP allows for the application of exact and
heuristic graphical algorithms which are lighter
and more transparent as opposed to heavier neural
approaches.

Future Work: In place of BERT, use of alterna-
tive model architectures like Albert, XLNet and
BART may provide better sentence representations
for sentence ordering as their language modeling
objectives better align with this task. In the de-
coding part, more heuristic-based or neural-based
approaches to combinatorial optimization may pro-
vide better alternatives.
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A Additional Method Details

A.1 Dummy Node for ATSP:

TSP requires the source to be pre-specified. Since it
finds a cycle, the choice of the source s is irrelevant.
But for our purpose, we need to find an order which
is inherently not cyclic. To deal with this, we intro-
duce an additional node in the graph, vn+1, which
is at 0 distance from all other vertices in either di-
rection, i.e. w(n+1)i = wi(n+1) = 0, ∀ i. This
dummy node serves as the source from which the
cycle begins and consequently terminates. Since it
is at 0 distance from all nodes, its addition does not
affect the minimization process.

A.2 Heuristic solution for TSP:

We propose a heuristic solution that is cheap and
accounts for the order along with the cost. Con-
sider the unaugmented weight matrix: W = {wij}
∀i,j∈{1,2,...,n} where wij = 1 − P (si → sj). Con-
sider the following sum of probabilities:
P (si → s2) + P (si → s3) + ...+ P (si → sn)

If this sum is high, si has a high probability of oc-
curring before {1, 2, ..., i − 1, i + 1, ..., n} in the
predicted sequence. Consequently, if we take the
sum of complement probabilities, the lower the
sum, the higher is the probability of si occurring
before {1, 2, ..., i− 1, i+1, ..., n} in the predicted
sequence. This complementary sum is nothing but
the row-sum of row i of matrix W :

wi1 + wi1 + ...+ win (wii = 0)
Hence, we take the row-sums of all rows in W and
sort them in ascending order. This gives us the
predicted order. Since it involves simple sorting,
its runtime complexity is O(nlogn).

B Implementation details

The code for the sentence-pair encoder and the eval-
uation metrics is derived from (Prabhumoye et al.,
2020)2. The hyperparameters values are also taken
from this work. The experiments are conducted on
GeForce RTX 2080 Ti GPU. Our code3 is written
using Pytorch deep learning framework.

2https://github.com/shrimai/
Topological-Sort-for-Sentence-Ordering

3https://github.com/vkeswani/BerTSP

Dataset Mean Length Train Dev Test
SIND 5 40155 4990 5055
NIPS 6 2448 409 402
AAN 5 8569 962 2626
NSF 9 96070 10185 21580

Table 8: Descriptive statistics of the four datasets con-
sidered

C Data

C.1 Access
The SIND captions dataset is available online4.
Note that the Stories of Images-in-Sequence (SIS)
portion is the one relevant to our task. The abstract
datasets, NIPS, AAN, and NSF, were obtained from
Logeswaran et al. (2018).

C.1.1 Descriptive Statistics
We present the mean length and the split of the four
datasets into train, development, and test sets in
table 8.

4https://visionandlanguage.net/VIST/
dataset.html
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