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Abstract

In this work we propose a multimodal speech
analytics framework for automatically assess-
ing the quality of a public speaker’s capabil-
ities. For this purpose, we present the Pub-
lic Speaking Quality (PuSQ) dataset, a new
publicly available data collection that contains
speeches from various speakers, along with re-
spective annotations of how are these speeches
perceived by the audience in terms of two
labels namely: ”expressiveness” and overall
”enjoyment” (i.e. if the listener enjoys the
speech as a whole). Towards this end, sev-
eral annotators have been asked to provide
their input for each speech recording and inter-
annotator agreement is taken into account in
the final ground truth generation. In addi-
tion, we present a multimodal classifier that
takes into account both audio and text informa-
tion and predicts the overall recordings’ label
with regards to its speech quality (in terms of
the two aforementioned labels). To this end,
we adopt a hierarchical approach according to
which we first analyze the speech signal in a
segment-basis (50ms of audio and sentences
of text) to extract emotions from both text and
audio and then aggregate these decisions for
the whole recording, while adding some high-
level speaking style characteristics to produce
the overall representation that is used by the
final classifier.

1 Introduction

Public speaking (also called oratory or oration) is
the act of giving speech face to face to live au-
dience. However, due to the evolution of public
speaking, it is lately viewed as any form of speak-
ing (formally and informally) between an audience
and the speaker. Traditionally, public speaking was
considered to be a part of the art of persuasion. The
act can accomplish particular purposes including
information, persuasion, and entertainment. Ad-

ditionally, differing methods, structures, and rules
can be utilized according to the speaking situation.

Currently, technology continues to transform the
art of public speaking through newly available tech-
niques such as videoconferencing, multimedia pre-
sentations, and other nontraditional forms. Know-
ing when speech is most effective and how it is
done properly are key to understanding the impor-
tance of it.

While most current methods for evaluating
speech performance attend to both verbal and non-
verbal aspects, almost all existing assessments
in practice require human rating (Ward, 2013;
Schreiber et al., 2012b; Carlson and Smith-Howell,
1995). Due to the obvious need to use our speech in
our daily lives, its evaluation and its improvement
is also very important. This evaluation becomes
easier and faster if it is performed by an automated
process that mostly uses machine learning method-
ologies.

Speech is everywhere and the way we speak
is just as important as what we say. Therefore,
multimodal speech analytics (using text and audio)
is an important process that can be applied not
only to assess public speakers speech quality, but
also in other speech-related fields of application
such as the identification of learning disabilities
related to speech (dyslexia, autism), the analytics
of call center data and the speech-based assessment
of psychological and psychiatric conditions. The
proposed pipeline for assessing the public speech
quality can be adopted in such applications, as soon
as respective ground truth have been made available
for training the supervised models.

The related works in assessing public speakers’
skills is very limited and usually focuses in two
specific tasks, namely learning analytics and per-
suasive analysis. In particular, (Chen et al., 2016)
focuses on the design of a multimodal automated
assessment framework for public speaking skills an-



alytics, which is based on the public speaking com-
petence rubric (PSCR)(Schreiber et al., 2012a) for
scoring and uses both audiovisual and textual fea-
tures. With regards to the persuasiveness prediction
application domain, a widely used dataset, named
Persuasive Opinion Multimedia (POM) (Park et al.,
2014) has been created, which contain multiple
communication modalities (audio, text and visual).
A deep learning approach for this task that is eval-
uated on POM is presented by (Nojavanasghari
et al., 2016), where the authors design a deep mul-
timodal fusion architecture, that has the ability to
combine signals from the visual, acoustic, and text
modalities effectively.

However, the aforementioned methodologies do
not address the task of assessing the public speak-
ers’ skills in a generalized manner. This paper
proposes an ML framework for classifying long
speech recordings in terms of: (a) overall speech
”expressiveness”, as perceived by the audience and
(b) perceived ”enjoyment”, i.e., how much the lis-
teners enjoyed each speech recording. Towards this
end, we demonstrate a Python open-source library
that utilizes segment-level (size of 20ms to 50ms)
audio and text classifiers related to emotional and
speaking style attributes. The final recording-level
decision is extracted by a long-term classifier that
is based on feature aggregates of the segment-level
decisions. Apart from the open-source library, we
present an openly available dataset of real-world
recordings, annotated in terms of perceived expres-
siveness and enjoyment. Extensive experimental
results prove that the proposed ML framework
can discriminate between positive and negative
speech samples, despite the simplicity of the base-
line segment-level classifiers.

The paper is organized as follows: Section 2
shows the conceptual diagram of the proposed
methodology, Section 3 presents the segment-level
audio and text classifiers related to emotional at-
tributes, Section 4 introduces the aggregation of
class posteriors among with some high-level fea-
tures that are calculated across the entire record-
ing, Section 5 refers to the newly constructed Pub-
lic Speaking Quality (PuSQ) dataset, Section 6 is
responsible for the reporting of the implemented
experiments and Section 7 sets out the final conclu-
sions.

2 System overview

The system architecture developed in the context of
speech quality assessment is divided into two parts:
segment-level analysis and recording-level analysis.
In the first, we break the information (audio or text)
into temporal segments and use segment-classifiers
related to emotional content. In the second, we
aggregate the previously produced class posteriors
and combine with high-level features that charac-
terize the overall speaking style. This rationale is
followed for both textual and audio modalities and
the final decisions can either be used independently
or combined in the final recording-level classifiers.
The conceptual diagram of the proposed system
architecture is shown in Figure 1.

Figure 1: System Architecture

3 Segment-Level Analysis

3.1 Audio Analysis

The audio recording is split into segments and for
each segment audio feature extraction is performed
and segment classifiers are applied to produce a
series of emotion-specific classification decisions,
which are then aggregated for the whole recording’s
classification in terms of overall speech quality.
The goal of this section is to describe this segment-
level process.

3.1.1 Segmentation and Feature Extraction
For each 3s segment, a short-term window pro-
cess is followed, i.e. the segment is further split
into short-term windows (frames) of 50 ms long
with a step of 50 ms (no overlapping). For each
short-term window, a series of hand-crafted audio
features is extracted, that have been widely used in
speech classification tasks. These low-level audio



features are: Zero-crossing rate, Energy, Energy en-
tropy, Spectral centroid, Spectral spread, Spectral
Entropy, Spectral Flux, Spectral Rolloff, the first
13 MFCCs , the Chroma Vector (12-dimensional)
and Chroma Standard Deviation. All these features
summing up to 34 in total. We further add the
deltas of these features, i.e. the difference between
each feature in the current short-term window and
the value it had in the immediately preceding short-
term window. So we end up with 34 such deriva-
tives (deltas), so 68 features in total for each frame.

Then, for each segment, we extract two feature
statistics for each sequence of short-term features
described above. The statistics are: the average
µ and the standard deviation σ2 of the respective
short-term feature sequences, among the whole 3s
segment. Therefore, each segment is now repre-
sented by 134 (68 × 2) feature statistics. To ex-
tract this representation, we used the Pyaudioanal-
ysis (Giannakopoulos, 2015) open source Python
library.

3.1.2 Speech Segment Classifiers
As described above, each speech segment is rep-
resented by 134 audio feature statistics. Then, we
have selected to train segment-level classifiers re-
lated to the underlying emotions, because emotions
are strongly associated to the overall speaking style
of a public speaker and therefore to the respective
speech quality. Towards this end, we have adopted
both categorical and dimensional Speech Emotion
Recognition annotations (attributes).

The categorical attributes consist of some ba-
sic classes of emotions. According to Ortony and
Turner (1990), basic emotions are often the prim-
itive building blocks of other non-essential emo-
tions, which are considered variations, or mixtures
of basic emotions. In Ekman (1992) six basic emo-
tions are suggested, based on the analysis of facial
expressions (anger, disgust, fear, joy, sadness and
surprise). We choose to use the 4 basic emotions:
anger, sadness, neutral and happiness, as provided
by the, widely used in the literature (Koromilas and
Giannakopoulos, 2021), processed version of the
IEMOCAP dataset.

The main disadvantage of the categorical model
is that it has a lower resolution than the, associ-
ated with continuous values, dimensional model
because it uses categories. The true number of in-
dividual emotions and their tones encountered in
different types of communication are much richer
than the limited number of emotion categories in

the model. The smaller the number of classes in
the categorical model,the greater the simplifica-
tion of the description of emotions (Grekow, 2018).
That is why dimensional attributes are also widely
used in emotion recognition. These representations
allocate emotions in dimensional spaces that can
mainly capture the similarities and differences be-
tween them. Wundt and Judd (1897), proposed the
first dimensional model by disassembling the space
of emotions along three axes, namely: valence
(positive-negative), arousal (calm-excitement) and
intensity (intensity-relaxation). In this work, a
usual scheme in the literature (Le et al., 2017) has
been adopted with the use of a discretized version
of the first two axes (valence and arousal) with the
following classes: negative, neutral, positive for
valence and high, neutral, low for arousal.

For the training and the evaluation of the
three above-mentioned models (emotions, valence,
arousal), we use 5 open-source speech emotion
datasets, as well as a proprietary dataset that had
been created by the authors. The open source
datasets are: Emovo (Costantini et al., 2014), Emo-
DB (Burkhardt et al., 2005), Savee (Jackson and
ul haq, 2011), Ravdess (Livingstone and Russo,
2018) and IEMOCAP (Busso et al., 2008). The 6th
dataset is named Emotion Speech Movies and con-
tains audio files from movie scenes that are divided
into 5 emotional classes.

Some of the aforementioned datasets contain
more classes of emotions, therefore we only used
the samples corresponding to the classes of inter-
est. Also ”excitement” was merged with happiness,
since they are quite related expressions. For the
valence and arousal tasks, one can observe that the
only dataset which contains corresponding labels
is IEMOCAP. These labels are continuous values
and as we address classification problems, we di-
vide these value ranges into three identical intervals.
For valence: the samples with value in the range
[1,2.5) are considered to be ”negative”, the samples
with value in the range [2.5,4) are considered to be
”neutral” and the samples with values in the range
[4,5.5] are considered to be ”positive”. For arousal:
the samples with value in the range [1,2.53) are
considered to be ”low”, the samples with value in
the range [2.3,3.6) are considered to be ”neutral”
and the samples with values in the range [3.6,5]
are considered to be ”high”. For all other data sets
that do not contain valence and arousal tags, we
distribute the emotion tags in the above 6 valence



DatasetClassification Task
IEMOCAP Savee Emovo Emo-db Ravdess EmotionSpeechMovies

Average

Emotion 79.7 71.2 75.5 80.6 67 50.4 70.7
Valence 52.9 62.3 59.5 76 63.9 53.2 61.3
Arousal 60.3 75.3 79.9 81.9 68.3 64.1 70

Table 1: Inner-dataset Evaluation of Audio Models

and arousal classes based on the circumplex model
shown in Figure 2.

Figure 2: Distribution of Emotions in Circumplex
Space

3.1.3 Segment Classifiers Training and
Evaluation

As described above, each audio segment is repre-
sented by a 134-dimensional feature vector, while
three classification tasks have been defined: emo-
tion, valence and arousal, using 6 different datasets.
For these classification tasks, we have first per-
formed a separate evaluation pipeline for each dif-
ferent dataset. The results of this inner-dataset eval-
uation procedure is shown in Table 1. The classifi-
cation algorithm used for this experimentation was
the SVM with RBF kernel, which outperformed all
traditional classification methods (decision trees,
random forests and k-nearest-neighbors).

Apart from these dataset-dependent results we
have also conducted experiments using a ”leave-
one-dataset-out” rationale, in order to perform a
cross-dataset evaluation. In both evaluations a re-
peated cross validation approach has been adopted
with a 80% - 20% train-test data split and 100 it-
erations. The cross-dataset evaluation results for
the best classifier (again SVM with RBF kernel)
are shown in Table 2. All the metrics shown are f1
macro-averaged.

Comparing the results of the above two tables,
we can observe that in the cross-dataset evaluation

Test DatasetClassification Task
IEMOCAP Savee Emovo Emo-db Ravdess EmotionSpeechMovies

Average

Emotion 39 36 45.5 57.6 29.8 36.6 40.8
Valence 39.7 37.9 32.7 37 26.3 42 35.9
Arousal 40.1 41.8 40.3 51.1 38.4 38.6 41.7

Table 2: Cross-dataset Evaluation of Audio Models

Merged DatasetClassification Task
Xgboost CNN SVM

Emotion 60.4 60.5 64.4 (+/-0.9)
Valence 51.7 52.6 55.2 (+/-1.2)
Arousal 64.2 69.3 66.8 (+/-1.1)

Table 3: Merged-dataset Evaluation of Audio Models

(Table 2), the results are just slightly better than ran-
dom guess on average (25%). This implies that the
problem that these models are called upon to solve
is directly dependent on the specific sub-domain.
By ”sub-domain”, we mean the set of context con-
ditions and types of speakers in each dataset. Cross-
domain adaptation is one of the most common dif-
ficulties in speech emotion recognition. And it is
beyond the scope of this paper to handle this issue.
The most straightforward way for our scope (which
is to create segment classifiers that can be used as
feature extractors for the recording-level decisions),
is to simply train our segment models on a merged
emotional dataset. The results of cross-validation
on this merged dataset are presented in Table 3.
The machine learning algorithm used for this type
of experiments is SVM with RBF kernel, as well as
xgboost (Chen and Guestrin, 2016). In addition, to
manage the imbalance of datasets and to increase
the performance, we also used a sampler SMOTE-
Tomek (Wang et al., 2019), a StandardScaler, a
VarianceThreshold with threshold set equal to zero
and a PCA (Kabari and Nwamae, 2019). During
the training, a gridsearch was applied which uses
RepeatedStratifiedKFold cross validation with 5
folds. Hyperparameter tuning is performed in three
hyperparameters: the number of components of the
pca that are maintained, the hyperparameters γ and
C of the SVM.

For comparison reasons, we also evaluated the
performance of a Convolutional Neural Network
(CNNs) with melgrams used as audio features,
which is a common approach in Deep Learning
for audio classification. Towards this end, the
open-source Python library deep audio features
(Theodoros Giannakopoulos, 2020) was used. The
CNN has 4 convolutional layers with kernels 5× 5,
single stride and zero padding, while max pooling
of size 2 was used. The output channels (i.e. the



third dimension), for the first layer are 32, for the
second 64, for the third 128 and for the forth 256.
After the convolution layers, we use 3 linear layers,
with the first having an output dimension of 1024,
the second 256 and the third equal to the number
of classes.

The above results show that the best performance
is achieved when using the SVM classifier. CNN
is outperforming only for the arousal task, which
indicates that more data may be needed for this
deep approach to outperform. Of course, more
sophisticated approaches could be used also captur-
ing temporal dependencies between features (such
as LSTMs or Transformers), but this is to be con-
sidered for future work. Finally, we have experi-
mented with speaker independent experiments, by
evaluating the SVM classifier on a subset of au-
dio segments of unseen speakers (i.e. speakers
whose segments were not available in the training
data). This speaker-independent evaluation showed
results that were on average 3% worst than the
ones appearing on Table 3. This indicates that the
speaker independence assumption does not signif-
icantly affect the performance for this particular
model.

3.2 Text Analysis

3.2.1 Segmentation and Feature extraction

The Speech API provided by Google was used in
order to extract textual information from the initial
audio signal. The text from the whole recording
can be segmented using three different approaches:
sentence-level splitting, splitting into windows of
predefined number of words or splitting in fixed
time windows. In order to train the models de-
scribed in the next paragraphs, the samples are
pre-segmented in sentences.

In Natural Language Processing (NLP), word
embedding is a term used to represent words in
text analysis, usually in the form of a real valued
vector that encodes the meaning of the words so
that they can be represented in a joint representa-
tion space where the closest words are expected to
have a similar meaning (Mikolov et al., 2013). To
obtain word embeddings, experimentations with
two pre-trained natural language models, ie. Fast-
Text (Bojanowski et al., 2016) (trained on data of
English Wikipedia) and BERT (Devlin et al., 2018)
(trained on data of BooksCorpus (Zhu et al., 2015)
and English Wikipedia ), were conducted. For the
BERT architecture, given a text segment/sentence,

IEMOCAP

Classification Task
SVM
with

FastText Embeddings

XGBOOST
with

BERT Embeddings

SVM
with

BERT Embeddings
Emotion 66.5 (+/-1) 63.9 (+/-1.7) 69.5 (+/-1.4)
Valence 61.5 (+/-1) 59.4 (+/-0.9) 63.8 (+/-1)
Arousal 48.8 (+/-1.1) 48.2 (+/-1) 51 (+/-1.1)

Table 4: IEMOCAP Evaluation of Text Models

the embeddings of the last 4 layers were averaged
in order to get a more general representation.

As the IEMOCAP dataset is the only data collec-
tion, from the ones presented in section 3.1.2, that
contains transcriptions (textual information), this is
the one that will be used for the training/evaluation
of proposed models (emotions/valence/arousal).

3.2.2 Segment classifiers training and
evaluation

Experiments with both Fasttext and BERT em-
beddings were conducted on all three classifica-
tion tasks. For training, an appropriate param-
eter tuning of a pipeline cosnisting of SMOTE-
Tomek (to handle imbalance), StandardScaler, Vari-
anceThreshold, PCA and either SVM with RBF
kernel or XGBOOST classifier was held. The eval-
uation procedure was performed using Repeated-
StratifiedKFold validation scheme with 5 folds and
3 repetitions. The macro-averaged f1 score metric
is shown in Table 4, where the +/- sign indicates the
standard deviation of the metrics across different
test folds.

From the listed results it can be clearly seen that
(i) the use of BERT embeddings results in better
performance probably due to stronger word rep-
resentation power, and (ii) the SVM classifier is
superior to the XGBOOST for all three classifica-
tion tasks.

4 Recording-Level Analysis

The overall goal of segment-level analysis is to be
used in order to extract recording-level information.
Towards this end, we will combine segmented infor-
mation with high-level features in order to perform
a recording analysis.

4.1 Aggregation of Class Posteriors

Segment-classifiers result in three labels associ-
ated with emotion, valence and arousal respec-
tively. In order to characterize the whole speech sig-
nal, an aggregation of the class posteriors across
the recording length is performed. For example,
the average emotion confidence per label may
be: P (emotion = sad) = 0.3, P (emotion =



neutral) = 0.4, P (emotion = happy) = 0.1,
P (emotion = angry) = 0.2

4.2 High Level Features

In order to capture long-term dependencies some
high-level features, for both audio and text, need to
be calculated across the input signal.

For the aural modality, a voice activity detection
is firstly performed using features of the pyAudio-
Analysis library (Giannakopoulos, 2015), in order
to train in a semi-supervised fashion an SVM clas-
sifier so as to detect periods of silence. After iden-
tifying the parts of voice and silence in speech, the
following high-level features are calculated: aver-
age silence duration, silence segment per minute,
standard deviation of silence duration, speech ra-
tio and word rate in speech. In order to extract
different kinds of silence (ie. inter-word and intra-
word), the aforementioned features are calculated
for 2 different short-term windows: windows of
0.25 step and 0.5 length and windows of 0.25 step
and 1 length respectively, resulting in 10 high-level
features for each audio file.

As for the textual modality, the following high-
level features are extracted: word rate, unique word
rate and 10-bin histogram of word frequencies (fre-
quency must range between 0 to 0.1 in order to
filter out non-informative words), resulting in 12
high-level features.

5 Public Speaking Quality Dataset

Speech Quality Assessment is a task of interest in
psychology, public speaking, rhetoric and a variety
of other related sciences. However, this problem is
quite difficult to track with the use of computational
approaches. In order to address this need we intro-
duce the Public Speaking Quality (PuSQ) Dataset,
a data collection that contains speech audio and
text files annotated from human listeners.

5.1 Data Acquisition

For the needs of the data collection process, a web
application1, named RecSurvey was created and
the participants could use it through their personal
recording set-up (ie. headset or PC microphone).
The participants had to firstly fill out their demo-
graphic information (age, ethnicity, gender, English
fluency etc) and then record themselves either read-
ing some of the 40 predefined English texts (4-5

1https://github.com/lobracost/
RecSurvey

lines each) of different topics (politics, books, ma-
chine learning, etc) or answering some of the 20
general questions such as ”What do you like most
about your current job?”. Here it has to be noted
that, although our purpose is to evaluate the quality
of free speech, a variety of predefined texts were
used in order to have a quantitative control of the
result.

The process of data acquisition resulted in a to-
tal of 695 recordings/speeches from 42 different
individuals, of which 26 were female. In addition,
people of different nationalities were considered so
as to have a variety of pronunciation and speaking
styles.

5.2 Annotation
The annotation process is mandatory in order to cre-
ate a labeled dataset. Towards this end another web
application2 was created and used so as to annotate
the collected speeches based on three indicators:

• expressiveness: how active, emotional or pas-
sionate the speech is, regardless of its content.

• ease of following: the evaluation of verbal
clarity, fluency and rate of speech, for the spe-
cific content described. It is noted that fluency,
clarity and rate can be correlated. For exam-
ple one speaker, despite speaking fast, may
deliver an easy-to-follow speech, while the
opposite may hold for another speaker.

• enjoyment: defines the listener’s / annota-
tor’s personal view of whether the speech was
exciting, entertaining or motivating.

The marking/annotation in each of the above
classes was done using 5 staggered labels, ie. the
annotator had to rate each recording in the range
from 1 to 5, with 1 being the worst and 5 the best
measure.

In total, 14 annotators made 2687 markings by
labeling 689 out of the 695 recordings for each
of the 3 tasks. Further details on the number of
annotations per user are illustrated in Figure 3.

5.3 Annotations Aggregation
Although the labels are distinct (5 labels / values
per task), they have a continuous, scalable form as
the smaller label (1) corresponds to the worst per-
formance, while the larger label (5) corresponds to

2https://github.com/sofiaele/audio_
annotator

https://github.com/lobracost/RecSurvey
https://github.com/lobracost/RecSurvey
https://github.com/sofiaele/audio_annotator
https://github.com/sofiaele/audio_annotator
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Annotator 2
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Figure 3: Annotations per User

the best one. Therefore, instead of aggregating the
annotations of a recording based on majority vot-
ing, averaging have been used. More specifically,
for each task (expressiveness, ease of following,
enjoyment) and for each gender (female, male), 2
classes / labels were exported: one negative and
one positive. Here it has to be noted that the gender
separation was required since, the annotated qual-
ity of speech was biased to favor female speakers
and adding the fact that the two genders are eas-
ily distinguishable due to different speech sound
frequencies, the problem of over-fitting arose.

To aggregate the annotations and produce the
binary datasets, the following three filterings have
been applied on each sample:

• samples with less than three annotators are
excluded

• the mean value of the labels given by differ-
ent annotators, must either be under a lower
or above an upper threshold. Thus, the in-
stance is either labeled as negative/positive or
excluded from the dataset (when> lower and
< upper).

• the median absolute deviation of the annota-
tions is required to be less than or equal to
a predetermined threshold. Practically, this
value indicates the average deviation that re-
sults from the deviations of each annotation
from the average.

Furthermore, some agreement metrics have been
calculated in order to get an idea of how well de-
fined the final labels are. Firstly, the average dis-
agreement of annotators is defined as the average
value of the median absolute deviations from all
samples. A second metric that indicates the annota-
tors validity, is the average disagreement for each

Expressiveness
Female Male

Positive Negative Positve Negative
Mean Thresholding µ >= 4 µ <= 2 µ >= 3.1 µ <= 2
Number of samples

after
Mean Thresholding 72 80 70 67

Deviation Thresholding σ < 0.75 σ < 0.75 σ < 0.75 σ < 0.75
Number of samples

after
Deviation Thresholding 63 71 48 60

Number of samples
after

Minimum Annotators 52 53 41 50
Average Disagreement 0.52 0.53

Table 5: Definition of Expressiveness Dataset

participant. That is, for each sample that the user
annotated, the deviation of the label she/he has set
from the average value of all the annotations of this
sample is calculated and then averaged across all
the user’s annotations in order to get the average
user disagreement.

The results of the filtering procedure and the cal-
culated agreement metrics for the expressiveness
task are listed in Table 5. The corresponding ta-
bles for the remaining tasks can be found on the
dataset’s repository3.

Here, it has to be noted that the average disagree-
ment of the task ”ease of following” is high enough
(ie. 0.57 female - 0.58 male) which indicates that
this task is ill-defined and thus it will not be ac-
counted for the experiments.

5.4 Data Availability
PuSQ is publicly available in https://github.

com/sofiaele/PuSQ in the form of extracted au-
dio and text features and ASR text files for the two
valid tasks (expressiveness and enjoyment).

6 Experiments

For each of the two tasks (expressiveness, enjoy-
ment), 8 different types of experiments, in terms of
the features used, were conducted. More specifi-
cally, the below features, together with early or late
fusion among them, were used:

1. Meta Audio (MA): Audio features derived
from the segment-level classifiers together
with the high-level audio features described in
section 4.2, resulting in a 20d feature vector.

2. Text (T): Text features derived from segment-
level classifiers together with the high-level
text features described in previous sections,
resulting in a 22d feature vector.

3https://github.com/sofiaele/PuSQ

https://github.com/sofiaele/PuSQ
https://github.com/sofiaele/PuSQ
https://github.com/sofiaele/PuSQ


Individual Modalities Fusion Methods
Meta Audio

MA
Text

T
Low Level Audio

LLA MA + T
MA and LLA
Late Fusion

MA and LLA
Early Fusion

MA + T and LLA
Late Fusion

MA + T and LLA
Early Fusion

Female Expressiveness 71 37 77 66 77 76 75 75
Male Expressiveness 69 41 71 71 75 - 79 -
Female Enjoyment 44 65 57 51 44 57 51 62
Male Enjoyment 57 48 70 60 64 70 74 66

Free Text Expressiveness 75 65 87 91 87 84 93 86
Free Text Enjoyment 71 57 56 86 66 62 75 67

Table 6: Evaluation of recording-level classification (AUC metric)

3. Low Level Audio (LLA): Low level audio
features which are a long-term average of the
features that were presented in section 3.1.1
and were used for segment classifiers, result-
ing in a 136d feature vector.

During the conducted experimentation three
types of classifiers were tested: (i) SVM with
RBF kernel, (ii) Gaussian Naive Bayes, and (iii)
Logistic Regression. After the appropriate data
pre-processing and parameter tuning techniques,
a Leave-One-Speaker-Out (LOSO) validation was
used in order to evaluate the performance of the
classifiers in a speaker-independent manner. The
metric of interest was the Area Under the ROC
Curve (ROC-AUC) calculated on the aggregated
probabilities of the LOSO validation. This metric
was chosen instead of other widely used classifi-
cation metrics, such as the f1-score, since the data
are minimal and thus f1-score is prone to small
changes.

In Table 6, the final results are summed up. The
last two rows include the outcome of the evaluation
of free-text only samples, ie. only the answers to
questions and not predefined texts. It has to be
noted that the Gaussian Naive Bayes was the best
performing algorithm for all tasks, except from
Male Expressiveness/Meta Audio where Logistic
Regression was chosen.

From the presented evaluations, it can be eas-
ily seen that in all cases, the best fusion method
has either increase or keep equivalent performance
compared to the best individual method. The only
exception is Female Enjoyment, where there is a
slight deterioration of an absolute 3%, which how-
ever can be considered negligible.

Another important observation is associated with
the tasks of Male Expressiveness and Male Enjoy-
ment, where the combination of Meta Audio with
Text features (MA + T), seems to result in increased
performance compared to MA and T individually.
This fact shows that the textual information can
significantly help in distinguishing the two classes

(negative, positive), mostly when involving free
text, where the recording differs among participants
and contains different semantical information.

In addition, it is observed that in most cases (4
out of 6), the combination of information from all
feature spaces results in the best performance. Also,
most of the times, late fusion marks better results
than early fusion, which indicates that late fusion
introduces a normalization factor in that dataset,
since the models are not directly exposed to the
low level features that may result in over-fitting.

The code of the experimentations is open
sourced and can be accessed in https://github.

com/tyiannak/readys.

7 Conclusion

In this work we presented PuSQ, a public speak-
ing quality dataset, that introduces the tasks of
speech expressiveness and enjoyment in public
speech data. In order to address these speech qual-
ity assessment tasks, we designed a hierarchical
classifier that is based on both segment-level emo-
tion analysis and recording-level analysis where the
aforementioned information is aggregated along
with some high-level speech features. It is note-
worthy that the presented pipeline can be used for
any multimodal (audio and text) speech analytics
process, and that both the dataset and the proposed
ML framework are openly provided.

In a future work, several issues can be addressed,
such as the extension of the dataset, the integration
of learning methods that take into account the anno-
tation confidence (eg. Sharmanska et al., 2016; For-
naciari et al., 2021), the use of more robust segment-
level classifiers (CNNs,LSTMs,Transformers etc)
(eg. Fayek et al., 2017; Jiang et al., 2020) as well
as the inclusion of domain adaptation techniques
(eg. Mao et al., 2016, 2017; Ocquaye et al., 2019;
Huang et al., 2017) and the application of transfer
learning from unsupervised temporal models (eg.
Wang and Zheng, 2015; Feng et al., 2019).

https://github.com/tyiannak/readys
https://github.com/tyiannak/readys
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