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Abstract

One of the key ideas of Cognitive Behavioural
Therapy (CBT) is the ability to convert neg-
ative or distorted thoughts into more realistic
alternatives. Although modern machine learn-
ing techniques can be successfully applied
to a variety of Natural Language Processing
tasks, including Cognitive Behavioural Ther-
apy, the lack of a publicly available dataset
makes supervised training difficult for tasks
such as reforming distorted thoughts. In this
research, we constructed a small CBT dataset
via crowd-sourcing, and leveraged state of the
art pre-trained architectures to transform cog-
nitive distortions, producing text that is rele-
vant and more positive than the original neg-
ative thoughts. In particular, the T5 trans-
former approach to multitask pre-training on
a sequence-to-sequence framework, allows for
higher flexibility when fine-tuning on the CBT
dataset. Human evaluation of the automat-
ically generated responses showcases results
that are not far behind from the overall qual-
ity of the ground truth scores.

1 Introduction

Recent studies (GDBC, 2018) estimate that approx-
imately 300 million people globally suffer from de-
pression, anxiety and other mental disorders. Cog-
nitive Behavioural Therapy (CBT) is one of the
leading practices across the field of psychotherapy
(David et al., 2018) and one of the most effective
ways of treating mental disorders such as anxiety
or depression (Hofmann et al., 2012). CBT focuses
on guiding the patients through a series of steps
for identifying, analysing and correcting any cogni-
tive distortions that may contribute to their mental
health issues.

Traditional in-person CBT techniques applied
in counselling sessions can be prohibitive for a
large portion of the population due to cost, scarcity

of therapists, convenience, stigma or other social
considerations. However, in recent years there has
been an increase in CBT material delivered online
via computers and smartphone applications. In
addition, a comprehensive review of these methods
shows they can have many of the benefits of face-
to-face therapy (Barak et al., 2008; Andersson and
Cuijpers, 2009).

Automated agents that can deliver effective treat-
ments represent a clear next step of research for
online CBT. However, one of the main challenges
here is the lack of publicly available datasets that
can be used for training the necessary models. In
light of these challenges, this research builds on
the idea of a crowd-sourced corpus to generate
CBT agent development by focusing on one of the
foundational ideas of a CBT exercise, namely, the
rewriting of distorted thoughts. Using this dataset,
we then develop sequence-to-sequence (seq2seq)
models to derive agents that can at least begin to
address this central thought-rewriting challenge.
While this is only an individual element of a com-
plete CBT agent, it can be seen as a vital step in
the study and analysis of the typical properties of
CBT. In summary, the main contributions of this
study are twofold:

• The creation of a Cognitive Behavioural Ther-
apy dataset 1 that contains key information
needed to train automated agents in produc-
ing CBT-related content, contributing to the
development of Natural Language Processing
(NLP) research in this domain.

• The use of modern machine learning tech-
niques that demonstrate the effectiveness
of leveraging a small CBT dataset to train
a model to transform distorted negative
thoughts into more realistic alternatives.

1https://github.com/itoledorodriguez/cbt-dataset



Cognitive Distortion Description
All-or-Nothing Thinking You see things in black and white categories. If your performance falls short of perfect, you see yourself as a

total failure.
Overgeneralization You see a single negative event as a never-ending pattern of defeat.
Mental Filter You pick out a single negative detail and dwell on it exclusively so that your vision of reality becomes darkened.
Disqualifying the Positive You reject positive experiences by insisting “they don’t count” for some reason or other.
Jump to Conclusions - Mind
Reading

You arbitrarily conclude that someone is reacting negatively to you, and you don’t bother to check this out.

Jump to Conclusions - Fortune
Teller Error

You anticipate that things will turn out badly, and you feel convinced that your prediction is an already established
fact.

Magnification (Catastrophiz-
ing) or Minimization

You exaggerate the importance of things (such as your goof-up or someone else’s achievements), or you inappro-
priately shrink things until they appear tiny (your own desirable qualities or the other fellow’s imperfection).

Emotional Reasoning You assume that your negative emotions necessarily reflect the way things really are: “I feel it, therefore it must
be true”.

Should Statements You try to motivate yourself with shoulds and shouldnt’s, as if you had to be whipped and punished before you
could be expected to do anything. The emotional consequence is guilt. When you direct should statements
toward others, you feel anger, frustration, and resentment.

Labelling and Mislabelling This is an extreme form of overgeneralization. Instead of describing your error, you attach a negative label to
yourself (eg: “I’m a loser”). When someone else’s behaviour rubs you the wrong way, you attach a negative
label to him (eg: “He’s a goddam louse”). Mislabelling involves describing an event with language that is highly
coloured and emotionally loaded.

Personalization You see yourself as the cause of some negative external event which in fact you were not primarily responsible
for.

Table 1: Definitions of the Cognitive Distortions used in this research. Taken from “Feeling Good: The new Mood
Therapy” by Burns, D. 1981

2 Related Work

In the field of task-oriented Dialogue Systems, the
technology has vastly improved since the introduc-
tion of ELIZA (Weizenbaum, 1966). Modern ar-
chitectures such as Google Duplex (Leviathan and
Matias, 2018) can handle complex goal-oriented
conversations without human guidance, and novel
approaches to frameworks such as Wizard-of-Oz
(Wen et al., 2017) allows for the creation of crowd-
sourced human datasets that can be used to train
end-to-end agents towards a realistic conversation
flow for different scenarios.

In the CBT domain, the highly rated and free of
charge Woebot application is helping users around
the world to identify and challenge cognitive dis-
tortions (Fitzpatrick et al., 2017). It combines
template-based rules and modern machine learning
techniques to deliver results but it does not, as of
the time of writing, fully allow for the flexibility of
a natural conversation.

The advancement in the last decade of machine
learning, and in particular deep learning techniques
for NLP, has made possible the development of
automated models that excel at specific language
tasks by being trained end-to-end over many iter-
ations of large datasets, without the need for pre-
established rules or templates. These techniques
build on the seq2seq (Sutskever et al., 2014) and
encoder-decoder architectures (Cho et al., 2014) to
produce results in tasks such as machine transla-
tion, text summarization or sentiment analysis. In
particular, the use of attention-based architectures

(Bahdanau et al., 2015) that expand on the Trans-
former model (Vaswani et al., 2017) are widely
used in the current state of the art models for NLP
tasks.

Transfer Learning, a technique that was origi-
nally applied to the fine-tuning of computer vision
tasks, has been a recent focus of NLP research, es-
pecially since ULMFit (Howard and Ruder, 2018)
demonstrated how the weights of a LSTM language
model pre-trained on a large dataset could be fine-
tuned on a smaller corpus, for both language mod-
elling and additional NLP tasks of the target dataset.
Since then, other pre-trained models mostly based
on the transformer architecture such as Elmo (Pe-
ters et al., 2018), GPT-2 (Radford et al., 2019) or
BERT (Devlin et al., 2019), have been producing
better results in diverse text generation and classifi-
cation tasks.

When considering the rewriting of distorted or
negative thoughts, this exercise can be compared to
a seq2seq style transfer task where the situation or
context remains the same, but the negative thoughts
passed as inputs to the model are converted into
more positive outputs. Shen et al. (2017) success-
fully demonstrate the effectiveness of style transfer
in non-parallel data by mapping the inputs to a
style-independent content representation.

3 Key Ideas in Cognitive Behavioural
Therapy

A basic CBT interaction outlines a structure where
the patients attempts to examine their own thoughts



Situation Emotions Negative Thoughts Cognitive Dis-
tortions

Rational Response Outcome

I had an important meet-
ing that didn’t go very
well

Anxious 70%
Sad 80%

I made a fool out of
myself

Labelling
Mind-Reading

It’s true it wasn’t my best meet-
ing, but it’s a big leap to label my-
self a fool just because I had a bad
day. Also, you can’t know what
the rest of the people were thinking.
Even if some thought that, they’d
probably forget soon enough or do
you remember all of the meetings
conducted by your colleagues that
didn’t go that well?

Anxious 30%
Sad 40%

Table 2: Daily Record of Dysfunctional Thoughts (Beck, 1979)

in terms of what they perceive to be a negative
event, identifying any cognitive distortions and
rephrasing them. In that process, the key steps
are:

• Recognizing the situation that provoked the
patient into experiencing a negative emotion
and the intensity of those feelings.

• Writing down the automatic thoughts that ac-
company such emotions.

• Identifying any negative distortions that may
be present in those thoughts (Table 1 shows
the list of distortions considered in this study).

• Rewriting each distorted thought, aiming for
a more rational or realistic alternative.

• Evaluating the patient feelings after the CBT
exercise.

The patients with more experience in CBT tech-
niques will be able to follow these steps by them-
selves in what is known as a CBT diary, also rep-
resented in Table 2. This is an exercise that allows
them to immediately and effectively reduce their
anxiety levels. However, and especially at the be-
ginning of therapy, it is not always possible for the
patients to come up with realistic alternatives that
help combat their negative emotions. For that rea-
son, a therapist can assist on guiding the patients
through the main steps in the form of a conversation
with a clear objective: i.e., reducing their anxiety
levels.

When building a CBT dialogue corpus, much
of the data needed is publicly available in forums,
books or other online content – at least in raw for-
mat. It is relatively simple to identify in public
forums negative situations where people express
both their feelings and the distorted thoughts that
accompany them. However, in this online content,
there is one piece of information usually missing:

the alternative, rational thought that will help pa-
tients to combat their negative feelings. This is a
key part in CBT exercises, and it is at the same
time the more difficult element to source when ex-
amining public data.

4 Data Collection

As part of integrating a CBT system within a mod-
ern machine learning dialogue framework, the pre-
vious section established the key idea of being able
to transform irrational or distorted cognitive pat-
terns into more realistic thoughts that are able to
alleviate the negative emotions felt by the patients.

Hence, the main focus of our data collection has
been the gathering of a series of negative thoughts
that are objectively distorted and the use of crowd-
sourcing resources to obtain realistic counter argu-
ments. More precisely, we build a dataset that con-
tains multiple key value pairs for a single interac-
tion, such as situation, emotions, negative thoughts,
and rational response to those thoughts. All this
data except the rational response is first prepared
and then provided to the users that participate in
the study.

As a first step in data preparation, a series of
situations, feelings and negative thoughts were col-
lected from a variety of sources such as CBT books,
forums and public content aggregators. For those
examples where the cognitive distortions contained
within the negative thoughts are not mentioned ex-
plicitly, those distortions have been annotated man-
ually. Note that the purpose of this research is not
the cognitive distortion classification, but rather
the rewriting of negative thoughts. The cognitive
distortions just provide additional context for the
survey users and help them to come up with a real-
istic counter argument.

The survey respondents were asked to read
carefully the instructions and to provide, in their
own words, a realistic alternative to the negative
thoughts in each of the situations presented. For



Figure 1: Example situation that contains negative distortions. Participants in the survey will write a more realistic
counter-argument to each automatic thought.

Counts
Situations 108

Type Count (%)

Work 26.85
Romantic 22.22

Social 12.04
Friends 11.11
Family 10.19
Health 7.41

School and College 5.56
Other 2.78

Bereavement 0.92
Addiction 0.92

Negative Thoughts 200
Participants 114
Responses 442

Table 3: Number of responses gathered during the sur-
vey for the situations and negative thoughts that were
prepared beforehand. Note that, for some situations,
there have been multiple responses collected.

this study, the crowd-sourcing platform of choice
has been Prolific 2, linked to a custom website (Fig
1) that loads two random situations for every partic-
ipant, with an average of two negative thoughts per
situation. Table 3 showcases the different situation
types and the number of responses collected.

2https://www.prolific.co/

5 CBT Response Generation

While creating a new dataset is essential to our
goals, the primary objective is to explore the use
of modern deep learning architectures to automati-
cally formulate appropriate responses against nega-
tive thoughts that can help to counter anxiety and
depression. Overall, to do this, a number of seq2seq
models that have produced good results in other
NLP tasks are examined in this research.

5.1 Modelling Strategies
As a modelling strategy, we concatenate the situa-
tion description with each negative thought, form-
ing a single sequence that serves as the input to
the models, in a supervised learning approach. The
target texts are those responses written by humans
as per the crowdsourcing task from last section.

Due to the small dataset collected, and in order
to produce significant results when trying to trans-
form distorted thoughts into more realistic alterna-
tives, the use of transfer learning and pre-trained
language models is necessary. The responses gener-
ated with a model solely trained on the CBT dataset,
regardless of the architecture used, do not achieve
good results from the point of view of basic literacy
or semantic coherence.

However, some of the pre-trained models used
during the research, such as a simple transformer
architecture, are not nuanced enough to allow for
the small CBT dataset to significantly influence the



Figure 2: Google T5 Model Overview. The input text
contains prefix keywords that allows for parallel train-
ing in different downstream tasks.

results produced in a seq2seq cognitive rephras-
ing task. In order to achieve an effective transfer
learning strategy when fine-tuning for the response
generation task, this study leverages one of the cur-
rent state of the art architectures, namely the T5
transformer.

5.2 T5 Transformer

Recently, Google published the T5 text-to-text
transformer model (Raffel et al., 2020), trained
on a cleaned version of the Common Crawl cor-
pus (C4). The published model checkpoints have
been pre-trained in a diverse variety of unsuper-
vised and supervised tasks (language modelling,
word embedding, machine translation, text sum-
marization, etc), which allows for the flexibility
of fine-tuning smaller datasets in any NLP down-
stream tasks. During training and evaluation, the
model is able to recognize prefix tokens which are
added to the input text, in order to distinguish be-
tween the different tasks (Figure 2).

The architecture of the T5 transformer is very
similar to that of the original transformer, keep-
ing a stack of encoder and decoder blocks, each
composed of self-attention layers and feed-forward
networks. There are some modifications around
layer normalization and position embedding, but
what makes the pre-trained models excel at transfer
learning is the multi-task approach to pre-training
when applied to their large C4 dataset, and scaling
up the number of parameters of the model.

While the largest model checkpoint - T5-11B,
with 11 billion parameters, is able to exceed previ-
ous benchmarks in tasks such as GLUE or SQAD,
for the purposes of this research and, due to pro-
cessing constraints, the T5-Large model with 770
million parameters has been leveraged when fine-
tuning the CBT task.

5.3 Baseline

We also make use of a non-trivial baseline model
consisting of a seq2seq framework where both the
encoder and decoder are composed of a BERT base
architecture (Devlin et al., 2019). As one of the first
transformer models fully pre-trained on a plain text
corpus, mostly on the English Wikipedia and the
BooksCorpus (Zhu et al., 2015), we choose BERT
to contrast and showcase the advancement, in a
relatively short span of time, of these type of pre-
trained architectures when fine-tuning on a smaller
dataset.

6 Experiments

To evaluate the quality of our automatically con-
structed responses we make use of both quantitative
metrics and survey-based human evaluation, com-
paring aspects such as fluency, positive sentiment
and overall quality of the text produced.

6.1 Metrics

As discussed in previous sections, rewriting nega-
tive thoughts into a more positive or realistic ver-
sion can be considered a style transfer task. With
this in mind, we have considered metrics that have
been commonly applied to the style transfer objec-
tive. (Yang et al., 2018).

Here we have specifically made use of Perplex-
ity, BLEU (Papineni et al., 2002) and METEOR
(Banerjee and Lavie, 2005). These metrics are also
commonly applied across a range of other NLP
tasks such as machine translation and image cap-
tioning. Each of them can be thought of as provid-
ing an assessment of how much our predicted text
seems to match that of the original labels.

Sentiment Analysis. We also make use of a pre-
trained sentiment classifier model which we fine-
tune for the CBT dataset. The classifier determines
whether the alternative responses produced by the
text-to-text transformers are considered positive or
negative, obtaining an average accuracy for each
of the models. The model we chose for this sen-
timent analysis has been RoBERTa (Reimers and
Gurevych, 2019), pre-trained on the Yelp dataset
reviews and fine-tuned on the CBT dataset, where
all of the inputs or negative thoughts are considered
as negative and all of the targets as positive.

The evaluation set has been used to compute
the automatic metrics score. Except for perplexity,
the experiments generate thirty different responses
for each of the inputs in the target, averaging the



Automatic Metrics Human Evaluation
Perplexity BLEU METEOR Sentiment Rel. Sentiment Quality

Google T5 18.21 0.016 0.094 70.29% 3.74 3.77 3.60
BERT Seq2Seq 71.09 0.012 0.077 90.72% 2.74 3.30 2.56

Human - - - - 4.01 4.18 4.05

Table 4: Evaluation results for the CBT dataset, for both automatic metrics and human assessment. For reference,
the table also includes the human evaluation of the dataset labels.

results to obtain the BLEU, METEOR and senti-
ment scores. The model also uses nucleus sampling
(Holtzman et al., 2019) with a top-p value of 0.95,
to allow for diversity in the responses.

6.2 Human Evaluation

In order to subjectively evaluate the responses gen-
erated by the models under study, and to contrast
them against the original human labels, a number
of surveys have been sent to users of the Prolific
crowd-sourcing platform. The participants are re-
stricted to those that have English as their first lan-
guage.

The surveys were divided in three groups of 20
participants each. One group evaluated the origi-
nal human targets from the dataset, while the other
two groups received the responses from the T5
and BERT models. The survey in each group con-
tains the same five different situations picked from
the evaluation set, along with their initial negative
thoughts, and the only difference is the generated
responses.

The methodology followed for choosing the gen-
erated responses included in the survey was to pro-
duce three different responses for each of the situa-
tions, and pick the subjective best one from those.
Appendix A includes all three responses generated
for each situation by the T5 model.

The questions asked in the survey attempt to
evaluate the generated responses in terms of rel-
evance, positive sentiment and, finally, semantic
quality and coherence of the text. The participants
are asked to rank each of these metrics from 1 to 5,
lowest to highest score.

6.3 Configurations

All experiments have been run using the Simple-
transformers library 3, which leverages the more
popular HuggingFace’s Transformers repository 4

allowing for a fast setup and a fine-tuning of many
pre-trained transformer architectures.

3https://github.com/ThilinaRajapakse/simpletransformers
4https://github.com/huggingface/transformers

This research uses the T5 large model for the
tests, comprising a total of 770 million parameters
and 24 layers for both the encoder and decoder,
along with a 16-head attention mechanism. Dur-
ing fine-tuning and evaluation, the max sequence
length has been restricted to 64 tokens.

The baseline seq2seq model uses a BERT un-
cased pre-trained model with 110 million parame-
ters, 12 layers and a 12-headed attention, for both
the encoder and the decoder. The quantitative and
qualitative results are better than those produced
by the larger BERT model with 336 million param-
eters; we believe that this is likely due to the small
size of the CBT dataset.

6.4 Results

Table 4 summarizes the results obtained for both
the automatic and human evaluations, which also
includes the results of the original dataset targets,
for contrast.

The BLEU and METEOR scores are very low
due to the large probability space when generating
responses and the use of p-sampling to obtain more
diverse and fluent results. This, coupled with the
small size of the dataset in comparison with the
pre-training corpus, affects the score by producing
text which diverges substantially from the original
labels.

The automated sentiment analysis by the fine-
tuned RoBERTa model shows a higher positive
sentiment for the baseline BERT model, but this
doesn’t reflect the subjective quality of the text pro-
duced by both models which is subjectively much
better for the T5 architecture, as seen in the human
evaluation results.

When the automatically generated responses are
judged by participants in the survey, the BERT
model falls behind significantly, specially in terms
of relationship to the situation and overall quality.
In fact, the scoring of the T5 in these two metrics
is much closer to the original human written re-
sponses, showcasing BERT’s inability to directly
address the situation, often producing text with low



semantic coherence.

7 Next Steps

One of the limitations in this research is the small
size of the dataset, with just about a hundred dif-
ferent situations, so the obvious course of action
would be to continue expanding on them by gath-
ering new situations via crowd-sourcing. With a
bigger corpus of data, along with other architectural
improvements and transfer learning mechanisms,
the results obtained in this study can be improved
significantly.

Ultimately though, the aim of the research is to
incorporate all of the key value pairs of the dataset
- such as situations, emotions, negative thoughts,
cognitive distortions and alternative responses -
into a full fledged dialogue framework with the
clear task of guiding patients through all of the
steps of a CBT interaction.

8 Conclusion

This research focuses on the key CBT idea of trans-
forming negative thoughts that contain cognitive
distortions into more realistic alternatives, in order
to provide automatic and therapeutic assistance to
patients experiencing anxiety and depression.

Although there have been previous research
within the NLP and CBT domains, especially in dis-
tortion and emotion classification (Rojas-Barahona
et al., 2018), this study appears to be the first that
manufactures a full CBT dataset, and attempts to
apply modern machine learning architectures to au-
tomatically convert an initial negative thought into
a more positive or realistic alternative.

Existing crowd-sourcing platforms represent
a practical way for collecting human responses
against distorted or negative thoughts and, in the
future, they may also prove to be an effective source
for gathering new situations.

The results obtained show how effective trans-
fer learning can be when using state of the art
transformers architectures to fine-tune a small CBT
dataset. In particular, and specially when consider-
ing human evaluation, the Google T5 transformer
model produces quality responses that are more
realistic, while still being relevant to the situations
and thoughts causing anxiety.

Future work will focus on expanding the existing
CBT dataset, while trying to incorporate it into a
more complete dialogue system framework.
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A Appendix: Generated Responses by T5 during Evaluation

The following tables showcase the different situations presented in the human evaluation survey. For each
situation, three alternative responses are generated automatically by the T5 model. The responses in bold
were hand-picked to be included in the survey.

Situation You are a psychiatrist at the University of Pennsylvania. You are attempting to revise your
manuscript on depression after meeting with your editor in New York. Although your editor
seemed extremely enthusiastic, you notice you are feeling nervous and inadequate due to your
thoughts.

Negative
Thought

”They made a terrible mistake when they chose my book! I won’t be able to do a good job.”

T5 Alternative
Responses

1. ”I am trying to revise my book to make it better. You have to find the time to relax and
not feel nervous. The better the rest of the week the better the results will be.”
2. ”You have made a horrible mistake and you must find another way of expressing your opinion.
You can not make all mistakes at the same time and you must be willing to improve your writing.”
3. ”No matter how much you understand about your client’s personality, it is important that you
get the answers to the questions before your editor.”

Situation You are about to give a lecture and you notice that your heart is pounding.
Negative
Thought

”My mind will blank out. I’ll make a fool of myself.”

T5 Alternative
Responses

1. ”You will do your best to not make a fool of yourself. I will have the confidence in myself
to do what I need to.”
2. ”No one wants to make a fool of themselves, just because the thought in their head is negative
– they won’t realize how many people out there really believe in them.”
3. ”You are not able to think through that and will let you make mistakes. So I will not be so
focused to speak, if I recite the lesson I can forget.”

Situation Starting to have a panic attack on the subway.
Negative
Thought

”What if I pass out on the subway?”

T5 Alternative
Responses

1. ”You will not feel like you will pass out on the subway, and it is not likely to occur to
you. You will never know what happens.”
2. ”You can’t run out of oxygen in the subway.”
3. ”There are tons of things that can go wrong when you’re panicking on the subway, and you
don’t have to worry about the fact that you are going to pass out in public.”

Situation Friend walks past you in the street, without acknowledging you.
Negative
Thought

”I’m a terrible person that isn’t funny nor charismatic. I don’t have any real friends.”

T5 Alternative
Responses

1. ”People should be interested in you and you aren’t looking for friendship. Friendship
is about being yourself e.g. making new friends is important to gaining new relationships
and it is also important that friendship develops over time so you continue to grow, develop,
and improve.”
2. ”I should just tell someone to make friends for themselves.”
3. ”This is not my personal issue I have no friends and that does not change the fact of it. It is
not a private matter of me deciding to make friends, or to be friends only, but to be friends with
one another to share your life experiences and thoughts if they choose to.”

Situation My friend has left several messages for me about going to lunch.
Negative
Thought

”I am so lazy and weak that I can’t do a simple thing like calling my friend.”

T5 Alternative
Responses

1. ”I should call back again, it’s because I am so lazy and weak that I can’t do simple
things. I will try something but I will make it easy for my friend to call and see if I can
go.”
2. ”I can contact him even when the friend can’t reach me.”
3. ”It is not easy and I won’t know if this will happen to her. Maybe the way we communicate,
when it happened with a friend, isn’t enough to fix the problem.”


