
Intrinsically Interlingual: The Wn Python Library for Wordnets

Michael Wayne Goodman and Francis Bond
Nanyang Technological University

goodmami@uw.edu, bond@ieee.org

Abstract
This paper introduces Wn, a new Python li-
brary for working with wordnets. Unlike pre-
vious libraries, Wn is built from the beginning
to accommodate multiple wordnets—for multi-
ple languages or multiple versions of the same
wordnet—while retaining the ability to query
and traverse them independently. It is also
able to download and incorporate wordnets pub-
lished online. These features are made possible
through Wn’s adoption of standard formats and
methods for interoperability, namely the WN-
LMF schema (Vossen et al., 2013; Bond et al.,
2020) and the Collaborative Interlingual Index
(Bond et al., 2016). Wn is open-source, easily
available,1 and well-documented.2

1 Introduction
Wordnet is a popular tool for natural language pro-
cessing, and there are interfaces in many program-
ming languages. For Python alone, there are 99
packages that mention wordnet in the Python Pack-
age Index.3 Many of them provide an interface to a
single language, like Romanian (Dumitrascu et al.,
2019), or multiple languages from the same project,
like Panjwani et al. (2018) for the Indian languages.
Of course, there are many interfaces for English,
of which the Natural Language Tool Kit’s imple-
mentation is very widely used (Bird et al., 2009).
The NLTK has a very well documented and clear
interface to the Princeton WordNet (PWN; Fell-
baum, 1998), with several distance metrics also im-
plemented. The interface makes some design deci-
sions that simplify wordnet structure, such as treat-
ing the word↔ sense↔ synset triad as a lemma↔
synset dyad.
The Wn library introduced by this paper differs

from the existing Python packages in several ways.
1https://pypi.org/project/wn
2https://wn.readthedocs.io
3https://pypi.org/search/?q=wordnet

It is not tied to any particular wordnet and does not
immediately include any wordnet data, but instead
it can read and use any wordnet published in the
WN-LMF format (Vossen et al., 2013; Bond et al.,
2020). As a convenience, dozens of such wordnets
hosted online are indexed by Wn (see Appendix A)
for easy downloading. Wn also differs from the
NLTK in that it uses the triadic structure, but in
many ways it is deliberately similar to the NLTK’s
interface in order to help smooth the transition for
new users.
In 2015, the NLTK was extended to cover the

wordnets in the Open Multilingual Wordnet (OMW
1.0; Bond and Foster, 2013).4 OMW 1.0 was
made to deal with wordnets produced by the ex-
pand method which take the structure of an exist-
ing wordnet, in this case PWN 3.0, and extend it
by adding lemmas in a new language to existing
synsets (Vossen, 1998). Most wordnets are built
in this manner (Bond and Paik, 2012). The main
advancement of OMW 1.0 was in the production
of multiple wordnets, all in the same format, under
open licenses.5
This structure where all synsets are shared among

all languages has several advantages, such as the
straightforward translation of words and the implicit
sharing of structure which makes smaller wordnets
more useful. It also has immediate disadvantages,
the most prominent being that synsets not in PWN
cannot be included. Some disadvantages are more
subtle: as the OMW structure is the union of the
structure of all the wordnets, new paths could be-
come available when another wordnet is added,

4NLTK was built for teaching, and the first version of the
OMW wordnet extension was actually built by students as a
programming assignment in a computational linguistics class!

5To make its data available to Wn, OMW 1.0 now addi-
tionally publishes each wordnet as a WN-LMF file at https:
//github.com/bond-lab/omw-data. The many wordnets
derived fromWiktionary data (Bond and Foster, 2013) are not
published but can similarly be converted.

https://pypi.org/project/wn
https://wn.readthedocs.io
https://pypi.org/search/?q=wordnet
https://github.com/bond-lab/omw-data
https://github.com/bond-lab/omw-data

which has ramifications for reproducibility in re-
search. In practice, for OMW 1.0, all structure
came from PWN3.0 and non-English wordnets con-
tributed no relations so this was never an issue, but
we are anticipating future developments to OMW
which may cause such problems.
To allow for wordnets with different structures

and synsets not in PWN, a new version of the OMW
(2.0) is under development. It uses the Collabora-
tive Interlingual Index (CILI; Bond et al., 2016) to
link synsets. This allows wordnets to define their
own synset structure while maintaining interlingual
linking through the shared, resource-agnostic index.
The software for the Open Multilingual Wordnet
2.06 is released as open-source software with the
aim of making it easily available for everyone. How-
ever, its primary goals were to allow the browsing
of the unified resource and to facilitate the valida-
tion, addition, and management of new and histori-
cal wordnets and CILI entries—not to assist the in-
dividual researcher with downloading and using par-
ticular wordnets from its collection. As such, the
software is not optimized for loading just one or two
wordnets, and while it can run locally, it is expected
to run as a web service.
In contrast, Wn does fewer checks and assumes

that the wordnets are generally well-formed. This
assumption should hold if the wordnets come from
a source that performs these checks, such as the
OMW. Wn allows a user to only load the wordnets
they need and to access them distinctly. It is de-
signed for wordnet users running things locally.
This paper describes a new Python interface for

modeling wordnet data, including those fromOMW
2.0, designed to replace the existing NLTK inter-
face in a researcher’s workflow. Wn is the first
Python module designed from the beginning to use
the Collaborative Interlingual Index to link separate
wordnets. We discuss the desiderata for the soft-
ware further in Section 2. We then briefly discuss
the design of the system in Section 3. In Section 4
we give a brief tour of Wn’s functionality. Finally
we discuss a couple of aspects of why we think Wn
is an improvement over previous implementations
in Section 5 and conclude in Section 6.

2 Desiderata
The main goals of Wn are as follows:
Resource Independence: Each lexicon loaded

into Wn is treated as a distinct resource and
6https://github.com/globalwordnet/OMW/

may be added and removed without affecting
other lexicons.

WN-LMF Compliance: Wordnets in the modern
WN-LMF format are fully supported and in-
formation is not lost upon loading or exporting
wordnets.

Precise Modeling: All information in a wordnet
is available to and discoverable by the user
through intuitive structures. Notably, word
senses have first-class status, just like words
and synsets.

Interlingual Queries: Queries may traverse mul-
tiple wordnets, or not, depending on what the
user specifies.

User Convenience: Data sources and query results
are readily available; the user does not need to
comprehend the complexity of the software to
use it.

3 Design
Here we discuss several aspects of Wn’s design,
from the low-level database design in Section 3.1
to the user-facing Python data structures in Sec-
tion 3.2 and the methodology for performing inter-
lingual queries in Section 3.3. To support the dis-
tribution of wordnets as individual resources or in
collections, formats for packaging wordnets are de-
scribed in Section 3.4.

3.1 Database Design
From the outset, Wn was designed to handle both
monolingual and interlingual queries over a multi-
tude of wordnets. All loaded lexicons are stored
in the same database,7 but the elements are keyed
to the lexicon that contributed them. Identifiers
that are unique within a single wordnet, such as for
synsets, are not necessarily unique when multiple
wordnets are present, so their uniqueness is not en-
forced in the database. Instead, relationships be-
tween elements are linked via globally-unique table
row identifiers and the original wordnet identifiers
are only used for direct lookups within a lexicon.
No identifiers are shared across lexicons except for
CILI IDs, which are the only way to perform inter-
lingual queries.

7In the current implementation, the database engine is
SQLite (https://www.sqlite.org/) but this detail should
not concern most users as all operations in the public API are
abstracted from the underlying infrastructure.

https://github.com/globalwordnet/OMW/
https://www.sqlite.org/

3.2 Class Modeling
The primary entities in WN-LMF wordnets are
the lexical entries (i.e., words) and synsets. Word
senses are essentially the link between words and
synsets, but as they may be assigned metadata,
take part in sense relations, and contain examples,
they are given status as first-class entities in Wn.
Each of these gets a Python class—Word, Sense, and
Synset—that models its data and relationships. Fig-
ure 1 illustrates these entities and their relationships
to each other. In addition, a Wordnet class represents
a selection of lexicons used to filter queries.

synsets

senses

words

forms

ss1

s1 s2

e1

ballot

e2

vote

s3

ss2

s4

e3

suffrage

Figure 1: Modeling wordnet entities

All queries to the database are made through in-
stances of these classes, which act as database ab-
straction layers. The primary queries, for words,
senses, or synsets, are made through the Wordnet ob-
jects. Secondary queries, such as for word forms,
synset or sense relations, definitions, examples, etc.,
are made through the Word, Sense, or Synset objects.
These entity objects each contain a reference to the
Wordnet object that was used to find them. This ref-
erence allows for the secondary queries to make use
of the same lexicon filters. We give examples of
querying the senses in Section 4.3 and Section 4.4.

3.3 Interlingual Queries
All interlingual queries must go through shared ILI
links. Figure 2 illustrates howWn translates a synset
ssf in lexicon f to other lexicons through shared ILI
links. Every ILI has a synset in a queried language.
If no synset is explicitly given in the lexicon, an im-
plicit, empty synset is used instead.

ssfsse

ssg ssh

Figure 2: Translating synsets via ILI
The gray node is the ILI link.

Figure 3 illustrates how Wn can find synset rela-
tion paths from a synset ssf1 , even when there are no

relations defined in its lexicon, by sharing relations
from a second lexicon e. From synset ssf1 , Wn ex-
pands the search to sse1 via a shared ILI link. As
sse1 has a relation to sse2, Wn first traverses it and
then attempts to find a corresponding synset in the
original lexicon f . Since there is no synset in f for
the ILI, it instead returns an inferred (and empty)
synset. An inferred synset contains no information
except its ILI link and the lexicon filters in force, but
this is enough information to allowWn to search for
the next relation. Wn can then cross the ILI to sse2,
traverse the relation to sse3, and cross the ILI again
to ssf3 , which is in the target lexicon.
This situation is common in OMW lexicons

which only provide words and senses for a subset of
PWN’s synsets but offer no synset relations of their
own. In this process, the synsets that may be the re-
sult of the relation traversal, such as ssf1 and ssf3 ,
are called the target set, while the synsets that may
be used via ILI links for their relations are called the
expand set.

ssf1sse1

ssf−sse2 inferred synset

ssf3sse3

inferred relation

inferred relation

Figure 3: Traversing external relations via ILI

The inferred synsets are only necessary for re-
lation traversal with expand lexicons. Standalone
wordnets that do not require an expand lexicon have
no use for inferred synsets.

3.4 Packaging Wordnets
As will be shown in Section 4.1, Wn is able to
download and add wordnets from the web as well
as from local files. Some wordnets, such as the En-
glishWordNet, are distributed just as theWN-LMF
XML file, while others, such as the Open German
WordNet (Siegel and Bond, 2021), include the full
text of the license and the canonical citation as ac-
companying files, and the full OMW is distributed
as a collection of multiple wordnets. In order to ac-
commodate these different modes of distribution,
we have designed three levels of packaging for word-
nets. Each of these three may be distributed uncom-
pressed or compressed with gzip or LZMA com-

pression.

Resource A file containing lexicon data is called
a resource. While future versions of Wn may allow
multiple formats, such as the JSON or RDF variants
of WN-LMF (McCrae et al., 2021), currently only
the XML format is supported.

Package A package is a directory containing a re-
source and optionally metadata files containing the
license (LICENSE), basic documentation (README),
or the canonical citation (citation.bib). Exactly
one resource file is allowed in a package and at most
one of each of the metadata files. Other files are al-
lowed, but they will be ignored by Wn. A package
directory, when distributed over the web, should be
archived as a tarball.

Collection Multiple packages may be distributed
in a directory called a collection. Wn will only
search for packages in the collection’s top directory
and not under subdirectories, so a collection is a flat
list of packages. In order for Wn to better distin-
guish between packages and collections, which are
both directories, resource files may not appear in
the collection without being in a package directory.
A collection may optionally contain the same meta-
data files as packages, where any license, documen-
tation, or citation pertains to the collection itself and
not the individual packages. Any other files or di-
rectories in a collection will be ignored by Wn. As
with packages, collections should be distributed as
a tarball.

4 Usage

In this section we give a brief tour of Wn’s program-
ming interface.

4.1 Loading Wordnets
Wn was created for wordnets following the WN-
LMF schema (Vossen et al., 2013; Bond et al.,
2020) as this format requires synsets to declare their
association with a CILI ID, if any. Older formats,
such asWNDB,8 are not directly supported, but con-
version tools exist.9
The Wn project keeps an index of publicly avail-

able and open wordnets in the WN-LMF format,
such as the English WordNet (McCrae et al., 2020)
and OdeNet, the Open German WordNet (Siegel

8https://wordnet.princeton.edu/
documentation/wndb5wn

9https://github.com/jmccrae/gwn-scala-api

and Bond, 2021).10 They can be listed with Wn’s
wn.projects() function as shown in Figure 4, which
shows an abbreviated list. The full list of the current
release is given in Table 1 (Appendix A).
Users can install wordnets from this list withWn’s

wn.download() function, for instance by specifying
the project’s identifier and version:
>>> import wn
>>> wn.download('ewn:2020')
Download complete (13643357 bytes)
Added ewn:2020 (English WordNet)

As a convenience, if the user only specifies the
project identifier (e.g., 'ewn'), Wn will get the latest
known version. For wordnets not indexed by Wn,
users can provide an explicit URL as the first ar-
gument, and the lexicon ID and version will be ex-
tracted from the downloaded file. For instance, if
OdeNet were not indexed by Wn, we could down-
load it directly by the URL of its resource file:
>>> wn.download(url_of_odenet)
Download complete (2001396 bytes)
Added odenet:1.3 (Offenes Deutsches WordNet)

We encourage more wordnets to provide a persis-
tent URL for this usage. Wordnets from OMW 1.0
(or in that format) can be automatically converted to
the 2.0 (WN-LMF) format and loaded. Since there
is a mapping from PWN synsets to CILI, synsets in
wordnets that are built from PWN can be automati-
cally linked to CILI as well.
Wordnets can be installed from a local WN-LMF

file using the wn.add() function:
>>> wn.add('wnja.xml')
Added wnja:2.0 (Japanese Wordnet)

Wn is robust to small errors in the wordnet file
(like different parts of speech in the synset and word
or a confidence less than 0 or greater than 1) but will
generally warn the user when they occur.
The wn.lexicons() function lists all installed lex-

icons. The objects returned by this function can
be inspected to find the name, version, language, li-
cense, contact email, and other kinds of metadata
of a lexicon:
>>> for l in wn.lexicons():
... print(l.id, l.version, l.label)
...
ewn 2020 English WordNet
wnja 2.0 Japanese Wordnet
odenet 1.3 Offenes Deutsches WordNet

10https://github.com/hdaSprachtechnologie/
odenet

https://github.com/jmccrae/gwn-scala-api
https://github.com/hdaSprachtechnologie/odenet
https://github.com/hdaSprachtechnologie/odenet

>>> some_projects = wn.projects()[:6]
>>> [(p['id'], p['label'], p['version'], p['language']) for p in some_projects]
[('ewn', 'Open English WordNet', '2019', 'en'),
('ewn', 'Open English WordNet', '2020', 'en'),
('pwn', 'Princeton WordNet', '3.0', 'en'),
('pwn', 'Princeton WordNet', '3.1', 'en'),
('odenet', 'Open German WordNet', '1.3', 'de'),
('omw', 'Open Multilingual Wordnet v1.3', '1.3', 'mul')]

Figure 4: Listing indexed projects with Wn; see Appendix A for the full list

4.2 Selecting Lexicons
Asmentioned, primary queries go through a Wordnet
object, so one must be instantiated first. To mo-
tivate this step, consider a user who has installed
both the English WordNet and the French word-
net WOLF (Sagot and Fišer, 2008). If they search
for synsets for the word form chat, the Wordnet ob-
ject determines if they receive synsets related to the
English verb meaning to talk, those related to the
French word for a cat, or both.
Instantiation Results
wn.Wordnet() # all
wn.Wordnet(lang='fr') # only French
wn.Wordnet(lexicon='ewn') # only EWN

Also, since it is possible to load multiple versions
of the same wordnet, filtering on the lexicon ID only
(ewn) only uses the most recently installed version
(whether or not it’s a newer release). A version spec-
ifier on the lexicon argument may be necessary to
precisely differentiate:
wn.Wordnet(lexicon='ewn') # recent
wn.Wordnet(lexicon='ewn:2020') # 2020 only
wn.Wordnet(lexicon='ewn:*') # all EWN

Ausermaywish to search a subset of the installed
lexicons at once, such as when they have installed an
extension lexicon containing additional words. In
this case, the lexicon argument may take a space-
separated list of lexicon specifiers. Finally, users
may choose the lexicons to use for the expand set
of interlingual queries, as described in Section 3.3,
with the expand parameter:
wn.Wordnet(lexicon='wnja', expand='ewn')

If the expand parameter is not given, Wn allows
any installed lexicon to be used in the expand set, in
order to mimic the behavior of the OMW. A user
may also specify an empty expand set (expand='')
to block ILI traversals when exploring relations.
Once a Wordnet object has been instantiated as de-

scribed above, any queries performed on the object
will restrict the search to the matching lexicons.

4.3 Primary Queries
All primary queries have several optional parame-
ters which are used to narrow down the results. The
first parameter is for a matching wordform and the
second is for part-of-speech. Synsets also have a pa-
rameter for selecting by ILI ID. Below, assume w is
a Wordnet object instantiated as above.
w.words() # all words
w.words('犬') # words w/ form '犬'
w.words(pos='n') # all nominal words
w.senses() # all senses
w.synsets() # all synsets
w.synsets(ili='i1') # synsets w/ ili 'i1'

Here is an example of getting synsets for the
Japanese noun犬 inu “dog”:
>>> ja = wn.Wordnet(lang='ja')
>>> ja.synsets('犬', pos='n')
[Synset('wnja -02084071-n'),
Synset('wnja -10641755-n')]

4.4 Secondary Queries
Secondary queries happen on the objects returned
by primary queries. Below, assume e is a Word ob-
ject, s is a Sense object, and ss is a Synset object.
The list of secondary queries below is not exhaus-
tive.
e.senses() # senses for e
e.lemma() # canonical lemma for e
e.forms() # all word forms for e
s.word() # the sense's word
s.synset() # the sense's synset
s.derivations() # derivation relation
ss.senses() # synset's senses
ss.hypernyms() # synset's hypernyms
ss.definition() # synset definition

In the following example, we find the hypernyms
of one synset for犬 inu “dog”:
>>> inu = ja.synsets('犬', pos='n')[0]
>>> inu.hypernyms()[0]
Synset('wnja -01317541-n')

4.5 Shortcut Functions
As a convenience to the user, Wn provides functions
for primary queries that do not require them to first
instantiate a Wordnet object:

wn.words()
wn.senses()
wn.synsets()

Each of these functions will create a Wordnet
object when it is called and use it for the query.
As such, these functions additionally take the lang
and lexicon parameters which are passed on to the
Wordnet object.
Additionally, there are shortcut secondary

queries to go directly from words to synsets and
vice-versa:
e.synsets() # all synsets for e
ss.words() # all words for ss
ss.lemmas() # lemmas of all words for ss

The following lists the lemmas for the hypernym
found in the previous example:
>>> hyp = inu.hypernyms()[0]
>>> hyp.lemmas()
['家畜 ']

4.6 Translating via ILI
Words, senses, and synsets can all be translated to
some other lexicon via a synset’s ILI link. The most
natural object to translate is a sense, as it links a
specific word to a specific concept, but all transla-
tion go through the ILI and thus through a synset.
Translations of a synset will return at most one trans-
lated synset per target lexicon,11 but the function re-
turns a list because there may be multiple target lex-
icons. Translations of a sense return a list of senses
in the target lexicon(s) shared by the sense’s trans-
lated synset. Translations of a word return a map-
ping of senses to lists of sense translations, and this
is because a word may have multiple unrelated con-
cepts so it wouldn’t make sense to group them in a
flat list. The translate() methods below all take a
lang or lexicon parameter to filter the target lexi-
cons.
e.translate() # translate a word
s.translate() # translate a sense
ss.translate() # translate a synset

Continuing the example from above, here are
lemmas of translations for the found hypernym:
>>> hyp.translate(lang='en')[0].lemmas()
['domestic animal', 'domesticated animal']

5 Discussion
Here we discuss how Wn improves over previous
offerings for users and researchers.

11Every ILI should have only one synset in a lexicon.

5.1 Query Language Persistence

One common point of confusion with the NLTK’s
interface is that the default language is English re-
gardless of the operations used previously, and this
is confounded by the fact that synsets for all lan-
guages in the OMW 1.0 (which the NLTK dis-
tributes) use the same PWN set. This problem is
illustrated in Figure 5.

>>> from nltk.corpus import wordnet
>>> ss1 = wordnet.synsets("door")[0]
>>> ss1.lemma_names()
['door']
>>> ss2 = wordnet.synsets("pintu",
... lang="zsm")[0]
>>> ss2.lemma_names()
['door']
>>> ss2.lemma_names(lang="zsm")
['laluan', 'pintu']

Figure 5: The NLTK’s interface defaults to English lan-
guage queries.

In Wn, each lexicon has its own synset structure,
and the results of primary queries keep a reference
to the Wordnet object that was used, so the lexicon
restrictions of the first query persist for follow-up
queries.

5.2 Reproducibility

The OMW, both 1.0 and 2.0, is considered one
large, multilingual wordnet, but it is not versioned
as a single resource. Individual lexicons may be
added or get updated without changing the OMW’s
version number. Also, changes to the structure of
OMW through such updates can affect the results of
queries on completely different lexicons, as synset
relations are always implicitly shared. This means
that a researcher performing an experiment using
OMW data cannot guarantee reproducibility un-
less they can somehow recreate the exact database
used. The OMW 2.0 database stores the informa-
tion about which relations come from which word-
net, but the current OMW web interface does not
allow you to filter on this.
Wn, in contrast, versions each individual lexicon

and allows queries to specify which lexicons are
used in the queries. This allows them to much more
precisely state the requirements of their research
product and thereby better describe a reproducible
experiment.

6 Conclusions
This paper describes Wn: software for accessing
wordnets in the global wordnet associations LMF
format, linked by the collaborative interlingual in-
dex. Wn is built from the beginning to accommo-
date multiple wordnets while retaining the ability to
query and traverse them independently. NLTK is
already widely used amongst NLP researchers; we
provide an enhanced functionality that goes beyond
the current English based mapping.
Wn is open-source and available on GitHub.12

We strongly encourage everybody to download, use,
and, if possible, contribute back to the project. In
future work, we intend to add the following capabil-
ities:

(i) unloading wordnets from the database

(ii) exporting wordnets

(iii) modifying wordnet data locally

(iv) supporting information content (Resnik,
1995) and related similarity measures

(v) supporting new features in recent updates to
the WN-LMF format (McCrae et al., 2021),
such as wordnet dependencies and extensions

(vi) enabling morphological normalization for
word lookup, similar to the use of Morphy in
Princeton WordNet, but with hooks for exter-
nal resources in other languages

Acknowledgments
Thanks to Liling Tan for the initial inspiration and
early discussions and to three anonymous reviewers,
Andrew Devadason, and Merrick Choo for com-
ments on the paper. We would also like to thank
the Google Season of Docs (2020), especially Yoyo
Wu, for their contributions to the documentation.

References
Steven Bird, Edward Loper, and Ewan Klein. 2009. Nat-

ural Language Processing with Python. O’Reilly Me-
dia Inc.

Francis Bond, Luis Morgado da Costa, Michael Wayne
Goodman, John P. McCrae, and Ahti Lohk. 2020.
Some issues with building a multilingual wordnet. In
Proceedings of the 12th Language Resource and Eval-
uation Conference (LREC 2020), pages 3189–3197.
12https://github.com/goodmami/wn

Francis Bond and Ryan Foster. 2013. Linking and ex-
tending an openmultilingualWordnet. In Proceedings
of the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
1352–1362, Sofia, Bulgaria. Association for Compu-
tational Linguistics.

Francis Bond and Kyonghee Paik. 2012. A survey of
wordnets and their licenses. In Proceedings of the
6th Global WordNet Conference (GWC 2012), Mat-
sue. 64–71.

Francis Bond, Piek Vossen, John P. McCrae, and
Christiane Fellbaum. 2016. CILI: the Collaborative
Interlingual Index. In Proceedings of the Global Word-
Net Conference 2016.

Stefan Dumitrascu, Avram Andrei, Morogran Luciana,
and Stefan-Adrian Toma. 2019. Rowordnet–a python
api for the romanian wordnet. In 10th International
Conference on Electronics, Computers and Artificial In-
telligence (ECAI).

Christine Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. MIT Press.

John P. McCrae, Michael Wayne Goodman, Francis
Bond, Alexandre Rademaker, Ewa Rudnicka, and
Luis Morgado da Costa. 2021. The global wordnet
formats: Updates for 2020. In 11th International
Global Wordnet Conference (GWC2021). (this vol-
ume).

John Philip McCrae, Alexandre Rademaker, Ewa Rud-
nicka, and Francis Bond. 2020. English WordNet
2020: Improving and Extending a WordNet for En-
glish using an Open-SourceMethodology. In Proceed-
ings of the Multimodal Wordnets Workshop at LREC
2020, pages 14–19.

Ritesh Panjwani, Diptesh Kanojia, and Pushpak Bhat-
tacharyya. 2018. pyiwn: A python-based api to ac-
cess indian language wordnets. In Proceedings of the
Global WordNet Conference, volume 2018.

Philip Resnik. 1995. Using information content to eval-
uate semantic similarity. In Proc. 14th International
Joint Conference on Artificial Intelligence (IJCAI-95),
Montreal, Canada, pages 448–453.

Benoît Sagot and Darja Fišer. 2008. Building a free
French wordnet from multilingual resources. In Pro-
ceedings of the Sixth International Language Resources
and Evaluation (LREC’08), Marrakech, Morocco.

Melanie Siegel and Francis Bond. 2021. Compiling a
German wordnet from other resources. In 11th In-
ternational Global Wordnet Conference (GWC2021).
(this volume).

PiekVossen. 1998. Introduction to EuroWordNet. Com-
puters and the Humanities, 32(2):73–89.

Piek Vossen, Claudia Soria, and Monica Monachini.
2013. Wordnet-LMF: A standard representation for
multilingual wordnets. LMF Lexical Markup Frame-
work, pages 51–66.

http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.390.pdf
https://github.com/goodmami/wn
https://www.aclweb.org/anthology/P13-1133
https://www.aclweb.org/anthology/P13-1133
https://doi.org/10.1109/ECAI.2018.8679089
https://doi.org/10.1109/ECAI.2018.8679089
https://lrec2020.lrec-conf.org/media/proceedings/Workshops/Books/MMW2020book.pdf#page=20
https://lrec2020.lrec-conf.org/media/proceedings/Workshops/Books/MMW2020book.pdf#page=20
https://lrec2020.lrec-conf.org/media/proceedings/Workshops/Books/MMW2020book.pdf#page=20

A Indexed Wordnets

Name ID Versions Language
English WordNet ewn 2020 English [en]

2019
Princeton WordNet pwn 3.1 English [en]

3.0
Open German WordNet odenet 1.3 German [de]
Open Multilingual Wordnet omw 1.3 multiple [mul]
Albanet alswn 1.3+omw Albanian [als]
Arabic WordNet (AWN v2) arbwn 1.3+omw Arabic [arb]
BulTreeBank Wordnet (BTB-WN) bulwn 1.3+omw Bulgarian [bg]
Chinese Open Wordnet cmnwn 1.3+omw Mandarin (Simplified) [zh]
Croatian Wordnet hrvwn 1.3+omw Croatian [hr]
DanNet danwn 1.3+omw Danish [da]
FinnWordNet finwn 1.3+omw Finnish [fi]
Greek Wordnet ellwn 1.3+omw Greek [el]
Hebrew Wordnet hebwn 1.3+omw Hebrew [he]
IceWordNet islwn 1.3+omw Icelandic [is]
Italian Wordnet iwn 1.3+omw Italian [it]
Japanese Wordnet jpnwn 1.3+omw Japanese [jp]
Lithuanian WordNet litwn 1.3+omw Lithuanian [lt]
Multilingual Central Repository catwn 1.3+omw Catalan [ca]
Multilingual Central Repository euswn 1.3+omw Basque [eu]
Multilingual Central Repository glgwn 1.3+omw Galician [gl]
Multilingual Central Repository spawn 1.3+omw Spanish [es]
MultiWordNet itawn 1.3+omw Italian [it]
Norwegian Wordnet nobwn 1.3+omw Norwegian (Bokmål) [nb]
Norwegian Wordnet nnown 1.3+omw Norwegian (Nynorsk) [nn]
Open Dutch WordNet nldwn 1.3+omw Dutch [nl]
OpenWN-PT porwn 1.3+omw Portuguese [pt]
plWordNet polwn 1.3+omw Polish [pl]
Romanian Wordnet ronwn 1.3+omw Romanian [ro]
Slovak WordNet slkwn 1.3+omw Slovak [sk]
sloWNet slvwn 1.3+omw Slovenian [sl]
Swedish (SALDO) swewn 1.3+omw Swedish [sv]
Thai Wordnet thawn 1.3+omw Thai [th]
WOLF (Wordnet Libre du Français) frawn 1.3+omw French [fr]
Wordnet Bahasa indwn 1.3+omw Indonesian [id]
Wordnet Bahasa zsmwn 1.3+omw Malaysian [zsm]

Table 1: A listing of wordnets indexed by Wn; all with 1.3+omw as a version are included in the Open Multilingual
Wordnet and are also available individually.

