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Abstract
It was shown in (Raikar et al., 2020) that
the measurement error in the microphone po-
sition affected the room impulse response
(RIR) which in turn affected the single chan-
nel speech recognition. In this paper, we ex-
tend this to study the more complex and real-
istic scenario of multi channel distant speech
recognition. Specifically we simulatem speak-
ers in a given room with n microphones speak-
ing without overlap. The n channel audio
is beamformed and passed through a speech
to text (s2t) engine. We compare the s2t

accuracy when the microphone locations are
known exactly (ground truth) with the s2t ac-
curacy when there is a measurement error in
the location of the microphone. We report the
performance of an end-to-end s2t on beam-
formed input in terms of character error rate
(CER) and and also speech intelligibility and
quality in terms of STOI and PESQ respectively.

1 Introduction

The multi-path reflections (attributed by RT60) in
an open enclosure is caused during hands free
speech communication. Such multi-path reflec-
tions along side noise impinging on multiple micro-
phones result in noisy reverberated speech which
has a deteriorating impact on the distant speech
recognition performance (Naylor and Gaubitch,
2010). Further, the quality and intelligibility of
the speech in hands free communication would
also deteriorate (Nathwani et al., 2017, 2016;
Biswas et al., 2021). There is an urgent need
for noise reduction, dereverberation and conjunc-
tion of both during communications. In this con-
text, multi-microphone-based approaches exploit-
ing spatial acoustic cues such as spatial diver-
sity, inter-intensity differences and inter-time dif-
ferences, receives particular interest

Accurate estimation of RT60 plays an impor-
tant role in several applications like (a) sound re-

production of geometry aware room (Betlehem
and Abhayapala, 2005; Tang et al., 2020; Kim
et al., 2019), (b) reconstruction of the room ge-
ometry (Crocco et al., 2014; Moore et al., 2013;
Yu and Kleijn, 2019), (c) robust automatic speech
recognition (ASR) (Yoshioka et al., 2012; Krueger
and Haeb-Umbach, 2010; Heymann et al., 2019)
and (d) speech enhancement (Zhang et al., 2017;
Li and Koishida, 2020; Gannot et al., 2017). In
a single channel (microphone) scenario, several
techniques exist to estimate the room impulse re-
sponse (RIR) (Szöke et al., 2019) when the micro-
phone position is not erroneous. Though, given
the room geometry, RIR computing is non-trivial;
RIR estimates require the exact location of both
the source and the microphone. A comparative
study for blind reverberation time estimation in sin-
gle microphone scenario is explored in (Löllmann
et al., 2019). A slight displacement (due to human
interventions or due to routine maintenance etc.
(Raikar et al., 2020; Muthukumarasamy and Dono-
hue, 2009; Sachar et al., 2002)) in the microphone
position could severely hamper the RIR estimates
(Muthukumarasamy and Donohue, 2009; Sachar
et al., 2002). In particular, the impact of measure-
ment error in microphone position on speech intel-
ligibility and quality is explored in (Raikar et al.,
2020).

In practical applications, a microphone array in
comparison to single microphone, grants more ben-
efits (Nathwani et al., 2013; Stoica et al., 2002)
especially due to the spatial information and associ-
ated applications like directional or arrival (DOA),
location of sound source and room information
(Pavlidi et al., 2013; Chen et al., 2015). However,
as in single microphone case, calibration error be-
cause of displaced microphone array is not trivial to
model in a real time scenarios (Sachar et al., 2004,
2002). This is, primarily because it is computation-
ally expensive and prone to error. In (Muthuku-
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marasamy and Donohue, 2009), a delay and sum
beamforming (DSB) technique is used to model
location errors analytically, they show that the mea-
surement error in microphone position affects the
intelligibility and quality due to change in the over-
all RIR. DSB approach has two drawbacks, namely,
it requires (a) a large number of sensors to improve
the SNR and (b) it cannot adapt to varying noisy
conditions.

To overcome the limitations of DSB, adap-
tive beamformers like capon (Stoica et al., 2002)
and minimum-variance distortionless response
(MVDR) beamformers have been introduced to
perform joint noise and reverberation cancellation.
In (Schwartz et al., 2014), a joint noise cancella-
tion and dereverberation is illustrated in general-
ized side lobe canceller (GSC) framework, while
in (Schwartz et al., 2015), a nested structure in
the GSC framework is proposed. As opposed to
beamforming, there are adaptive filtering based ap-
proaches that do not require spatial information
of the speech source. In (Dietzen et al., 2017), a
multi-channel linear prediction (MCLP) in Kalman
Filtering domain is proposed for blind dereverbera-
tion. However, they fail to perform in the presence
of noise as they focus only on reverberation.

Multi-channel beamformers are prone to mea-
surement error due to change in microphone array
position, which affects the RIR. This brings to fo-
cus, the question, does microphone measurement
error affect beamforming performance? In par-
ticular, the impact of such displacement error, for
single microphone channel, on speech intelligibil-
ity and quality has been explored in (Raikar et al.,
2020). As an extension, it is of interest to explore
and investigate the performance of DSB and adap-
tive beamformer (MVDR) for multi channel distant
automatic speech recognition (ASR), intelligibil-
ity and quality. Towards this study, we simulate
m speakers in a given room with n microphones
speaking without overlap. The output of n channel
audio is beamformed and passed through a speech
to text (s2t) engine.

We compare the s2t accuracy when the micro-
phone locations are known exactly (i.e. ground
truth) with the s2t accuracy, when there is a mea-
surement error in the location of the microphone
location. The experimental results illustrate that
the measurement error in microphone position has
a significant effect on s2t performance. Conse-
quently, the main contribution of this paper is the

formulation of the problem to enable analysis of the
effect of microphone position measurement error
on distant speech recognition as well as speech in-
telligibility and quality. Note that in this paper, we
make no attempt to introduce a new technique or
algorithm to improve the distant speech recognition
and intelligibility scores; rather the experimental
studies reported in this paper should allow for de-
velopment of new techniques in the future.

2 Problem Formulation

Let us assume a room R(L,W,H) of dimension
L × W × H . Let there be N , s1, s2, · · · sN
speakers located at {(xsi , ysi , zsi )}Ni=1 respectively
and M microphones, r1, r2, · · · rM , located at
{(xrj , yrj , zrj )}Mj=1 respectively in the roomR. Let
ui(t) be the utterance spoken by the speaker si at
location (xsi , y

s
i , z

s
i ) and let hkl be the RIR com-

puted for the speaker sk and microphone rl pair.
Let ol be the speech recorded at the microphone rl.
We can now write the output at theM microphones
as [o1(t), o2(t), · · · , oM (t)]T =

h11 h21 · · · hN1

h12 h22 · · · hN2
...

...
. . .

...
hM1 hM2 · · · hNM

 ∗

u1(t)
u2(t)

...
uN (t)


where ∗ is the convolution operator such that

ol(t) =
N∑
i=1

hil ∗ ui(t). (1)

Note that hkl is the RIR and is a function of c
the speed of sound, fs the sampling frequency of
utterance, L × W × H volume of the room, β
the reverberation time, (xs, ys, zs) the location of
the speaker, and (xr, yr, zr) the rectangular coor-
dinates of the microphone. RIR hkl =

rir gen(c, fs, (x
r
l , y

r
l , z

r
l ), (x

s
k, y

s
k, z

s
k), L, β)

(2)
Standard utilities to simulate h are readily available
(Habets, 2006) and as mentioned in (Raikar et al.,
2020) hkl is prone to measurement errors in the
position of the microphone, namely (xr, yr, zr) as
seen in (2).

Let an error ε = [εx, εy, εz] be made in mea-
suring the position of the lth microphone rl, so
the measured location of the rl is rlε = [xrl +
εx, y

r
l + εy, z

r
l + εz]. Subsequently there is an

error introduced in the RIR, namely, h∗lε =
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rir gen(c, fs, rlε, s∗, L, β, n). Clearly an error in
measurement of the microphone rlε results in an
error in the output speech, namely,

olε(t) =
N∑
i=1

hilε ∗ ui(t). (3)

The actual output of the lth microphone, if there
were no measurement errors, is (1). Also in all our
experiments we assume ε to be Gaussian N (0, σ2)
with 0 mean and σ2 = 0.1, 0.5, 1 as was done in
(Raikar et al., 2020).

Multi channel distant speech recognition in-
volves beamforming (B) the multi channel speech,
namely, (o1, o2, · · · , oM ) from M microphones, to
form an equivalent of a close microphone (single
channel) speech followed by ASR (s2t). For con-
venience let us represent this process as

T = s2t(B(o1, o2, · · · ol · · · oM )) (4)

As can be seen an error (εx, εy, εz) in measuring
the position of a microphone results in an error at
the output of the microphone, namely, olε (3), this
results in an error in speech recognition output Tε,
namely

Tε = s2t(B(o1ε, o2ε, · · · olε · · · oMε)) (5)

In this paper, we analyze the error in the recognition
(5) of speech because of an error in measurement
of the location of the microphone.

3 Experimental Results and Discussion

3.1 Experimental Setup

We assume1 a room of dimension 5×5×5m3 and
M = 4 microphones and N = 2 speakers. Unlike
in a microphone array setup we assume that the
microphones can be located anywhere in the room,
preferably closer to the walls and the speakers are
inside the room. As an example, the room and the
location of microphone and the speakers is show
in Figure 1 (a) corresponding to the location of
microphones and speakers shown in Table 1.

Let ui(t) be the utterance spoken speaker si
and define λ(t) (Figure 1 (b)) to be an arbitrary
multi-valued function (the number of values de-
pend on the number of speakers, in our case 2 cor-
responding to the two speakers). As seen in Figure

1though not realistic, it is common, in literature to assume
a cuboid room dimension

Table 1: Microphone and Speaker location used in our
Experiments (Figure 1(a)).

Microphone/Speaker Location
r1, r2 (1, 2, 5), (5, 4, 4)
r3, r4 (4, 1, 2), (1, 1, 3)
s1, s2 (2, 2, 3), (3, 2, 3)

1 (b) s1 (s2) is active during the time interval when
λ(t) = 1(λ(t) = 2) where λi(t) is

= 1 for λ(t) = i

= 0 for λ(t) 6= i (6)

Let ūi(t) = ui(t)λi(t) represents the utterance of
speaker si (the duration for which speaker si was
active). In all our experiments we construct the
speech utterance as

U(t) =
∑
i

ūi(t) (7)

Subsequently, we construct the multi-channel out-
put (4 channels) as

oj =
∑
i

ūi(t) ∗ hij for ∀j = 1, 2, 3, 4 (8)

Let Tg = s2t(U(t)) be the transcription of the
utterance U(t) which we consider as the ground
truth. Now we get T = s2t(B(o1, o2, o3, o4))
when there is no error in the measurements of
the location of the microphones. And Tε =
s2t(B(o1ε, o2ε, o3ε, o4ε)) when there is an error (ε)
in measurements of the location of the microphones
as mentioned in Section 2. We experiment with two
different beamformers, namely, (a) delay and sum
(DSB) and (b) minimum variance distortionless re-
sponse (MVDR) (Kumatani et al., 2015; Wei et al.,
2021) (namely, B ∈ {DSB,MVDR}). The MVDR is
an adaptive beamformer which optimizes the de-
sired speech in a given direction by filtering out in-
terfering signal (Wei et al., 2021). This is achieved
by selecting the weights of beamformer with the
idea of minimizing the output power under the con-
straint that the target speech is unaffected. On
the other hand, DSB is a fixed beamformer which
is quite effective when the environment only con-
tains uncorrelated noise between microphones (Wei
et al., 2021) which is the case in our study.

We use an end-to-end transformer based state-
of-the-art speech to alphabet engine for s2t (Hug-
ging Face Team). The s2t inference is based on
the greedy Connectionist temporal classification
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(a)

(b)

Figure 1: Experimental Setup. (a) Four microphones and two speakers (Table 1) in a room of dimension 5× 5× 5
(we assume a cuboid so that we are consistent with (Raikar et al., 2020)), (b) A sample λ(t) where the x-axis
represents the time (expressed in samples) and y-axis can take a value of 1 or 2 depending on who is speaking.
Note that at any given time only one of the speaker is speaking (no overlap).

(CTC) output without the use of a language model.
We compute the character error rate CER(Tg, T )
(yi Wang et al., 2003) using the state of the art
speech to alphabet engine (Hugging Face Team)
when (a) there is no microphone location measure-
ment error and CER(Tg, Tε) and (b) when there is
a measurement error in the location of the micro-
phone. We hypothesize that the CER degrades with
increased (ε ≡ σ2) measurement error in micro-
phone location. We conducted a number of exper-
iments using the above mentioned experimental
setup. We first assumed the measurement error in
microphone position has a Gaussian distribution
with different variances (σ2). We study the degra-
dation of CER, the speech intelligibility, and speech
quality as a function of the microphone location
measurement error σ2.

3.2 Data

We used the popular LibreSpeech database
(OpenSLR, 2021) to generate real utterances as
mentioned in the experimental setup. We randomly
selected two audio files u1, u2 (when the duration
is less than 5 s we append zeros to make them of
duration 5 s) from the LibreSpeech clean dataset
and constructed U(t) of duration 5 s (see Algo-
rithm 1). All experiments were conducted on 100

audio samples generated in this way and all results
reported (Table 2 and 3) are averaged over these
samples.

Algorithm 1: Constructing U(t) (7).
input :L = 80000 (5 seconds);

u1(t), u2(t)
output :U(t) of length 5 s
ind = round

(
L
6 ∗ [1 : 6]

)
;

t1 = randi([0, ind(1)]);
for ind← 1 to length(ind) do

ti+1 = randi([ind(i), ind(i+ 1)]);
end
U(t) = [u1([1 : t1]);u2([t1 : t2)]);u1([t2 :
t3]);u2([t3 : t4]);u1([t4 : t5]);u2([t5 :
t6]);u1([t6;L])];

3.3 Experimental Validation

We evaluate the distant speech recognition perfor-
mance for the experimental setup (see Figure 1).
The distant speech recognition performance are pre-
sented in the form of CER averaged over 100 audio
samples (Table 2). Further, the validation of CER is
achieved by computing the impact of microphone
position measurement error on intelligibility and
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quality (Table 3).
To measure speech intelligibility, the well

known (a) short time objective intelligibility (STOI)
(Taghia and Martin, 2014) and (b) mutual informa-
tion (MI) (Taghia et al., 2012) are used. STOI can
take a value between 0 (completely unintelligible)
and 1 (perfect intelligibility) and depends on the
average amount of speech information available
to a listener (Taal et al., 2010). The MI scores are
estimated by first transforming the input signals
into 15 sub-bands by using a 1/3 octave band filter
bank. Thereafter, the MI between the amplitude
envelopes of the reference signal (7) and the beam-
formed signal with no microphone position error
(bs, namely, B(o1, o2, o3, o4)) and beamformed sig-
nal with microphone position error (bsε, namely,
B(o1ε, o2ε, o3ε, o4ε)) are computed. MI is estimated
per sub-band to evaluate the auditory perception
(Kumatani et al., 2008). For speech quality assess-
ment, we have used perceptual evaluation of speech
quality (PESQ), signal to distortion ratio (SDR) and
log-likelihood ratio (LLR). In PESQ, the speech sig-
nal is analyzed sample-by-sample after temporal
alignment of corresponding excerpts of the original
signal w.r.t to bsε and bs. In principal, PESQ mod-
els a mean opinion score (MOS) that ranges from
1 (bad) to 5 (excellent). Thereafter, we have used
LLR objective measure which forms the distance
measures. The LLR computes the spectral envelope
difference between the original signal w.r.t bsε and
bs (Gannot et al., 2001).

3.3.1 Speech Recognition Performance
The performance of distant speech recognition is
computed in the form of CER for 100 random runs.
It may be noted that lower values of CER suggest
better performance. From Table 2, it can be seen
that with higher measurement error (higher σ2),
the CER scores increase for both DSB and MVDR

beamformers. We observe a maximum of 3% and
9% change in CER for MVDR and DSB respectively
at σ2 = 1 compared to when there is no measure-
ment error in the microphone (σ2 = 0). Comparing
MVDR and DSB beamformers, it is observed that
MVDR (adaptive beamformer) is not able to achieve
the performance displayed by DSB. This lower per-
formance can be attributed to the fact that MVDR

is highly susceptible to singularity of the inverse
matrix being used to calculate the weight matrix.
This may result in musical noise or artifacts in the
reconstruction. Figure 2 illustrates the box plot
across 100 runs for DSB only (note that DSB out-

performs MVDR in terms of CER). It can also be
noticed that with increased σ2 (0.5 or more), the
variance and outliers in CER increase. Moreover at
σ2 = 1, the variations in CER is significantly high.

Table 2: Mean CER(%) for DSB and MVDR with vary-
ing microphone position measurement errors (σ2 =
0→ no error).

σ2 → 0 0.01 0.5 1
DSB 26.23 27.12 27.58 28.92

MVDR 32.77 33.95 33.42 33.82

Figure 2: Variations of CER with the varying σ2 for
DSB.

Further to study how the microphone position
measurement error compares with ambient or en-
vironmental noise effecting U(t), we computed
CER for noisy U(t). We constructed Uε(t) =
U(t) + n(t), where n(t) is an additive white Gaus-
sian noise with different noise levels. We com-
puted the CER on s2t(Uε(t)) with different noise
levels (Figure 3). As expected, with an increase
in the SNR levels (better signal strength), the CER

scores decrease (better recognition) significantly. It
can be also observed that with better signal (high
SNRs), the outliers and variance in CER (computed
over 100 runs; Figure 3) also decrease significantly,
suggesting consistency in CER performance with
increased signal strength. Also comparing the CER

values in Table 2 and Figure 3, one can hypothesise
that the measurement error in the microphone posi-
tion is equivalent to an ambient noise of between
5 and 10 dB effecting the original signal. To fur-
ther verify the impact of number of random runs
(previously 100), we increased the random runs to
1000. It is observed that there is no difference in
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Figure 3: Variations of CER with the different noise
levels.

CER between s2t(Uε(t)) for increase number of
runs.

It may also be emphasized from Table 2 that
although MVDR being less sensitive to posi-
tion/directional errors, their performance is still not
satisfactory in comparison to DSB. One of the plau-
sible argument is that the locations of microphones
are fixed once the displacement or no displacement
is made in microphone position. Hence it might
be possible that the MVDR beamformer would not
change the weights significantly once the locations
of microphones are fixed. A more extensive anal-
ysis is deferred to future work to understand the
underlying reasons for such a directional behaviour
of MVDR in comparison to DSB.

3.3.2 Speech Intelligibility Performance

With an aim to answer the following question,
namely, (a) Does the change in the microphone po-
sition impact the speech quality and speech intelli-
gibility? (b) Is there any relationship between CER

scores and speech quality (intelligibility) scores?
and (c) How does the intelligibility and quality
vary with respect to the two beamformers? To
address these questions, we measured the speech
intelligibility and speech quality with varying mi-
crophone measurement errors. Table 3 captures
the mean (variance) scores of speech intelligibility
and speech quality for varying microphone posi-
tion measurement errors and for the two different
beamformers (namely, DSB and MVDR). It may be
noted that higher the STOI and MI scores, better
is the intelligibility. On the other hand, higher the
SDR, PESQ and lower the LLR scores, better is the

quality of the speech signal.
From Table 3, it can be observed that DSB holds

better speech quality while on the other hand MVDR

claims better speech intelligibility. However with
increasing microphone position measurement error
(increasing σ2), both MVDR and DSB performances
for intelligibility and quality degrades significantly.
In particular for STOI, the maximum degradation
in DSB and MVDR performances is observed to
25% and 49% respectively, when we move from
no microphone position error (σ2 = 0) to σ2 = 1.
Similarly, this degradation in quality (SDR scores)
for DSB and MVDR goes to 20% and 3% respec-
tively.

Interestingly, it is observed that the quality, intel-
ligibility and CER scores of both the beamformers
do not change significantly, while error in micro-
phone position varies from σ2 = 0.5 to σ2 = 1.
These results indicate that the convergence in the
error in the microphone position is achieved af-
ter σ2 = 0.5. Further, we also able to verify the
claim made in (Loizou and Kim, 2010) that non-
correlation between improvement in quality and
improvement in intelligibility. It is clearly visible
from the MVDR and DSB performances in Table 3.

Similar to Figure 3, we also address how varia-
tion in microphone position error compares with
the effect of environmental noise on intelligibility
and quality. To achieve this, intelligibility and qual-
ity measures are computed betweenU(t) andUε(t).
It can be seen from Table 4 that as SNR increases,
the mean intelligibility and quality scores increase
as expected. Although, the mean scores for STOI

PESQ and SDR vary relatively slower with change
in SNR, than MI and LLR scores. Further, the vari-
ance decreases for STOI and LLR but on contrary it
increases for MI SDR and PESQ scores. Similar to
CER scores, the effective change is observed at 10
dB SNR. This is an indication of an equivalence be-
tween measurement error in microphone position
and original signal effected by ambient noise at 10
dB SNR.

4 Conclusions

In this paper, we addressed the impact of error
in measuring the position of microphone position
on (a) the performance of a multi-channel distant
speech recognition in terms of CER and (b) quality
and intelligibility of beamformed speech with two
well know beamformers, namely, DSB and MVDR.
Experimental analysis showed, that with increased
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Table 3: Mean (variance) of speech intelligibility and quality for different microphone position measurement errors.

BF σ2
Speech Intelligibility Speech Quality
STOI MI SDR PESQ LLR

DSB

0 0.23 (0.07) 4.72 (2.07) -18.08 (0.89) 1.48 (0.19) 1.34 (0.29)
0.01 0.22 (0.07) 4.66 (2.08) -18.03 (2.18) 1.50 (0.21) 1.24 (0.27)
0.5 0.17 (0.07) 2.55 (0.81) -21.70 (2.95) 1.18 (0.22) 3.76 (1.75)
1 0.17 (0.07) 2.51 (0.83) -21.70 (3.80) 1.18 (0.22) 3.74 (1.78)

MVDR

0 0.37 (0.34) 22.14 (36.10) -21.1 (3.75) 1.16 (0.19) 3.82 (1.81)
0.01 0.37 (0.34) 22.05 (37.03) -21.3 (3.88) 1.20 (0.22) 3.51 (1.68)
0.5 0.20 (0.16) 10.55 (36.19) -21.9 (2.86) 1.20 (0.14) 3.76 (1.74)
1 0.19 (0.13) 8.42 (30.17) -21.7 (3.72) 1.17 (0.21) 3.74 (1.81)

Table 4: Variation in speech intelligibility and quality with varying SNRs (in dB)

SNRs
Speech Intelligibility Speech Quality

STOI MI SDR PESQ LLR

0 0.289 (0.04) 1.57 (0.39) -21.47 (1.79) 1.25 (0.08) 5.21 (4.34)
5 0.285 (0.03) 1.72 (0.38) -21.54 (4.17) 1.25 (0.10) 5.02 (4.18)
10 0.291 (0.01) 1.86 (0.41) -21.40 (6.34) 1.27 (0.13) 4.83 (3.99)
20 0.299 (0.00) 2.11 (0.44) -21.39 (8.01) 1.28 (0.16) 4.49 (3.65)

measurement error in the location of microphone
the quality of mult-channel distant speech recogni-
tion deteriorates (higher CER) so does the speech
intelligibility and quality, as expected. We further
showed that the effect of microphone position mea-
surement error on distant speech recognition in
terms of CER is equivalent to a close microphone
speech being effected by an additive environmental
noise in the range of 5 to 10 dB.
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bets. 2014. Multi-microphone speech dereverbera-
tion and noise reduction using relative early trans-
fer functions. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 23(2):240–251.

Ofer Schwartz, Sharon Gannot, and Emanuël AP
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