
Proceedings of the 18th International Conference on Natural Language Processing, pages 347–351
Silchar, India. December 16 - 19, 2021. ©2021 NLP Association of India (NLPAI)

347

Kannada Sandhi Generator for Lopa and Adesha Sandhi

Musica Supriya † Dinesh Acharya U † Ashalatha Nayak † Arjuna S R ‡
† Department of Computer Science & Engineering

Manipal Institute of Technology
Manipal Academy of Higher Education, Manipal, Karnataka 576104 , India

‡ Department of Philosophy
Manipal Academy of Higher Education, Manipal, Karnataka 576104 , India

{musica.supriya, dinesh.acharya, asha.nayak, arjuna.sr}@manipal.edu

Abstract

Kannada is one of the major spoken classical
languages in India. It is morphologically rich
and highly agglutinative in nature. One of the
important grammatical aspects is the concept
of sandhi(euphonic change). There has not
been a sandhi generator for Kannada and this
work aims at basic sandhi generation. In this
paper, we present algorithms for lopa and Ade-
sha sandhi using a rule-based approach. The
proposed method generates the sandhied word
and corresponding sandhi without any help of
dictionary. This work is significant for agglu-
tinative languages especially to Dravidian lan-
guages and can be used to enhance the vocab-
ulary for language related tasks.

1 Introduction

Kannada is one of the Dravidian Languages spoken
predominantly by people of Karnataka. The Dra-
vidian languages are highly agglutinative and mor-
phologically rich in nature (Shashirekha and Van-
ishree, 2016). Euphonic change known as sandhi
(Kumar et al., 2009) is quite common in this lan-
guage.

Sandhi occurs at the character level between
two valid words of a particular language based
on a set of rules. It also occurs between a root
word/nominal stem and suffix as well. As Huet
(2009) rightly mentions the Sanskrit grammarians’
point that the sandhi is a mandatory action in the
case of compound words in Sanskrit, this condition
aptly applicable to Kannada as well.

The classification of sandhi can be done as in-
ternal sandhi and external sandhi. The euphonic
change that occurs, between a root word and suf-
fix, and in the case of construction of a compound
word, is considered as internal sandhi. For in-

stance, hU + annu1 = hUvannu 2 which means
the flower (as an object of a verb). In this case,
the first word hU is a nominal stem and annu is a
suffix. It undergoes euphonic change and vakAra-
Agama sandhi occurs here. Hence, it is an in-
ternal sandhi. An example for another internal
type is - parama + ISvara = parameSvara
[supreme + Lord = supreme Lord]. Here
both parama and ISvara are words forming the
compound word parameSvara. If sandhi occurs
between the characters present in two different
words, then it can be called as external sandhi.
For example: illi + ixxAlY eV = illixxAlY eV
[here + she is = she is here]. Both the words -
illi and ixxAlY eV are two different words.

Another way of classification is Kannada sandhi
and Sanskrit sandhi. This can be classified based
on the words present in the usage. As described
by Kittel (1920), Kannada has borrowed many
words from Sanskrit. It is possible to identify
sandhi corresponding to pure Kannada words or
a combination of Kannada and Sanskrit words.
If both the pUrvapaxa(first word) and uwwara-
paxa(second word) are chosen to be Kannada
words, then, Kannada sandhi occurs. For instance,
nAnu+ illi = nAnilli [I + here = I am here].
Both the words are Kannada words and the Sanskrit
sandhi is not applicable here. The non-application
of guNa sandhi (a Sanskrit sandhi) affirms that
through the previous instance. If either or both are
Sanskrit words, then Sanskrit sandhi occurs. For in-
stance, deva+ISanu = deveSanu [Lord+Lord
of = Lord of all Lords]. Both the words are
borrowed words and will follow guNa sandhi of
Sanskrit and, not any Kannada sandhi.

In this paper, our focus is on Kannada
sandhi. There are mainly three Kannada sand-

1Accusative case marker
2We have used WX notation given by Gupta et al. (2010)

throughout this paper to represent Kannada words.

348

his: lopa(elision) sandhi, Agama(addition) sandhi
and Adesha(substitution) sandhi as mentioned by
Sharma (2015).

• Lopa(elision) sandhi: When pUrvapaxa is
ending with a Kannada vowel , uwwarapaxa
begins with a Kannada vowel, then euphonic
union of this will cause the vowel at the
pUrvapaxa to be eliminated and this word be
combined with the uwwarapaxa to form the
new word.
Example: nAnu + illi = nAnilli.
[I + here = I am here]
Here the last vowel of pUrvapaxa, u is
eliminated from pUrvapaxa and then joined
to the uwwarapaxa to form the new word.

• Agama(addition) Sandhi: When pUrvapaxa is
ending with a Kannada vowel , uwwarapaxa
begins with a Kannada vowel, then euphonic
union of this will cause the addition of y
or v at the beginning of uwwarapaxa. This
combination leads to Agama sandhi.
Example: maneV + ixu = maneV yixu
[house + this = this is house]. Here the
first vowel i of uwwarapaxa is prefixed with y
and then joined to form the new word.

• Adesha(substitution) Sandhi: When pUrva-
paxa is a Kannada word, uwwarapaxa be-
gins with either k , w or p then it is replaced
with g, x, b respectively .This combination of
pUrvapaxa and uwwarapaxa leads to Adesha
sandhi.
Example: malY eV+kAla = malY eV gAla
[rain + season = rainy season]. Here
uwwarapaxa begins with k, in the euphonic
change, it is replaced with g to form the new
word.

The Kannada sandhi can be further sub-categorized
as svara(vowel) sandhi and vyaFjana(consonant)
sandhi. The svara sandhi has vowel at the end
of the pUrvapaxa and at the beginning of uwwara-
paxa. vyaFjana sandhi must have a consonant char-
acter at the beginning of uwwarapaxa and there can
be any character svara or vyaFjana at the end of
the pUrvapaxa.

This classification helps us to apply the sandhi
rules unambiguously to some extent. However, in
some cases, we can see some overlapping of the

rules of the sandhi. One such instance is nAnu+
illi = nAnilli [I + here = I am here]. Though
the sandhi rule of vakAra-Agama sandhi explained
by Sharma (2015) is applicable, we have to choose
lopa sandhi, based on the usage. There are no
research or reason present for the preference of
lopa sandhi over the Agama sandhi. Due to this
complexity, we have excluded the Agama sandhi
in this paper.

The work on sandhi generation for Kannada has
not been successfully carried out. There are sandhi
generator tools developed for basic Malayalam by
Kleenankandy (2014) and for Sanskrit by Amba
(2002), Huet (1994) and many others. We may
find some works in sandhi generation for other In-
dian languages (Nirmala and Kalpana, 2015) as
well. The sandhi splitter tasks were carried out
for Kannada by Shashirekha and Vanishree (2016),
but generator was left out due to the complexity
and ambiguity involved. We are addressing this
issue by proposing a novel idea by defining the
algorithm necessary to generate sandhi formation
for the given input Kannada words using a rule
based approach. The sandhi generator is useful for
students who wish to learn the concept of euphonic
change in Kannada and to researchers working on
NLP applications for the tasks like morphologi-
cal analysers and Machine Translation. The paper
is organized as follows: Section 1 introduction,
section 2 literature review, section 3 methodology,
section 4 result analysis and section 5 conclusion
and future scope followed by references.

2 Literature Survey

Kannada spell checker and sandhi splitter work
was carried out by Murthy et al. (2017) making
use of transliterated dictionaries which stored the
words and affixes. The Agama sandhi splitter was
developed by Shashirekha and Vanishree (2016)
using a rule based approach with manual annotation
of suitable words and their affixes. There are other
Kannada sandhi splitter works but here we have
reviewed a few as our focus is on generation than
splitting. Kleenankandy (2014) has implemented
sandhi-rule based compound word generator for
Malayalam, the basic sandhi rules for Malayalam
was addressed along with supplementary details
for words to identify the sandhi. This work was
semi-automatic and required human intervention to
resolve ambiguities. Significant work on Sanskrit
word segmentation was carried out by Huet (2003).

349

The disambiguation of a given word was performed
using a rule-based approach.

Though there are sandhi generator tools devel-
oped for Sanskrit by Amba (2002), Huet (1994),
Sachin Kumar and many others, we see that there
has not been a successful sandhi generator for pure
Kannada sandhi.

3 Methodology

The implementation of a basic lopa and Adesha
sandhi using regular expression is presented in this
section. We have excluded the internal sandhi (root
+ suffix) and considered only compound words and
external sandhi. As we mentioned earlier in the
introduction section, some rules of Agama sandhi
overlaps with the rules of lopa sandhi. Let us con-
sider the yakAra-Agama sandhi as an example -
maneV + alli = maneVyalli [house + locative case
marker = in the house]. The rules for lopa sandhi
and Agama sandhi overlap here and there is no
semantic information which can distinguish and
avoid the overlap. By convention and practical us-
age, maneVyalli is the expected output, whereas
due to the overlapping rules, our system generates
maneli as the output. Though the word maneli is
also correct in colloquial Kannada and the mean-
ing is also exactly similar as maneVyalli, we may
not find the word maneli in formal usage. Hence,
we have skipped writing the algorithms to Agama
sandhi at this stage.

The block diagram of the methodology is shown
in Figure 1.

Figure 1: Block diagram of the system for sandhi gen-
eration

The user inputs two Kannada words in WX no-
tation. The Check Regular Expression module will
validate the input words to check if the words fol-
low the pattern suitable to perform lopa or Adesha
sandhi. If it follows the pattern, then the inputs are
passed into Generate Sandhi module. In this mod-
ule, the rules are defined. The rules to perform lopa
and Adesha sandhi are different. We have referred
mainly to the Kannada grammar book by Sharma
(2015) and inspired by the Sanskrit Sandhi works
of Amba (2002) and Huet (1994) to obtain these
rules and implementation was performed follow-
ing the same. The generated output is the sandhi

word in WX notation. However, we may render
the WX input in UTF-8 (Kannada scripts) to ease
the process of learning or understanding the sandhi
concept, using the existing standard transliteration
schemes.

3.1 Algorithm for lopa and Adesha Sandhi

The algorithm for lopa sandhi and Adesha sandhi is
shown in Algorithm 1. As we mentioned, we have
followed rule based approach and is based on the
morphological rules of Kannada by Sharma (2015).
The characters are extracted using extract function
as defined in Algorithm 2 and are joined with re-
spect to the predefined morphological rules. The
input words are analysed to check which sandhi
can be applied. Once we decide on the sandhi, uni-
fication of characters can be done based on rules.
No dictionary is used here and we assume that user
has typed valid Kannada words as input. We would
like to make use of a dictionary in the future to
validate input words. As of now, if the rules are sat-
isfied by the input words, the corresponding output
is generated.

3.1.1 Definitions
Svara: Vowels in Kannada language - a, A, i, I, u,
U, q, eV, e, E, oV, o, O
ktp: characters k or w or p

3.2 Implementation details

The text in WX form is checked against the regular
expressions. There are four separate regular expres-
sions two each for lopa and Adesha sandhi. For
instance, in lopa sandhi the pUrvapaxa has to end
with a svara. The corresponding regular expression
is [A−Za− z]∗ ([aAiIuUqeEoO]|(eV)|(oV))$.
We have made use of regular expression library3

available for Python 3 to match these and imple-
mented on Google Colab4 platform.

4 Results and Analysis

We have checked in total for 386 unique pairs of
Kannada words manually extracted from the data
we requested from the work carried out by Reddy
and Sharoff (2011). We were able to identify 255
pairs for lopa sandhi and 131 pairs for Adesha
sandhi. The sample data is shown in table 15. The

3https://docs.python.org/3/library/re.html
4https://colab.research.google.com
5We have not used diacritics in this table to highlight that

the input to the system must be in WX notation.

350

Algorithm 1: Kannada sandhi generator
for lopa and Adesha sandhi
Data: string1, string2
Result: sandhi,output string
len1← length(string1)− 1
len2← length(string2)− 1
if string1 ends with svara then

if string2 begins with svara then
if string1 ends with ’eV’ or ’oV’
then

e1←
extract(string1, 0, len1− 2)

else
e1←
extract(string1, 0, len1− 1)

end
e2← string2
k ← concatenate(e1, e2)
print ”Lopa Sandhi”, k

else if string1 contains only characters then
if if string2 begins with ktp then

if first char(string2)=’N’ or ’n’
then

temp←
extract(string1, 0, len1− 1)
e1← concatenate(temp,′M ′)

else
e1← string1

end
e2← extract(string2, 1, len2)
check ← string2[0]
if check=’k’ then

add←′ g′

else if check=’w’ then
add←′ x′

else
add←′ b′

end
temp2← concatenate(e1, add)
f ← concatenate(temp2, e2)
print ”Adesha Sandhi”, f

else
print ”Check your input”

end

generated words were examined by a Kannada lin-
guistics expert for its accuracy.

The proposed work is useful in the generation of
euphonic change without a dictionary and maybe
applicable to other Dravidian languages. The sum-
mary of result and the accuracy is shown in table
2.

Algorithm 2: Extract substring
Data: string, start len, end len
Result: substring
j ← 0
for each i←start len to end len do

m[j]← concatenate(m, string[i])
j ← j + 1

end
m[j]←′ \0′

Input1 Input2 Output string Sandhi
nAnu illi nAnilli lopa
[I] [here] [I am here]

nanna iMxa nanniMxa lopa
[me] [by] [by me]

nanna Uru nannUru lopa
[my] [place] [My place]

kaliyaxe iruvuxu kaliyaxiruvuxu lopa
[not] [to learn] [to not learn]

xevaru iMxa xevariMxa lopa
[God] [by] [by God]

maneV keVlasa maneVgeVlasa Adesha
[house] [work] [house work]

adi kallu adigallu Adesha
[foundation] [stone] [foundation stone]

mE woVlYeV mExoVlYeV Adesha
[body] [wash] [wash the body]

hullu kAvalu hullugAvalu Adesha
[hay] [land] [hay land]

betta wAvareV bettaxAvareV Adesha
[mountain] [lotus] [mountain lotus]

Table 1: Sample output for lopa and Adesha sandhi

Sandhi Test pairs Correct Accuracy
output

Lopa 255 255 100%
Adesha 131 130 99.2%

Table 2: Summarized results for lopa and Adesha
sandhi

In one of the instances of Adesha sandhi, ”kaN
+ kAvalu = kaNgAvalu [eye + security = surveil-
lance]”, the generated output was kaMgAvalu
which is not a valid sandhied word. In the case
of lopa sandhi, all the generated outputs are valid
outputs. Since the input words are not validated by
a morphological analyser, any non-Kannada word
which follows the pattern prescribed for lopa and
Adesha sandhi will generate a sandhi output as per
the rules is the major flaw in this tool. However, for
a given input, no pair can undergo both lopa and
Adesha sandhi at once. The evaluation of this task
is performed manually by checking the generated
output for the correct euphonic change and the type

351

of that sandhi, and is verified by a senior linguist
and a few native speakers as well.

5 Conclusion and Future Scope

A basic sandhi generator for lopa and Adesha
sandhi is carried out in this work. This work can
be helpful for beginners and teachers who are en-
gaged in the Kannada language and trying to un-
derstand/teach the concept of sandhi. In future,
we would like to enhance this work by adding the
non-overlapping and unambiguous rules for Agama
sandhi. We will include the dictionary in the pro-
cess to check the validity of the input words. We
shall make a user-friendly interface to interact with
the system. The generated words can be used to
enhance the vocabulary for performing language re-
lated tasks viz. Kannada Machine Translation(MT)
systems, Kannada Computational Linguistics tools
etc. in future.

Acknowledgments

The first author is thankful to Prof. S. A. Krishna-
iah, National Trust for Computation and Archival
of Oriental Media (NTC-AOM), Udupi for veri-
fying the accuracy of the generated outputs, Mrs.
Shwetha Rai, Department of Computer Science &
Engineering, Manipal Institute of Technology, Ma-
nipal for inputs in designing the algorithms and Dr.
Siva Reddy, Mila, McGill University for sharing
the PoS data for Kannada. We thank the anony-
mous reviewers for their constructive suggestions.

References
Kulkarni Amba. 2002. Samsaadhanii.

=https://sanskrit.uohyd.ac.in/scl. Accessed: 04-
Dec-2021.

Rohit Gupta, Pulkit Goyal, and Sapan Diwakar. 2010.
Transliteration among indian languages using wx no-
tation. In KONVENS.

Gérard Huet. 1994. The sandhi engine.
=https://sanskrit.inria.fr/DICO/sandhi.fr.html.
Accessed: 04-Dec-2021.

Gérard Huet. 2003. Lexicon-directed segmentation
and tagging of sanskrit. In in XIIth World Sanskrit
Conference, pages 307–325.

Gérard Huet. 2009. Sanskrit segmentation. In South
Asian Languages Analysis, round table.

Rev. F Kittel. 1920. Shabdamanidarpanam, Kesiraja’s
Jewel Mirror of Grammar. Kanarese Mission Book
and Tract Depository.

Jeena Kleenankandy. 2014. Implementation of sandhi-
rule based compound word generator for malayalam.
2014 Fourth International Conference on Advances
in Computing and Communications, pages 134–137.

Anil Kumar, V. Sheeba, and Amba P. Kulkarni. 2009.
Sanskrit compound paraphrase generator.

S Rajashekara Murthy, A. N. Akshatha, Chandana G
Upadhyaya, and P. Ramakanth Kumar. 2017. Kan-
nada spell checker with sandhi splitter. In 2017 In-
ternational Conference on Advances in Computing,
Communications and Informatics (ICACCI), pages
950–956.

K. Nirmala and M. K. Kalpana. 2015. Modern thamizh
sandhi rules generator in nlp. In SOCO 2015.

Siva Reddy and Serge Sharoff. 2011. Cross language
pos taggers (and other tools) for indian languages:
An experiment with kannada using telugu resources.

Dr. Girish Nath Jha Rajneesh Kumar Pandey
Sachin Kumar, Diwakar Mani. Sanskrit sandhi
generator. http://sanskrit.jnu.ac.in/
sandhi/gen.jsp. Accessed: 04-Dec-2021.

Vidhwan N Ranganatha Sharma. 2015. Hosagannada
Vyakarana. Kannada Sahitya Parishat.

H. L. Shashirekha and K. S. Vanishree. 2016. Rule
based kannada agama sandhi splitter. In 2016 In-
ternational Conference on Advances in Computing,
Communications and Informatics (ICACCI), pages
549–553.

=
=
https://archive.org/details/abdamaidarpaa00kirjuoft
https://archive.org/details/abdamaidarpaa00kirjuoft
https://doi.org/10.1109/ICACCI.2017.8125964
https://doi.org/10.1109/ICACCI.2017.8125964
http://sanskrit.jnu.ac.in/sandhi/gen.jsp
http://sanskrit.jnu.ac.in/sandhi/gen.jsp
https://archive.org/details/dli.language.0467
https://archive.org/details/dli.language.0467
https://doi.org/10.1109/ICACCI.2016.7732103
https://doi.org/10.1109/ICACCI.2016.7732103

