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Abstract

Manipulation-relevant common-sense
knowledge is crucial to support action-
planning for complex tasks. In particular,
instrumentality information of what can
be done with certain tools can be used to
limit the search space which is growing
exponentially with the number of viable
options. Typical sources for such knowl-
edge, structured common-sense knowledge
bases such as ConceptNet or WebChild,
provide a limited amount of information
which also varies drastically across
different domains. Considering the recent
success of pre-trained language models
such as BERT, we investigate whether
common-sense information can directly be
extracted from semi-structured text with an
acceptable annotation effort. Concretely,
we compare the common-sense relations
obtained from ConceptNet versus those
extracted with BERT from large recipe
databases. In this context, we propose a
scoring function, based on the WordNet
taxonomy to match specific terms to more
general ones, enabling a rich evaluation
against a set of ground-truth relations.

1 Introduction

Lately, AI-based methods advanced rapidly in
their capabilities leading to the tackling of ever
more challenging tasks. This progress is ex-
pected to continue and to potentially culminate in
general-purpose intelligence within a few decades
(Müller and Bostrom, 2016). However, current
systems are designed for highly specific tasks and
lack crucial capabilities for their application in a
broader context. In particular, they have insuffi-
cient common-sense knowledge and reasoning ca-
pabilities. Common-sense knowledge are essential

facts humans acquire throughout our life and which
are frequently applied for everyday tasks, mostly
in a subconscious manner. However, such knowl-
edge is rarely expressed as it is unnecessary to state
the obvious, making it highly elusive. This paper
addresses this challenge and focuses on the acquisi-
tion of common-sense knowledge. Concretely, we
are interested in manipulation-relevant knowledge
that can support action planning, answering ques-
tions such as “What do I need to cut a bread?” or
“What can I do with a knife?”. The acquisition is
framed as a relation-extraction task where we fo-
cus on the instrumentality relations between tools,
actions and objects in the kitchen domain.

The classical approach to acquire common sense
knowledge is to query publicly available knowl-
edge bases. However, since common-sense infor-
mation is scarcely expressed, there exist only a few
dedicated sources (Speer and Havasi, 2013; Tan-
don et al., 2017). The most prominent one is the
ConceptNet knowledge graph (Speer and Havasi,
2013), which is widely used in various applica-
tions (Camacho-Collados et al., 2017; Bosselut et
al., 2019; Mihaylov and Frank, 2018). It connects
words and phrases of natural language with labeled
assertions, so-called predicates. The main issue
of ConceptNet and similar sources is that the pro-
vided amount of information is rather limited, due
to the fact that crowd-sourcing is an ineffective
strategy for collecting common-sense information.
The incentive for the public to contribute is weak
as the information by definition is common sense
and widely known. Furthermore, the amount and
granularity of the information varies substantially
across different topics, making it rather unclear to
assess its relevance for specific applications.

Recently published language models such as
BERT or GPT2 (Devlin et al., 2018; Radford et
al., 2018) constitute a drastic leap forward in the
domain of natural language processing (NLP) as
they distinctly improved benchmarks in the tasks of



language translation, question answering, named
entity recognition and many more. These large neu-
ral networks are pre-trained on a massive amount of
unsupervised data and can be fine-tuned to different
tasks based on comparably few labeled examples.
Considering their success story, it is interesting to
investigate their effectiveness in the extraction of
common-sense information from widely available
text databases. Such an approach is scalable as the
models can easily process additional sources.

In this paper, we apply this concept to acquire
instrumentality relations from procedural task in-
structions, more specifically recipes. Procedural
task instructions are one of the few sources where
common-sense knowledge is made explicit because
they aim to instruct humans to perform a task they
are potentially unfamiliar with. Concretely, we fine-
tune BERT to learn the relation extraction using
a few labeled examples and compare the yielded
relation set against the one of ConceptNet. The
evaluation is based on a set of ground-truth rela-
tions, which we collect in a study. In this context,
we propose a scoring function to match specific
terms to more general ones based on the WordNet
taxonomy. The extensive evaluation underlines the
effectiveness of BERT, leading to distinctly more
relations with an acceptable proportion of false re-
lations that can flexibly be adjusted with standard
filtering techniques.

2 Related Work

The lack of common-sense knowledge and reason-
ing capabilities was recently addressed in DARPA’s
“Machine common sense” initiative (Gunning,
2018) and led to an increased attention within
the research community. Various new sources for
common-sense knowledge have been established
since. ATOMIC (Sap et al., 2019), for example,
provides a database with causes and effects of
common everyday actions such as making a cof-
fee. WebChild (Tandon et al., 2017) is a common-
sense knowledge graph that provides in contrast
to other sources also comparative knowledge us-
ing relations such as “larger than” between differ-
ent concepts. It does not rely on crowd-sourcing,
but instead uses different algorithms to accumulate
the knowledge on the basis of large text corpora.
Databases for visual common-sense have been re-
cently proposed by Goyal et al. (2017).

Sources derived from Wikipedia such as DB-
Pedia (Lehmann et al., 2015), Yago (Suchanek et

al., 2007) or WikiData (Vrandecic and Krötzsch,
2014) have often been used to extract common-
sense knowledge from. Jebbara et al. (2019) pro-
posed multiple score-functions in to rank relations
that encode prototypical locations of objects. They
relied on crowd-sourcing, DBPedia and annotated
image databases to generate ground truth relations
to evaluate their methods. Manipulation-related
knowledge is particularly interesting in the field of
robotics, where explicit action representations are
based on relations between one action and the ma-
nipulated object (Zech et al., 2019). Such relations
are extracted from video (Yang et al., 2014), text
data (Jebbara et al., 2019; Kaiser et al., 2014) or
even multiple modalities (Yang et al., 2016).

Common-sense knowledge is tackled in a broad
range of topics. Zhou et al. tackled temporal
common-sense by proposing dedicated datasets and
a specific language model that outperforms BERT
on the task of classifying typical events accord-
ing to their temporal properties (Zhou et al., 2019;
Zhou et al., 2020). Common-sense properties of
word embeddings were extracted by Yang et al.
(2018) using a zero-shot learning approach. This
enables a property-based comparison of entities to
answer questions like “Is an elephant bigger than
a tiger?”. Hu et al. (2019) augmented the entities
contained in the SQuAD dataset (Rajpurkar et al.,
2016) with common-sense knowledge from Con-
ceptNet and WordNet, allowing them to answer a
variety of additional questions about the entities.

Recent work focuses on the extraction of action
effects, i. e. how does the object state changes when
certain actions are applied (Gao et al., 2018). In
this regard, the action context is often encoded as
well (Baker et al., 1998; Palmer et al., 2005; Yang
et al., 2016; Chai, 2018), which is similar to the lin-
guistic concept of verb semantics (Wu and Palmer,
1994). Verb semantics describe the meaning of a
verb within a context depending on the “agent” (the
one executing the action), the “patient” (here the
object on which the action is applied on) and an
instrument (the tool used for manipulation).

Fine-tuning BERT has been done for various
tasks. Recently, Wang et al. (2019) proposed a
two-step process for entity relation extraction from
documents and argued for its adoption as new task
baseline, since it clearly outperformed the current
baseline approach (LSTM).

In contrast to the mentioned work, our contri-
bution provides three novel aspects. First, it in-



vestigates the viability of common-sense relation
extraction using pre-trained models that are fine-
tuned with a very small amount of labeled exam-
ples for a specific application. Second, it mea-
sures the relevance of the extracted relations based
on their coverage of a ground-truth relation set,
thereby proposing a scoring function to consider
the matching between specific and more general
terms. Lastly, it compares the relation set against
the one contained in ConceptNet, which provides
insight into ConceptNet’s practical relevance for
the specific application.

3 Approach

We are interested in acquiring instrumentality rela-
tions for the kitchen domain. Specifically, we want
to know the relevant tools for certain tasks. For
instance, a knife can be used for cutting bread, but
a cutting board may be helpful as well. A relation
r = (t, a, o) is a triplet consisting of three strings,
where t encodes one tool and the associated task is
described by action a and object o. Some examples
for relevant relations are (knife, cut, bread), (fridge,
cool, food), and (bowl, mix, salad).

We use BERT to extract such information from
large text corpora, where the text is loosely struc-
tured. In the past, powerful models required a large
amounts of labeled data to achieve a reasonable
performance, making such approaches not appli-
cable for most applications. However, pre-trained
models have drastically reduced the label-burden
and simultaneously increased their performance.
The main advantage of this approach in compari-
son to the extraction from structured database is
its scalability. Once the model is trained it can
easily be applied on vast amounts of available text
to harness the desired information. Hence, more
relations can be extracted with a higher language
variety as are contained in current common-sense
databases. Furthermore, it can be applied on other
domains as long as text corpora cover the relevant
relations. The disadvantage is the necessity of an-
notating some examples for the specific application.
In the following, we describe the approach in detail
and also propose an evaluation metric to measure
the match between two relation sets. This is crucial
to determine the relevance of the extracted relations
according to a set of ground-truth relations.

Figure 1: One recipe of Recipe1M+. Only a few
instructions contain a complete relation.

3.1 Relation Extraction from Recipes
An obvious source for task-specific relations are
procedural task instructions from the task domain.
The instructions decompose the description of how
to complete a task in a step-wise manner. Single
steps are phrased in a brief way, only specifying
the necessary information. Examples for proce-
dural task instructions are do-it-yourself manuals
or recipes. These are nowadays publicly available
for a broad range of tasks and domains. WikiHow
(Koupaee and Wang, 2018) for instance is a web-
page that provides procedural-task description for
a broad range of everyday tasks such as “How to
clean a kitchen table?”, but also very specific ones
as “How to take the U.S. census?”.

As we are interested in the kitchen domain,
we rely on the large recipe database Recipe1M+
(Marin et al., 2019). It contains over 1 Million
cooking recipes covering a broad range of topics
and themes with a high variety of used language.
Figure 1 shows a recipe example consisting of the
ingredients and the instructions. We only use the
latter. Even though procedural task instructions
are usually densely packed with relations, the ex-
traction is still a challenging problem as these are
phrased in a peculiar language, often neglecting a
valid English grammar. Instructions can be very
brief, use domain-specific terms and often require
the context of previous steps for resolving ambigu-
ous references.

3.1.1 Token Classification
We frame the relation extraction from instructions
as a token-classification task, where tools, actions,
and objects are mapped to their respective token
labels. A set of labeled instructions is used to fine
tune BERT. From each instruction at most one re-
lation is extracted. The model solely accesses the
single instruction, i. e. it does not consider previ-
ous instructions. In fact, most instructions do not
explicitly name a complete relation as can be seen
in the example of Figure 1. Only instructions 4 and



Figure 2: Overview of the processing pipeline.

6 contain a complete relation, whereas the others
provide partial relations, requiring previous instruc-
tions or common-sense information to fill the gap.
In such cases, all tokens are labeled as irrelevant.
Conversely, there are instructions that contain more
than one complete relation, if multiple or alterna-
tive tools are suggested to perform a task. For in-
stance, instruction 6 of the exemplary recipe names
a mixer and a large bowl as required tools to beat
the butter. Here, we simply label the relation that
gets mentioned first and ignore the other. This lim-
itation of the token-classification was accepted in
favour of its simplicity as our focus is to demon-
strate easy-to-use alternatives to common-sense
knowledge bases. Nonetheless, there is uncovered
potential to increase the data efficiency of the mod-
els by applying more sophisticated architectures
that are able to extract relations across instructions
or consider multiple relations per instruction. Al-
together, we annotated 400 instructions for fine-
tuning of which 230 contain a valid relation.

Figure 2 shows the pipeline of the relation ex-
traction. An instruction is tokenized and fed into
the fine-tuned BERT model. The related output
labels are concatenated to the relation structure and
validated by a post-processing step.

3.2 Post-processing
Some of the extracted relations are filtered or mod-
ified to reduce the amount of false relations. For-
mally, let V be the set of all WordNet lemmas
that are assigned to verb-synsets and N the ones
assigned to noun-synsets. Furthermore, let T
be the set of predefined tools. A given relation
r = (t, a, o) is only kept if:

a ∈ V ∧ o ∈ N ∧ ∃ti ∈ T : substring(ti, t),

where substring(a, b) is a boolean function that
determines whether a is a substring of b.
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Figure 3: The set of predefined tools.

Assuming the relation is kept, we still have to
map t to a concrete tool t̂ ∈ T . Here, our goal
is to conserve the specificity of the extracted tool.
For instance, assume t = “big fruit knife” than
we prefer to map it to “fruit knife” over the more
general term “knife”. Therefore, we choose the
t̂ ∈ T that is the longest substring of t, i. e. t̂ =
argmax

ti∈T
1(substring(ti, t))|ti|.

3.3 Ground-Truth Relations

There are various possibilities to estimate the qual-
ity of common-sense relations. One viable ap-
proach is to estimate the number of “correct” re-
lations, based on sampling and manual inspection.
However, it neglects the quality aspect as some re-
lations are clearly more common and intuitive than
others. Instead, we count the amount of matched
ground-truth relations, that were proposed in a
study as common relations. We predefined 63 tools
as depicted in Figure 3, and asked ten subjects to
provide relations for those.

Neither the actions nor the corresponding objects
were restricted, but we provided a few instructive
examples. The subjects had 20 minutes to come up
with as many relations as possible. Altogether, 539
relations were collected of which 386 are unique.
Table 1 shows the most frequently named relations.

3.4 Relation Matching

Given a set of m ground-truth relations
G := {(t1, a1, o1), . . . , (tm, am, om)}
and a set of n candidate relations
C = {(t̂1, â1, ô1), . . . , (t̂n, ân, ôn)} we want
to measure the matching error e(G,C). The naive
approach is to use the intersection of both sets:



Table 1: The most common relations provided by
the subjects.

Relation Recurrence

can opener, open, can 9
masher, mash, potato 9
garlic press, press, garlic 8
bread knife, cut, bread 7
grater, grate, cheese 7
coffee maker, make, coffee 6
corkscrew, open, wine bottle 5
oven, bake, cake 5
pizza cutter, cut, pizza 5
bottle opener, open, bottle 4

Figure 4: A fraction of the WordNet taxonomy
covering a few of the predefined tools.

e(G,C) = 1 − |G ∩ C|/|G|. However, such
a measure accounts only for perfect matches,
whereas it is reasonable to match against synonyms
or semantically close terms. Hence, we propose a
more informative matching function that utilizes
the hypernym graph of WordNet. The intuition
behind the matching is that a ground-truth relation
can always be generalized, but never special-
ized. This is illustrated based on the depicted
hypernym graph in Figure 4. The ground-truth
relation (knife,cut,bread) can be generalized to
(cutlery,cut,bread) or even (entity,cut,bread), as
there is at least one hyponym of cutlery, knife
itself, that is able to perform the task. In contrast,
specialization entails that all instances can be
used in such a context, which usually does not
apply. In other words, if (cutlery,cut,bread) is the
ground-truth relation we cannot conclude that
all hyponyms of cutlery can be used as well, as
spoon for instance is unsuitable. Consequently, the
matching function between two relations cannot
be symmetric, since it is crucial to distinguish
between the ground-truth and the candidate. In
other words, it is a pseudo-metric. Nonetheless,

as the distance notion is quite intuitive we keep
it throughout the paper. In the following, we
first define the matching for single words and
subsequently for whole relations.

3.4.1 Word Distance
Let each word w be assigned to a set of synsets Sw,
where Sw = ∅ for words that are not represented in
WordNet. The distance between the ground-truth
word w and the candidate word ŵ is the minimum
distance between their synsets Sw, Sŵ:

d(w, ŵ) = min
∀s∈Sw,∀ŝ∈Sŵ

d̂(s, ŝ) (1)

Every synset s has a set of hypernym paths
Ps = {p1, . . . , pk}, where each path pi :=
[s1, s2, . . . , sk|s1 = s∧sk = r] connects s with the
root synset r (“entity” is the root synset in Word-
Net). We denote the distance between a synset s
and a path p as the index of s in p:

d̃(s, p) =

{
Index(s, p) if s ∈ p

∞ otherwise.

Finally, we are able to define the distance between
a ground-truth synset s and a candidate synset ŝ

d̂(s, ŝ) = min
∀p∈Ps

d̃(ŝ, p).

3.4.2 Relation Distance
The distance between a ground-truth relation r =
(t, a, o) and the candidate r̂ = (t̂, â, ô) is simply
the element-wise sum of word distances

D(r, r̂) = d(t, t̂) + d(a, â) + d(o, ô).

The distance measure can be used to parameterize
the error rate function with a maximum relation
distance k:

ek(S, Ŝ) =
1

|S|
m∑
i=1

1( min
j∈{1,...n}

D(Si, Ŝj) > k)

(2)
Varying k allows to control the matching granu-
larity, i. e. k = 0 considers only perfect matches
or those using the WordNet synonyms, whereas
k →∞ uses the complete hypernympaths of each
ground-truth word to match the candidates.

4 Experiments

Initially, we discuss the relation extraction from
recipes using BERT. This evaluation is based on
the small set of manually labeled instructions. Sub-
sequently, we analyze how well these extracted
relations match the set of ground-truth relations in
comparison to those of ConceptNet.



4.1 Relation Extraction From Recipes

We assess BERT’s relation-extraction performance
based on the set of 400 annotated instructions. We
use a 5-fold cross validation with 50 repetitions.
Figure 5 depicts on the left the learning curves of
the model regarding the classification of single to-
kens as well as complete relations. The correct
classification of a single relation is equivalent to
perfectly classifying all tokens of the correspond-
ing instruction. Hence, an accurate token classi-
fication is required to achieve reasonable results
for whole relations, as can be seen by the discrep-
ancy in the error rates. Even with 320 training
examples a very low token-classification error is
achieved (7.2%) and around half the triplets are
perfectly extracted (51.5%). Figure 5 also illus-
trates the effectiveness of the post-processing (see
Section 3.2) as it significantly improves the relation
extraction. The curve seems already to converge
after 100 training instructions. However, the total
amount of correctly extracted relations is further
increasing (Figure 5 on the right). In other words,
the post-processing rejects fewer relations and the
approach becomes more efficient, extracting more
relations from the same amount of data.

The error of the relation classification after post-
processing (brown curve) can be interpreted as
an upper bound for the proportion of false rela-
tions. However, in practice the proportion is sig-
nificantly lower as can be seen by our estimates in
Section 4.3.1. The small dataset naturally leads to
a high variance in the performance across differ-
ent repetitions. It can be expected that the error
is further reduced with additional supervised data
as no saturation has been reached yet. In particu-
lar, considering the discrepancy between the lan-
guage type used to pre-train BERT, proper English
from books and Wikipedia articles, and the one of
recipes, compressed short sentences often neglect-
ing a valid grammar, the performance is likely to
improve when this mismatch is further minimized.

4.1.1 Processing the Whole Dataset

BERT is fine-tuned with all annotated instructions
to extract the relation set of Recipe1M+. Overall,
the dataset contains around 10 million instructions
of from which our pipeline extracts 28729 unique
relations. The mean recurrence rate of a triplet is
4.4 with a median of 1. Table 2 lists the most fre-
quent relations. Relations using a mixer / blender
are predominant, which is reasonable as they are

Table 2: The most frequent relations extracted from
the recipes.

Relation Recurrence

mixer, beat, butter 3491
mixer, beat, cheese 2052
mixer, beat, egg 1082
blender, cut, butter 931
mixer, cream, butter 889
rolling pin, roll, dough 783
mixer, beat, cream 704
blender, blend, ingredients 676
blender, puree, soup, 670
mixer, beat, ingredients 603

used in most baking recipes.

4.2 Relation Extraction from ConceptNet

We briefly describe the straight-forward extraction
from ConceptNet. Starting from our set of pre-
defined tools we use only the relevant link-types
“used for” and “capable of” to extract the rela-
tions. These link types connect the tools with sin-
gle words or short phrases. We use the syntactic
parsing of spaCy (Honnibal and Montani, 2017) to
extract the action and object from the short phrases
based on a few case-based rules. ConceptNet con-
tains 2574 entries for our tool set and the consid-
ered link-types. However, such entries often lack
an object as required for the type of relations we
are aiming for, e. g.‘̀knife-used for-cutting”, “fork-
used for-eating”. Alltogether, we extracted 1322
complete relations that are in accordance with the
WordNet vocabulary.

4.3 Relation Matching

We determine the matching rate between the
ground-truth relations from the study and both ex-
tracted sets respectively. The rate is measured
as defined by Equation 2. Figure 6 depicts how
the matching improves when the maximum dis-
tance threshold k is increased. The recipe relations
match distinctly more of the ground-truth relations.
Concretely, they yield three times more “perfect”
matches (k = 0). The relations of ConceptNet
profit more from an increasing distance threshold.
The probable explanation is that recipes usually use
very specific terms to precisely describe the single
steps, whereas ConceptNet contains information
concerning more general terms that are more likely
to match for larger distance thresholds. This hy-
pothesis is supported by the fact that the average
length of the hypernympaths assigned to the synsets
within the ConceptNet triplets is smaller than those
of the recipes (6.1 vs. 7.2). The structured data
of ConceptNet facilitates the relation extraction,
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leading to a naturally low rate of false relations,
whereas the opposite applies for the extraction from
recipes. However, the recurrence of the recipe re-
lations can be used as confidence for their validity,
providing a way to control the proportion of false
relations against the number of extracted relations.
Therefore, we also illustrate the performance for a
minimum recurrence rate of two and four.

To assess the minimum amount of required la-
beled instructions, we trained another BERT model
based using only 100 training instructions (“Recipe-
100” in Figure 6). Its matching error is only slightly
worse in comparison to the model using 400 labeled
instructions, suggesting that even fewer examples
may be sufficient to achieve comparable results.

Figure 6 depicts on the right the amount of
unique relations amount depending on the mini-
mum recurrence rate. Even a minimum recurrence
rate of 10 yields more unique relations than Con-
ceptNet. This graph points out the massive dis-

crepancy in the amount of the relations yielded by
BERT over those contained in ConceptNet. The
BERT model trained with 100 examples extracts
distinctly fewer relations, which is in line with
the right plot of Figure 5 and confirms that more
training examples in particular increase the data
efficiency of the model. It is not surprising that the
combination of both sets leads to the overall the
best-performance as shown by the purple curve in
Figure 6. However, it is noteworthy that the rela-
tions are complementary to some degree, since the
improvement is significant (> 10%), suggesting
the fusion of both approaches.

4.3.1 Taking False Relations into Account

The correctness of common-sense relations is of
utmost importance. In case of planning algorithms,
false relations can prevent the generation of a plan
or even result in incorrect ones, potentially leading
to severe failures. In our case, false relations are
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Figure 7: ROC curves for exact matches (k = 0, on
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mainly caused by the extraction process, as the rela-
tions in the recipes as well as ConceptNet generally
are valid in some context.

We estimate the false relation rate based on mul-
tiple samples, thereby manually inspecting ∼ 3000
relations1. Figure 7 shows the resulting ROC
curves. Concretely, it provides ROC curves for
maximum relation distances of k ∈ {0, 4}. In case
of the recipes, we control the proportion of false
relations by varying the minimum recurrence. We
sampled the false relations rate for reccurence rates
of {1, 5, 9}. The results of ConceptNet are rep-
resented by single points, since recurrence-based
filtering is not applicable for its unique relations.
The false relation rate of the recipes is reduced for
higher recurrence rates. The corresponding curves
yield superior results in compared to the values of
ConceptNet, particularly for exact matches (k = 0).
To put it in a nutshell, the relations extracted from

1The sample size for a confidence width of w = 0.04 is
determined by the number of false relations within an initial
sample of 100 relations.

recipes do not only match distinctly more relations
that are naturally named by humans, but also yield
a lower rate of false relations when the minimum
recurrence is accordingly adjusted.

The analysis may seem to be biased, since
we compare the relations of a general-purpose
database with those of domain-specific procedu-
ral task instructions. Particularly, considering the
fact that the kitchen domain is very popular with
an abundance of publicly available data. This is
a valid point and we are currently considering a
comparison to sources providing procedural task
instructions for a broad range of tasks such as wik-
iHow. However, our main point is not to stress
the fact that more relations can be extracted from
procedural task instructions. Instead, we demon-
strate that with a relatively small effort BERT can
be trained to extract these relations with a high
precision leading to overall superior results.

5 Conclusion

We explored whether BERT can be used to ex-
tract common-sense relations from procedural task
instructions as an alternative to querying public
databases. We fine-tuned BERT for the relation
extraction from recipes based on very few labeled
instructions and extracted the relations from the
large Recipe1M+ dataset. To assess their relevance
we collected a set of ground-truth relations in a
study and proposed an evaluation measure that uti-
lizes the WordNet hypernym graph to incorporate
matches between specific and general terms. The
matching granularity can naturally be adjusted, al-
lowing a diverse analysis. The experiments high-
light various advantages of the BERT based ap-
proach. It does not only yield a very large amount
of unique relations (28k versus 1.3k) and corre-
spondingly matches a large portion of the ground-
truth relations, but the recurrence of the relations
can also be used to reduce the proportion of false
relations. Therefore, we regard the extraction of
common-sense relations from text as a competi-
tive and complementary approach, particularly con-
sidering the ongoing and rapid advance of NLP
techniques.
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