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Abstract

The introduction of embedding techniques has
pushed forward significantly the Natural Lan-
guage Processing field. Many of the proposed
solutions have been presented for word-level
encoding; anyhow, in the last years, new mech-
anisms to treat information at a higher level of
aggregation, like at sentence- and document-
level, have emerged. With this work, we
address specifically the sentence embeddings
problem, presenting the Static Fuzzy Bag-of-
Word model. Our model is a refinement of
the Fuzzy Bag-of-Words approach, providing
sentence embeddings with a fixed dimension.
SFBoW provides competitive performances
in Semantic Textual Similarity benchmarks
while requiring low computational resources.

1 Introduction

Natural Language Processing (NLP) has gained
much traction in the last years, mainly thanks to
learnt semantic representations. Those representa-
tions (usually) called embeddings are, in the textual
context, real-valued vectors representing the seman-
tic meaning of words, sentences or even documents
in a Euclidean space. These vectors are features
generated by models trained using a self-supervised
approach on a vast corpus of unlabelled text. Lever-
aging features obtained through a self-supervised
approach instead of “hand-selected” features is of
crucial importance for NLP (Bengio et al., 2013).

Textual learnt representations immediately
turned out to be significant in many NLP tasks,
from more simple ones, like Part-Of-Speech (POS)
tagging, Named Entity Recognition (NER), and lan-
guage modelling (Collobert et al., 2011), to more
complex problems such as Machine Translation
(Sutskever et al., 2014), and even Conversational
Systems (Sordoni et al., 2015). These representa-
tions significantly moved forward state of the art.

Results in the tasks mentioned above have been
boosted mainly thanks to learnt word-level seman-
tic vectors, i.e. word embeddings. Nevertheless, for
many problems like web search, question answer-
ing and image captioning, having access to higher-
level representations is crucial: this is where sen-
tence embeddings find their usefulness (Yih et al.,
2015).

Recent outcomes show that contextual repre-
sentations, learnt through Transformer Network
(Vaswani et al., 2017) Language Models (LMs)
(Devlin et al., 2019; Radford et al., 2018), pro-
vide better performances in all those tasks and
are slowly substituting “static” embeddings. Even
though the results of these models are remarkable,
their usability is strongly restricted because of their
high demand in terms of computational resources;
hence we decided to focus on more lightweight
solutions.

With this work, we introduce the Static Fuzzy
Bag-of-Words (SFBoW) model, an improvement
of DynaMax Fuzzy Bag-of-Words model (Zhelez-
niak et al., 2019). Differently from its predecessor,
the size of universe matrix (and thus the dimension
of the generated embeddings) is fixed, hence the
name static. SFBoW is characterised by low analy-
sis time and interesting Semantic Textual Similarity
(STS) results without demanding high computa-
tional power, making it an interesting solution for
embedded systems and, in general, for applications
where resources are limited and power consump-
tion is a concern.

The rest of this document is organised as follows.
In Section 2 we present the related works in the
field of learnt semantic representations. In Sec-
tion 3 we present the SFBoW model. In Section 4
we present the experiments to assess the quality of
our model. In Section 5 we present the results of
experiments. In Section 6 we sum up the entire
work and propose possible future directions.



2 Related work

Our work revolves around the concept of vector
semantics: the idea that the meaning of a word or
a sentence can be modelled as a vector (Osgood
et al., 1958).

The first steps on this subject were made in In-
formation Retrieval (IR) context with the vector
space model (Salton, 1971), where documents and
queries were represented as high dimensional (vo-
cabulary size) sparse embedding vectors. In this
model, each dimension is used to represent a word,
so that given a vocabulary V:

• A word wi ∈ V , with i ∈ [1, |V|] ⊆ N, is
expressed as a so called “one hot” binary vec-
tor vwi ∈ 1

|V|, where, calling vwi,j the j-
th element of the word vector, it holds that
vwi,j = 1⇐⇒ j = i.

• A sentence S is expressed as vector µS ∈
N|V|, where µS,i, the i-th element of vector
µS , namely cS,i, represents the number of
times word wi appears in sentence S.

The resulting sentence representation, used also for
text documents, is called Bag-of-Words (BoW), and
can be summarised as

µS =

|V|∑
i=1

cS,i · vwi (1)

These representation models needed to be re-
placed because of the sparsity, which made them
resource consuming, and the induced orthogonality
among vectors with similar meanings.

2.1 Word and sentence embeddings
Word embeddings refer to the dense semantic vec-
tor representation of words. Approaches for word
embeddings can be divided into: prediction-based
and count-based (Baroni et al., 2014).

The former group identifies the embeddings
obtained through the training of models for
next/missing word prediction given a context. It en-
compasses models like Word2Vec (Mikolov et al.,
2013a,b) and fastText (Bojanowski et al., 2017).
The latter group refers to the embeddings obtained
leveraging words co-occurrence counts in a corpus.
One of the most recent solutions of this group is
GloVe (Pennington et al., 2014).

All the models mentioned above belong to the
class of shallow models, where the embedding of a
word wi can be extracted through lookup over the

rows of the embedding matrix W ∈ R|V|×d, with d
being the desired dimensionality of the embedding
space. Given the word (column) vector vwi , the
corresponding word embedding uwi ∈ Rd can be
computed as (see Section 2.2)

uwi = W> · vwi (2)

More recently, the introduction of Transformer-
based LMs, like BERT (Devlin et al., 2019) or GPT
(Radford et al., 2018), has spread the concept of
contextual embeddings; such embeddings proved
to be particularly helpful for a wide variety of NLP
problems, as shown by the leader-boards of NLP
benchmarks (Wang et al., 2019; Rajpurkar et al.,
2016).

The inherent hierarchical structure of the human
language makes it hard to understand a text from
single words; thus, the birth of higher-level seman-
tic representations for sentences, which are the sen-
tence embeddings, was just a natural consequence.
As for the Word embeddings, also sentence embed-
dings are organised into two groups: parametrised
and non-parametrised, depending on whether the
model requires parameter training or not.

Clear examples of parametric model are the
Skip-Thoughts vectors (Kiros et al., 2015) and
Sent2Vec (Pagliardini et al., 2018), which gener-
alises Word2Vec. Non-parametric models, instead,
show that simply aggregating the information from
pre-trained word embeddings, for example through
averaging, as in SIF weighting (Arora et al., 2017),
is sufficient to represent higher-level entities like
sentences and paragraphs.

Transformer LMs are also usable at sentence
level. An example is the parametric model
Sentence-BERT (Reimers and Gurevych, 2019),
obtained by fine-tuning on Natural Language Infer-
ence corpora.

All these models rely on the assumption that
cosine similarity is the correct metric to compute
“meaning distance” between sentences. This is why
parametric models are explicitly trained to min-
imise this measure for similar sentences and max-
imise it for dissimilar sentences. However, this may
not be the only and best measure. The DynaMax
model (Zhelezniak et al., 2019) proposed to follow
a fuzzy set representation of sentences and to rely
on fuzzy Jaccard similarity instead of the cosine
one. As a result, the DynaMax model outperformed
many non-parametric models and performed com-
parably to parametric ones under cosine similarity



measurements, even if competitors were trained di-
rectly to optimise that metric, while the DynaMax
approach was utterly unrelated to that objective.

The use of fuzzy sets to represent documents is
not new, it was already proposed by Zhao and Mao
(2018). With respect to DynaMax, previous results
were inferior because of their approach to compute
fuzzy membership.

2.2 Fuzzy Bag-of-Words and DynaMax for
sentence embeddings

The Fuzzy Bag-of-Words (FBoW) model for text
representation (Zhao and Mao, 2018) – and its gen-
eralised and improved variant DynaMax (Zhelez-
niak et al., 2019), which introduced a better sim-
ilarity metric – represent the starting point of our
work, which is described in Section 3.

The BoW approach, described at the beginning
of Section 2, can be seen as a multi-set represen-
tation of text. It enables to measure similarity be-
tween two sentences with set similarity measures,
like Jaccard, Otsuka and Dice indexes. These in-
dexes share all a common pattern to measure the
similarity σ between two sets A and B (Zhelezniak
et al., 2019):

σ (A,B) = nshared (A,B) /ntotal (A,B) (3)

where nshared (A,B) denotes the count of shared
elements and ntotal (A,B) is the count of total ele-
ments. In particular, the Jaccard index is defined as

σJaccard (A,B) = |A ∩B| / |A ∪B| (4)

However, the simple set similarity is a rigid ap-
proach as it allows for some degree of similarity
when the very same words appear in both sentences,
but fails in the presence of synonyms. This is where
Fuzzy Sets theory comes handy: in fact, fuzzy sets
enable to interpret each word in V as a singleton
and measure the degree of membership of any word
to this singleton as the similarity between the two
considered words (Zhao and Mao, 2018).

The FBoW model prescribes to work in this way
(Zhao and Mao, 2018):

• Each word wi is interpreted as a single-
ton {wi}; thus, the membership degree of
any word wj in the vocabulary (with j ∈
[1, |V|] ⊆ N) with respect to this set is com-
puted as the similarity σ between wi and wj .
These similarities can be used to fill a |V|-
sized vector v̂wi used to provide the fuzzy

representation of wi (the j-th element v̂wi,j

being σ (wi, wj)).

• A sentence S is simply defined through the
fuzzy union operator, which is determined by
the max operator over the membership de-
grees. In this case the S is represented by a
vector of |V| elements.

The generalised FBoW approach (Zhelezniak
et al., 2019), prescribes to computes the fuzzy em-
bedding of a word singleton as

v̂wi = U · uwi = U ·W> · vwi (5)

to reduce the dimension of the output vector for
S. Where, W ∈ R|V|×d is a word embedding
matrix (defined as in Section 2.1), uwi is defined
in Equation (2) and U ∈ Ru×d (with u being the
desired dimension of the fuzzy embeddings) is the
universe matrix, derived from the universe set U ,
which is defined as “the set of all possible terms that
occur in a certain domain”. The generalised FBoW
produces vectors of u elements, where u = |U |.

Given the fuzzy embeddings of the words in a
sentence S, the generalised FBoW representation
of S is a vector µ̂S whose j-th element µ̂S,j (j ∈
[1, u] ⊆ N) can be computed as:

µ̂S,j = max
wi∈S

cS,i · v̂wi,j (6)

where cS,i and v̂wi,j are, respectively, the number
of occurrences of word wi in sentence S and the
j-th element of the v̂wi vector.

The universe set can be defined in different ways,
same applies for the universe matrix (Zhelezniak
et al., 2019). Among the possible solutions, the Dy-
naMax algorithm for fuzzy sentence embeddings
builds the universe matrix from the word embed-
ding matrix, stacking solely the embedding vectors
of the words appearing in the sentences to be com-
pared.

Notice that in this way the resulting universe
matrix is not unique, as a consequence neither
are the embeddings. This condition can be no-
ticed from the description of the algorithm and
from the definition of the universe matrix: when
comparing two sentences Sa and Sb, the universe
set U used in their comparison is U ≡ Sa ∪ Sb,
so the resulting sentence embeddings have size
u = |U | = |Sa ∪ Sb|. In fact, the universe matrix
is given by

U =
[
uwi∀wi ∈ U

]> (7)



This characteristic is unfortunate as, for example,
in IR it requires a complete re-encoding of the
entire document achieve for each query.

The real improvement of DynaMax is in the in-
troduction of the fuzzy Jaccard index to compute
the semantic similarity between two sentences Sa
and Sb, rather than the generalisation of the FBoW,
which replaced the original use of the cosine sim-
ilarity (Zhao and Mao, 2018); see Equation (8):

σ̂Jaccard (µ̂Sa , µ̂Sb
) =

=

∑u
i=1 min (µ̂Sa,i, µ̂Sb,i)∑u
i=1 max (µ̂Sa,i, µ̂Sb,i)

(8)

3 Static Fuzzy Bag-of-Words model

Starting from the DynaMax, which evolved from
the FBoW model, we developed our follow up
aimed at providing a unique matrix U and thus
embeddings with a fixed dimension. In Figure 1 is
represented the visualisation of our approach.

3.1 Word embeddings
Word embeddings play a central role in our algo-
rithm as they also provide the start point of the
construction of the universe matrix. For this work,
we leveraged pre-trained shallow models (more
details in Section 4.1) for two main reasons:

• The model is encoded in a matrix where each
row corresponds to a word.

• We want to provide a sentence embedding
approach that does not require training, easing
its accessibility.

The vocabulary of these models, composed start-
ing from all the tokens in the training corpora, is
usually more extensive than the English vocabu-
lary, as it contains named entities, incorrectly spelt
words, non-existing words, URLs, email addresses,
and similar. To reduce the computational effort
needed to construct and use the universe matrix,
we have considered some subsets of the employed
word embedding model’s vocabulary. Depending
on the experiment, we work with either the 100
000 most frequently used terms, the 50 000 most
frequently used terms (terms frequencies are given
by the corpora used to train the word embedding
model) or the subset composed of all the spell-
checked terms present in a reference English dic-
tionary (obtained through the Aspell English spell-
checker1).

1http://aspell.net

In the following sections, the W̌ symbol
refers to these as reduced word embedding ma-
trices/models.

3.2 Universe matrix

During the experiments, we tried three main ap-
proaches to build the universe matrix U: the first
two – proposed, but not explored, by the original
authors of DynaMax (Zhelezniak et al., 2019) –
consist, respectively, in the usage of a clustered em-
bedding matrix and an identity matrix with the rank
equal to the size of the word embeddings. Instead,
the last approach consists of applying a multivariate
analysis techniques to the word embedding matrix
to build the universe one. In the following formu-
lae, we refer to d as the dimensionality of the word
embedding vectors, while the SFBoW embedding
of the singleton of word wi is represented as v̌wi .

Clustering The idea is to group the embedding
vectors into clusters and use their centroids; in this
way, the fuzzy membership will be computed over
the clusters – which are expected to host semanti-
cally similar words – instead of all the word single-
tons. The universe set is thus built out of abstract
entities only, which are the centroids. Considering
k centroids, the universe matrix U = K> ∈ Rk×d,
and thus SFBoW k-dimensional embedding v̌wi of
the singleton of word wi is

v̌wi = K> · uwi =
[
k1, . . . ,kk

]> · uwi =

= K> ·W> · vwi

(9)

where kj , the j-th (with j ∈ [1, k] ⊆ N) column of
K, corresponds to the centroid of the j-th cluster.
This approach generates k-dimensional word and
sentence embeddings.

Identity Alternatively, instead of looking for a
group of semantically similar words that may form
a significant group, useful for semantic similarity,
we consider the possibility of re-using the word
embedding dimensions (features) to represent the
semantic content of a sentence. So, we just use
the identity matrix as the universe: U = I, with
|I| = d× d, so that v̌wi ∈ Rd is

v̌wi = I · uwi = I ·W> · vwi (10)

This approach generates d-dimensional word em-
beddings and sentence embeddings.

http://aspell.net


Matrix 
multiplication

Word
Embeddings

Universe Matrix
(transposed)

sh
e

ha
d

a do
g

Fuzzy 
Embeddings

sh
e

ha
d

a do
g

max()
over features

Sentence 
Embedding

"she had a dog"

Figure 1: Visualisation of the Sentence Embedding computation process using SFBoW.

Multivariate analysis The same idea moves our
multivariate analysis proposal. Judging by previ-
ous results, word embeddings aggregated correctly
might be sufficient to provide a semantically valid
representation of a sentence. What can bring bet-
ter results might be as simple as roto-translate the
reference system of the embedding representation.
In this sense, we propose to use to compute the
fuzzy membership, and hence the fuzzy Jaccard
similarity index, over these dimensions resulting
from roto-translation, expecting that this “new per-
spective” will expose better the semantic content.
So, defining U = M, where M is the transfor-
mation matrix, with |M| = d × d, we have that
v̌wi ∈ Rd is

v̌wi = M · uwi = M ·W> · vwi (11)

Thus yielding d-dimensional word and sentence
embeddings.

Clustering and multivariate analysis can be ap-
plied to the whole embedding vocabulary or the
subsets of the vocabulary introduced in Section 3.1.
Apart from reducing the computational time, we
did so to see if these subsets are sufficient to pro-
vide a helpful representation.

4 Experiments

In order to find the best solution in terms of word
embedding matrix and universe matrix, we ex-
plored various possibilities. Then, to measure the
goodness of our sentence embeddings, we lever-
aged a series of STS tasks and compared the results
with the preceding models.

4.1 Word embeddings

For what concerns the word embeddings, we have
decided to work with a selection of four models:

• Word2Vec, with 300-dimensional embed-
dings;

• GloVe, with 300-dimensional embeddings;

• fastText, with 300-dimensional embeddings;

• Sent2Vec, with 700-dimensional embeddings.

As shown by the word embedding models list, we
are also employing a Sent2Vec sentence embed-
ding model. The embedding matrix of this model
can be used for word embeddings too. During the
experiments, we focused on the universe matrix
construction. For this reason, we relied on pre-
trained models for word embeddings, available on
the web.

4.2 Universe matrices

The universe matrices we considered are divided
into three buckets, as described in Section 3.2.

Clustering Universe matrices built using cluster-
ing leverage four different algorithms: k-Means,
Spherical k-Means, DBSCAN and HDBSCAN.

We selected k-Means and Spherical k-Means be-
cause they usually lead to good clustering results;
the latter was specifically designed for textual pur-
poses, with low demand in time and computation
resources. For all algorithms, we considered the
same values for k (the number of centroids), which
were 100, 1000, 10 000 and 25 000. For all the
values of k, we performed clustering on different
subsets of the vocabulary: k-Means was applied on
the whole English vocabulary as well as to the top
100 000 frequently used words subset, while Spher-
ical k-Means was applied to the subset of the first
50 000 frequently used words (in order to reduce
computational time).

We also explored density-based algorithms (DB-
SCAN and HDBSCAN), which do not require
defining in advance the number of clusters, us-
ing euclidean and cosine distance between the
word embedding. For DBSCAN with euclidean
distance, we varied the radius of the neighbour-
hood ε between 3 and 8 and worked over the same



two subsets considered for k-Means, while for co-
sine distance ε was between 0.1 and 0.55 and it
was applied over the subset of the first 50 000 fre-
quently used words (for computational reasons, as
we did for Spherical k-Means). Concerning HDB-
SCAN, we varied the smallest size grouping of
clusters in the set {2, 4, 30, 50, 100} and the mini-
mum neighbourhood size of core samples in the set
{1, 2, 5, 10, 50}. We considered this latter density-
based algorithm since basic DBSCAN happens to
fail with high-dimensional data.

Identity This approach consists of using the iden-
tity matrix as the universe, in this way, the single-
tons we use to compute the fuzzy membership are
the dimensions of the word embeddings, which cor-
responds to the learnt features. This is the most
lightweight method as it just requires to compute
the word embeddings of a sentence and then the
fuzzy membership over the exact d dimensions.

Multivariate analysis We adopted the Principal
Component Analysis (PCA) to get a rotation matrix
to serve as a universe matrix to the SFBoW. In fact,
through PCA, the d-dimensional word embedding
vectors are decomposed along with the d orthogo-
nal directions of their variance. These components
are then reordered to decrease explained variance
and represent our fuzzy semantic sets.

The principal component of the reduced word
embedding matrix W̌ are described by the ma-
trix T = P> · W̌, where P is a d × d matrix
whose columns are the eigenvectors of the matrix
W̌> ·W̌. With our approach, the matrix P>, some-
times called the whitening or sphering transforma-
tion matrix, serves as universe matrix U. In this
way, the SFBoW embedding of a word singleton
becomes

v̌wi = P> · uwi = P> · W̌> · vwi (12)

As for the clustering approach, we experimented
with both the whole vocabulary and the most
100 000 used words.

4.3 Data

We evaluated our SFBoW through a series of refer-
ence benchmarks; we selected the STS benchmark
series, one of the tasks of the International Work-
shop on Semantic Evaluation (SemEval)2.

2https://aclweb.org/aclwiki/
SemEval Portal

SemEval is a series of evaluations on computa-
tional semantics; among these, the Semantic Tex-
tual Similarity STS benchmark3 (Cer et al., 2017)
has become a reference for scoring of sentence em-
bedding algorithms. All the previous models we
are considering for comparison have been benched
against STS; this is because the benchmark high-
lights a model capability to provide a meaningful
semantic representation by scoring the correlation
between model’s and human’s judgements. For this
reason, and also to allow comparisons, we decided
to evaluate SFBoW on STS.

We worked only on the English language, using
the editions of STS from 2012 to 2016 (Agirre
et al., 2012, 2013, 2014, 2015, 2016). Each year, a
collection of corpora coming from different sources
has been created and manually labelled, in Table 1
is possible to have a reference in terms of support
for each edition. Thanks to the high number of
samples, we are confident about the robustness of
our results.

Table 1: Support of the corpora of the STS benchmark
series.

Edition No. sentence pairs

STS 2012 5250
STS 2013 2250
STS 2014 3750
STS 2015 3000
STS 2016 1186

Total 15 436

To preprocess the input text strings, we lowe-
cased each character and tokenised in correspon-
dence of spaces and punctuation symbols. Then,
from the resulting sequence, we retained only the
tokens for which a corresponding embedding was
found in the vocabulary known by the model. Fi-
nally, we calculated the SFBoW sentence embed-
ding from the word embeddings of such tokens.

The samples constituting the corpora are pair
of sentences with a human-given similarity score
(the gold labels). The provided score is a real-
valued index obtained averaging those of multiple
crowd-sourced workers and is scaled in a [0, 1] ∈ R
interval. The final goal of our work is to provide a
model able to provide a score as close as possible

3https://ixa2.si.ehu.eus/stswiki/
index.php/Main Page

https://aclweb.org/aclwiki/SemEval_Portal
https://aclweb.org/aclwiki/SemEval_Portal
https://ixa2.si.ehu.eus/stswiki/index.php/Main_Page
https://ixa2.si.ehu.eus/stswiki/index.php/Main_Page


to that of humans.

4.4 Evaluation approach

To assess the quality of our model, we used it to
compute the similarity score between the sentence
pairs provided by the five tasks, and we compared
the output with the target labels. The results are
computed as the correlation between the similarity
score produced by SFBoW and the human one, us-
ing Spearman’s ρ measure (Reimers et al., 2016).
SFBoW employs fuzzy Jaccard similarity index
(Zhelezniak et al., 2019) to compute word similar-
ity.

To have terms of comparison, we establish a
baseline through the most straightforward models
possible, the average word embedding in a sen-
tence, leveraging three different word embedding
models: Word2Vec, GloVe and fastText. We also
provide results from more complex models: SIF
weighting (applied to GloVe), Sent2Vec, DynaMax
(built using Word2Vec, GloVe and fastText) and
Sentence-BERT.

All the embedding models except DynaMax and
the baselines are scored using cosine similarity;
DynaMax scores are obtained using fuzzy Jaccard
similarity index.

5 Results

The results of the Spearman’s ρ correlation in the
STS benchmark of our SFBoW are reported in the
last three rows of Table 2. The reported values
belong to the FSBoW configurations that achieved
the best score, among the variants we considered
for the experiments, in at least one task.

FastText is the best among the four-word embed-
dings models, confirming the results of DynaMax.
The best scores in terms of universe matrix are
achieved either with Identity matrix or with PCA
rotation matrix, highlighting how the features yield
by word embeddings provide a better semantic con-
tent representation of sentences.

Clusterings results turned out to be very poor,
independently of the starting embeddings. For this
reason, we avoid discussing them.

As premised, we compare our results with three
baseline models and other sentence embedding ap-
proaches, all reported in Table 2. The first group of
scores is from the baselines, the second one is from
other sentence embedding models and, finally, the
last group is from our SFBoW model. Additionally,
the best values in each column are highlighted in

bold, while the second ones are underlined.
The key features about our model, which can be

derived from the results, are the following:

• low number of parameters;

• faster inference time

• no training phase;

• results (in terms of ρ) comparable to similar
models;

• fixed-size and easily re-usable embeddings.

About the number of parameters, we can no-
tice that even if Sentence-BERT outperforms all
the other models in every task, it relies on a much
deeper feature extraction model and was trained
on a much bigger corpus. Moreover, this model
requires a considerably higher computational effort
without an equally consistent difference in perfor-
mances. BERT alone requires more than 100 mil-
lion parameters just for its base version (and above
300 million for the large one), hence taking a lot
of (memory) space, not to mention the amount of
time necessary for the self-supervised training and
the fine-tuning. On the other hand, non-parametric
models (like SIF, DynaMax or SFBoW) or shallow
parametric ones (Sent2Vec) require fewer parame-
ters: just those for the embedding matrix |V| × d.

A similar discourse applies to inference speed.
Even though Sentence-BERT achieves the best re-
sults on all tasks, SFBoW turns out to be four times
faster at inferring the similarity, as can be noticed
by the reported analysis times.

Being a non-parametric model, SFBoW does not
require a training phase. It may require clustering
the embeddings to build the universe matrix, but
our experiments showed that clustering does not
yield good results. Because of its simplicity, SF-
BoW can generally be easily deployed, requiring
only the word embedding model to compute the
sentence representation. Notice also that the SF-
BoW algorithm is agnostic to the word embedding
model.

Regarding the results we obtained, compared to
other models, SFBoW provided interesting figures:
either considering the majority of tasks with higher
Spearman’s ρ rank or higher average score, it out-
performs all the baselines, as well as SIF weight-
ing and Sent2Vec. Finally, we see as our model
performs closely to its predecessor, especially con-
sidering the weighted average of the results of the



Table 2: Comparison of results over the STS benchmark. SFBoW models are in the last block. Weighted averages
are expressed as: avg.±std. Bold and underlined values represent, respectively, first and second best result of
column. Inference time refers to to the time, in seconds, to carry out an evaluation on the entire STS corpus.

Model
Results (Spearman’s ρ)

Analysis time (s)STS Total2012 2013 2014 2015 2016

Word2Vec a 55.46 58.23 64.05 67.97 66.28 61.21±5.04 –
GloVe a 53.28 50.76 55.63 59.22 57.88 54.99±2.80 –
fastText a 58.82 58.83 63.42 69.05 68.24 62.65±4.20 –

SIF weighting b 56.04 62.74 64.29 69.89 70.71 62.84±5.54 –
Sent2Vec 56.26 57.02 65.82 74.46 69.01 63.21±7.13 –
DynaMax c 55.95 60.17 65.32 73.93 71.46 63.53±6.92 –
DynaMax b 57.62 55.18 63.56 70.40 71.36 62.25±5.85 –
DynaMax d 61.32 61.71 66.87 76.51 74.71 66.71±6.10 –
Sentence-BERT 72.27 78.46 74.90 80.99 76.25 75.81±3.27 218.3

SFBoW d,e,f 61.31 51.21 67.47 72.90 73.88 64.55±7.20 56.5
SFBoW d,g,h 61.42 51.36 66.44 72.74 73.72 64.32±7.00 56.8
SFBoW d,g,i 60.03 51.96 66.36 72.39 73.25 63.81±6.93 56.6

a Used as baseline. b Built upon a GloVe model for word embeddings. c Built upon a Word2Vec
model for word embeddings. d Built upon a fastText model for word embeddings.
e Best average score. f Universe matrix is the identity matrix.
g Universe matrix is the PCA projection matrix. h Universe matrix is built from the English vocabulary.
i Universe matrix is built from the top 100 000 most frequent words.

single tasks. SFBoW bests out DynaMax in STS
2014 and gets almost the same results in STS 2012
(the difference is 0.01), which are the first two cor-
pora in terms of samples; however, the difference
in STS 2013 goes in favour of DynaMax.

About the comparison against DynaMax, it is
worth underlining a few additional points. First of
all, in both cases, fuzzy Jaccard similarity corre-
lates better with human judgement as a measure of
sentence similarity. Secondly, both models manage
to achieve better results when using fastText word
embedding, possibly underling that they lend better
than other models at sentence level combination;
the baseline performances also show this.

Finally, we remind that SFBoW generates em-
beddings with a fixed size, resulting in much easier
applicability with respect to DynaMax.

6 Conclusion

With this work, we have proposed SFBoW, a re-
finement of the FBoW and DynaMax models for
sentence embedding. Even if SFBoW does not
achieve state-of-the-art performances on the consid-
ered STS benchmark, our solution performs com-

parably to its predecessor while enabling the possi-
bility of re-usable embeddings as their dimension
is fixed. Moreover, as can be seen from the results,
it outperforms in most tasks all the other compared
models except Sentence-BERT, without the need
for specific training or fine-tuning on sentence sim-
ilarity corpora and still being as lightweight and
fast as possible. As a result, SFBoW seems a rea-
sonable solution in low resources or constrained
computational scenarios. In the future, we plan to
investigate other clustering techniques and other
methodologies for computing the universe matrix.
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Montréal, Canada, June 7-8, 2012, pages 385–393.
The Association for Computer Linguistics.

Eneko Agirre, Daniel M. Cer, Mona T. Diab, Aitor
Gonzalez-Agirre, and Weiwei Guo. 2013. *sem
2013 shared task: Semantic textual similarity. In
Proceedings of the Second Joint Conference on Lexi-
cal and Computational Semantics, *SEM 2013, June
13-14, 2013, Atlanta, Georgia, USA, pages 32–43.
Association for Computational Linguistics.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 238–247, Baltimore, Maryland.
Association for Computational Linguistics.

Yoshua Bengio, Aaron C. Courville, and Pascal Vin-
cent. 2013. Representation learning: A review and
new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell., 35(8):1798–1828.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomás Mikolov. 2017. Enriching word vectors with
subword information. Trans. Assoc. Comput. Lin-
guistics, 5:135–146.

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo
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