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Message from the Organizing Committee

The first Workshop on Natural Language Generation, Evaluation, and Metrics (GEM) was held on
August 6, colocated with ACL 2021. The GEM workshop is endorsed by SIGGEN. The organization of
GEM was started following discussions during Bird-of-a-Feather sessions at ACL 2020 in which a large
share of the attending generation researchers agreed that we need a community-driven project focused
on combining advancements in data, models, and (automatic and human) evaluation to measure progress
in natural language generation (NLG).

The focus of the GEM workshop was in the shared task for the associated benchmark which was created
by the entire program committee. In addition to making an in-depth evaluation of generation models
possible, GEM also aims to make generation research more inclusive of additional languages by being
designed to be extended with newly created datasets and by prioritizing inclusion of datasets that target
languages beyond English. Preliminary results of the shared task were announced at the workshop.

In addition to four reports of shared task participants, we also received 14 research papers of which 11
were accepted for presentation at the workshop. We further invited the authors of 12 Findings of the
ACL papers to present, leading to a total of 27 presentations.

Asli Celikyilmaz gave an invited keynote and participated in one of the two panel discussions on
responsible progress in NLG. The other panelists were Anya Belz, Hady Elsahar, Seraphina Goldfarb-
Tarrant, He He, Mike Lewis, Lisa Li, Wang Lu, and Ehud Reiter.

We would like to thank the members of the Program Committee for their timely reviews. We also would
like to thank the participants of the shared task and all volunteers who helped with the evaluations.

Antoine Bosselut, Esin Durmus, Varun Prashant Gangal, Sebastian Gehrmann, Yacine Jernite, Laura
Perez-Beltrachini, Samira Shaikh, and Wei Xu

Organizers
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Abstract

Sentence-level text simplification is evaluated
using both automated metrics and human eval-
uation. For automatic evaluation, a combina-
tion of metrics is usually employed to evaluate
different aspects of the simplification. Flesch-
Kincaid Grade Level (FKGL) is one metric
that has been regularly used to measure the
readability of system output. In this paper, we
argue that FKGL should not be used to eval-
uate text simplification systems. We provide
experimental analyses on recent system output
showing that the FKGL score can easily be
manipulated to improve the score dramatically
with only minor impact on other automated
metrics (BLEU and SARI). Instead of using
FKGL, we suggest that the component statis-
tics, along with others, be used for posthoc
analysis to understand system behavior.

1 Introduction

Critical to any application area is evaluation. Eval-
uation is often accomplished using one or more
quantifiable evaluation metrics. Evaluation met-
rics are the main tool for comparing and analyz-
ing approaches (Hossin and Sulaiman, 2015) and
are often used to define whether progress is being
made in a field. A good evaluation metric should
be a proper measure of the quality of a particular
algorithm and, importantly, should not be “game-
able”. Specifically, an approach should not be able
to obtain a better score on the evaluation metric by
manipulating the algorithm or output in ways that
do not improve the actual quality of the output.

In this paper, we examine evaluation for text
simplification, specifically, sentence-level text sim-
plification. Text simplification aims to transform
text into a variant that is easier to understand by a
broader range of people while retaining as much
of the original content as possible. A range of
approaches for text simplification have been pro-

posed ranging from lexical simplification (Shard-
low, 2014), where only words and phrases are
changed, to fully generative approaches that lever-
age models from machine translation (Coster and
Kauchak, 2011a; Wubben et al., 2012) and recent
sequential neural networks (Nisioi et al., 2017;
Zhang and Lapata, 2017; Nishihara et al., 2019).
Text simplification evaluation has been done with
two general approaches: human evaluation and au-
tomated metrics.

Human evaluation relies on annotators to judge
the quality of the simplifications on three dimen-
sions: fluency/grammaticality, how well the sen-
tence represents fluent, grammatical text; adequacy,
how well the content is preserved; and, simplic-
ity, how simple the text is (Woodsend and Lap-
ata, 2011). The first two metrics were adapted
from other text generation tasks (Knight and Marcu,
2002) with the addition of simplicity for text sim-
plification. When human evaluation is used, these
three metrics have been consistently employed. Hu-
man evaluations provide concrete analysis of texts
simplification systems along important dimensions,
however, human evaluation is costly and is not prac-
tical for development, tuning, and other real-time
uses. As such, text simplification has also relied on
automated metrics for evaluation.

Automatic evaluation of text simplification has
varied more across papers, though three metrics
are most commonly employed: BLEU, SARI, and
Flesch-Kincaid. BLEU (Papineni et al., 2001) com-
pares the n-gram overlap via precision of a system
simplification with a human reference simplifica-
tion and was borrowed from machine translation.
BLEU was the first metric suggested for text simpli-
fication that utilized reference simplifications (Zhu
et al., 2010), however, it focuses less on simplic-
ity and more on fluency and content preservation.
To counter this, SARI was proposed as an alter-
nate metric (Xu et al., 2016). SARI also compares
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against human references, but also utilizes the in-
put sentence allowing it to better capture addition
and deletion of information.

Finally, a third automated metric that has been
used to measure readability and fluency is Flesch-
Kincaid Grade Level (FKGL). FKGL was initially
proposed in the 1940s (Flesch, 1948) and since
then has been used extensively in the medical do-
main, though it has never been shown to affect ac-
tual comprehension (Shardlow, 2014; Kauchak and
Leroy, 2016). FKGL combines two text statistics
to calculate the score: the average number of syl-
lables per word and the average number of words
per sentence:

FKGL = 0.39
Nwords

Nsentences
+11.8

Nsyllables

Nwords
−15.59

(1)

In recent text simplification papers, both BLEU
and SARI are common evaluation metrics (Vu et al.,
2018; Guo et al., 2018; Scarton and Specia, 2018;
Qiang, 2018; Niklaus et al., 2019; Nishihara et al.,
2019). FKGL is not as popular as it was before
SARI was introduced, but it continues to be used
as an evaluation metric in recent papers (Xu et al.,
2016; Zhang and Lapata, 2017; Guo et al., 2018;
Qiang, 2018; Scarton and Specia, 2018; Nassar
et al., 2019; Nishihara et al., 2019).

In this paper, we argue that FKGL is not a proper
evaluation metric for text simplification and should
not be used to evaluate text simplification systems,
i.e., alongside other metrics like BLEU and SARI.
FKGL was one of the first metrics suggested for
text simplification (Zhu et al., 2010) and has been
used by many as an evaluation metric to compare
systems. However, FKGL was not originally de-
signed to evaluate system output (it was designed to
measure human output) and, because of its simplis-
tic nature, is very easy to game, either explicitly (as
we do in this paper) or implicitly by certain model
biases (e.g., text simplification algorithms that split
sentences will tend to have better FKGL scores).
Recent work has shown that systems with good
FKGL scores are not necessarily correlated with
high-quality simplifications (Martin et al., 2018;
Alva-Manchego et al., 2020), however, this is the
first in-depth analysis of the FKGL metric for eval-
uation and where specific system transformations
are analyzed.

To explore how FKGL can be manipulated, we
introduce six simple methods for modifying system
output and examine the impact these modifications

have on automated evaluation metrics. The modi-
fications could be made explicitly by a system in
an attempt to improve their score, or, more worri-
some, implicitly. In addition to the FKGL scores,
we also present and and discuss how BLEU and
SARI respond to the modifications. We show that
with some very minor modifications, FKGL can
be improved dramatically with minimal effect on
the other two evaluation metrics. We conclude
with some recommendations on how to incorporate
FKGL-like metrics into text simplification analysis.

2 History of Flesch-Kincaid

The earliest version of the Flesch-Kincaid readabil-
ity formula appears in Flesch’s doctoral dissertation
(Flesch, 1943) and calculated based on the the av-
erage number of words per sentence, the number
of affixes, and the number of references to peo-
ple. The formula was derived based on the McCall-
Crabbs Standard Test Lessons in Reading (McCall
and Crabbs, 1926), a standardized test given to
children in grades 3-7. The McCall-Crabbs tests
contains 376 passages with 8 reading comprehen-
sive questions per passage. Each lesson is labeled
with its difficulty as a grade level. Based on these
texts, Flesch developed the formula to predict the
grade of children in grades 3-7 who answered at
least 75% of the questions correctly about a given
passage. The original goal of the formula was to
help students track their progress.

Five years later, he published a new formula:
the Reading Ease Score (Flesch, 1948). He ad-
justed the original formula by recomputing the co-
efficients and replacing previous text measurements
with the ones used today, the average number of
syllables and the average sentences length. Like
the original study, this new formula was validated
with children and was based on the same criterion,
McCall-Crabbs Standard Test Lessons in Reading.

Flesch-Kincaid Grade Level is a variation of the
Reading Ease formula with readjusted weights and
is the formula that has been commonly used in
text simplification evaluation. The formula was
derived three decades later (Kincaid et al., 1975)
specifically to evaluate the readability of technical
materials for military personnel. 531 Navy per-
sonnel in four technical training schools at Navy
bases were tested for their reading comprehension
level according to the comprehension section of
the Gates-McGinitie reading test as well as their
comprehension of 18 passages from Rate Training
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Manuals. Despite the fact that this formula was
derived from Navy personnel, with military-based
material, and specifically for Navy use, it has been
broadly used in a range of settings to evaluate the
readability of text, for example, it is commonly
used to guide text generation by medical writers
in the medical domain and even Microsoft Word
includes both the Flesch Reading Ease and FKGL
scores (Shedlosky-Shoemaker et al., 2009).

We provide this background to raise some con-
cerns based on its origins for its application for text
simplification evaluation. The inputs of the formula
– sentence count, word count, and syllable count –
were decided based on a study in the 1940s where
modern text analysis tools were not available. Both
the Flesch Reading Ease and FKGL scores were
developed based on very specific corpora and very
targeted populations, children grades 3-7 in the
former case and Navy personnel in the latter case.
Most importantly, the text passages used to collect
data were always written by people and assumed to
be mostly free of errors in terms of writing. These
assumption cannot be made for text generated by
automated systems.

3 Modifying Text Simplification Output

One of the main drawbacks of the FKGL metric is
that the formula is based on fairly simplistic text
statistics. Because of this, it is straightforward to
manipulate the output of a text simplification to
artificially improve the FKGL score. We suggest
six approaches to modify the output of an automat-
ically simplified text that aim to manipulate these
statistics. We view the modifications as an explicit
post-processing step, however, many of them could
be incorporated into a text simplification system
either explicitly as a way to improve the score, or
implicitly as a side-effect of the algorithm used
(e.g., sentence splitting). Each approach suggested
modifies the output text on a sentence level. In the
analyses we consider the effect of applying each
approach to varying proportions of the sentences
output by the system.

random-period: Randomly insert a period into
the sentence. Adding a period to the sentence splits
the sentence into two sentences which reduces the
average number of words per sentence.

random-the: Randomly insert the word “the”
into the sentence. This adds a short and very com-
mon word to reduce the average syllable count per
word while minimizing the impact on the meaning.

replace-longest: Replace the longest word in the
sentence (by character count) with the word “the”.
Assuming that the number of characters in a word
positively correlates with the number of syllables,
replacing the longest word with “the” should re-
duce the average syllable count per word.

replace-rand-period: Replace a random word
with a period in the sentence. This is similar to
random-period, but additionally removes a random
word to reduce the number of words per sentence.

replace-rand-the: Replace a random word with
“the”: imitates random-the., but additionally re-
moves a random word to reduce the number of
words per sentence.

rand-period+ repl-longest: combine random-
period and replace-longest to magnify the effects
on FKGL.

4 Data

To understand the problems with FKGL, we ana-
lyzed the output from the five text simplification
systems examined by Zhang and Lapata (2017),
a number of which are state-of-the-art: PBMT-R
(Wubben et al., 2012), a phrase-based approach
based on statistical MT; Hybrid (Narayan and Gar-
dent, 2014), a model that combines sentence split-
ting and deletion with PBMT-R; EncDecA, a basic
neural encoder-decoder model with attention; and
two deep reinforcement learning models, Dress and
Dress-Ls (Zhang and Lapata, 2017).

There are two main corpora that are used to train
and evaluate text simplification systems: Wikipedia
(Zhu et al., 2010; Coster and Kauchak, 2011b),
which consists of automatically aligned sentences
between English Wikipedia and Simple English
Wikipedia, and Newsela (Xu et al., 2015), which
consists of news articles manually simplified at
varying levels of simplicity. We present the results
for the Newsela corpus since it involves explicit
human simplification and has been shown to be less
noisy than the Wikipedia corpus (Xu et al., 2015).
We also conducted the experimental analysis on the
Wikipedia corpus and saw similar results.

5 Experimental Analysis

We applied each of the modification techniques to
a varied percentage of output sentences, from 10%
to 100% in increments of 10%, for the five text sim-
plification systems. The sentences to be modified
were randomly selected from the system output.
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We calculated FKGL1 as well as BLEU (Papineni
et al., 2001) and SARI2 (Xu et al., 2016) to ob-
serve how the modifications affect other common
text simplification evaluation metrics. To account
for per-sentence variation and randomness in some
of the modification approaches, we repeated the
experiments 100 times and averaged the results.

5.1 Results
Figure 1 shows the trends of the effect that the mod-
ification approaches have on FKGL for Dress-Ls,
and Table 1 presents more detailed experimental re-
sults for the three best performing systems (Dress-
Ls, EncDecA, and Hybrid). The three methods
that involve sentence splitting result in aggressive
improvements in the FKGL score; replacing the
longest word shows some improvement; and the
other two approaches involving “the” have mini-
mal effect. In the most extreme case, rand-period+
repl-longest reduces the FKGL score to almost zero
when applied to all of the sentences. With simple
post-processing applied to the output, a text simpli-
fication approach can achieve an arbitrarily low
FKGL score.

Figures 2 and 3 show the effect that the modi-
fication approaches have on the BLEU and SARI
scores for Dress-Ls. There is virtually no effect
on the SARI scores by any of the modification
techniques and none of the approaches change the
score by more than 0.004, regardless of percentage
of sentences modified. BLEU, on the other hand,
does register some differences for the modified
output. rand-period+ repl-longest has the most
drastic effect and, in the most extreme case, for
Dress-Ls it reduces the BLEU score from 0.2374
to 0.1710 when it is applied to all sentences. The
other five modification techniques have more mi-
nor effects, e.g., random-period drops the score to
0.1953, when applied to all sentences.

Using multiple evaluation metrics partially mit-
igates the gameability of FKGL since BLEU is
affected. However, the effect on BLEU is signif-
icantly smaller than the effect on FKGL. While
the Dress-Ls system did originally have the high-
est BLEU and SARI scores, it did not have the
highest FKGL score. However, if we randomly in-
serted a period into just 10% of the sentences of the
Dress-Ls output, the FKGL score would improve
to 4.543, the BLEU score would drop slightly to

1https://github.com/mmautner/readability
2We used the implementation for BLEU and SARI from

the Joshua Simplification System.
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Figure 3: SARI scores (larger is better) from the exper-
iments on the Dress-Ls test output, averaged over 100
runs.

0.233 and there is no significant change in SARI
score. After the transformation, the system would
still be the best performing model with respect to
BLEU and SARI, but now it would also be the best
performing model with respect to FKGL. With a
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FKGL Dress-Ls EncDecA Hybrid
Approach 0% 10% 50% 100% 0% 10% 50% 100% 0% 10% 50% 100%
random-period

5.024

4.5426 2.6223 1.4154

5.757

5.2902 3.4309 1.9016

4.775

4.2706 2.6543 1.3512
random-the 5.0006 4.9095 5.1919 6.1273 6.0509 5.9596 4.7434 4.6204 4.8678
replace-longest 4.8837 4.3242 3.6244 5.6408 5.1763 4.5984 4.6108 3.9492 3.1241
replace-rand-period 4.5510 2.6494 1.4359 5.2959 3.4474 1.9173 4.2884 2.7283 1.4524
replace-rand-the 4.9915 4.8636 4.7003 5.8014 5.8058 5.8001 4.7282 4.5449 4.3104
rand-period+
repl-longest

4.4098 1.9831 0.1643 5.1806 2.8913 0.8477 4.1234 1.9268 -0.0665

BLEU Dress-Ls EncDecA Hybrid
Approach 0% 10% 50% 100% 0% 10% 50% 100% 0% 10% 50% 100%
random-period

0.237

0.2330 0.2158 0.1953

0.212

0.2086 0.1954 0.1794

0.108

0.1069 0.1004 0.0898
random-the 0.2334 0.2174 0.1985 0.2088 0.1963 0.1814 0.1071 0.1015 0.0919
replace-longest 0.2343 0.2215 0.2052 0.2097 0.2008 0.1895 0.1069 0.1016 0.0948
replace-rand-period 0.2336 0.2176 0.1977 0.2088 0.1965 0.1808 0.1063 0.0984 0.0883
replace-rand-the 0.2337 0.2184 0.1991 0.2088 0.1965 0.1808 0.1063 0.0984 0.0879
rand-period+
repl-longest

0.2306 0.2036 0.1710 0.2067 0.1871 0.1621 0.1059 0.0957 0.0806

SARI Dress-Ls EncDecA Hybrid
Approach 0% 10% 50% 100% 0% 10% 50% 100% 0% 10% 50% 100%
random-period

0.363

0.3626 0.3618 0.3608

0.360

0.3598 0.3593 0.3586

0.347

0.3470 0.3468 0.3465
random-the 0.3627 0.3621 0.3616 0.3599 0.3596 0.3593 0.3471 0.3471 0.3473
replace-longest 0.3627 0.3622 0.3618 0.3600 0.3598 0.3597 0.3471 0.3472 0.3474
replace-rand-period 0.3626 0.3614 0.3601 0.3598 0.3590 0.3579 0.3470 0.3466 0.3462
replace-rand-the 0.3626 0.3617 0.3607 0.3599 0.3593 0.3586 0.3470 0.3469 0.3468
rand-period+
repl-longest

0.3625 0.3614 0.3604 0.3598 0.3591 0.3587 0.3470 0.3471 0.3471

Table 1: Experimental results (FKGL, BLEU and SARI scores) for 10%, 50% and 100% of the sentences being
modified on three systems: Dress-Ls, EncDecA and Hybrid.

simple modification to the system output, the best
performing model could be changed with respect
to FKGL without affecting the other two metrics
significantly.

For the sake of brevity, we only include detailed
experimental analysis of the output of Dress-Ls,
however, the results were similar across all sys-
tems3. To provide some additional examples, Ta-
ble 1 shows the FKGL, BLEU, and SARI scores
for Dress-Ls, EncDecA, and Hybrid where 10%,
50%, and 100% of the sentences were modified.
We chose EncDecA and Hybrid as additional sys-
tems to include since they performed well on at
least one of the automated metrics and represent
fairly different approaches to the text simplification
problem. The trends seen for Dress-Ls are also
seen with the other two systems: FKGL can be
aggressively improved, BLEU is slightly impacted,
and SARI is not affected. Regardless of the type
of system, because of the simplicity of FKGL, the
results can be arbitrarily improved.

3Complete experimental results are included in the ap-
pendix.

5.2 Understanding BLEU and SARI

Although the focus of this paper was on FKGL,
we also analyzed BLEU and SARI further to un-
derstand why the modification approaches affected
those metrics. The BLEU score is calculated as
the average of the n-gram precisions of size 1 to
4, where precision is the proportion of n-grams in
the system output that are found in the correspond-
ing reference simplification. The SARI score is
an average of F1 scores based on three operations
relative to the reference text: added n-grams, kept
n-grams, and deleted n-grams.

Table 2 shows each of the individual component
calculations for the Dress-Ls system when the six
modifications are applied to 100% of the sentences.
Since the approaches rely on randomization, the
results shown are an average of 100 trials. For con-
ciseness, we only include the results for Dress-Ls,
though all systems showed very similar trends. Full
results, including 2-gram and 3-gram F1 and preci-
sion scores for SARI, for all systems are provided
in the appendix.

For BLEU, all levels of precision drop for all
three modification approaches. The 1-gram pre-
cision is the least affected, while larger n-gram
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Percent
Modified 0 100

Approach none random-
period

random-the replace-
longest

replace-rand-
period

replace-rand-
the

rand-period+
repl-longest

BLEU
1-gram 0.4590 0.4300 0.4394 0.4468 0.4340 0.4428 0.4186
2-gram 0.2638 0.2289 0.2301 0.2339 0.2289 0.2276 0.2026
3-gram 0.1896 0.1496 0.1509 0.1581 0.1511 0.1497 0.1249
4-gram 0.1384 0.0997 0.1003 0.1074 0.1016 0.1003 0.0763
SARI
1-gram
Add F1 0.0382 0.0382 0.0518 0.0505 0.0371 0.0504 0.0505
Keep F1 0.1181 0.1181 0.1169 0.1181 0.1186 0.1174 0.1181
Delete P 0.9740 0.9740 0.9741 0.9722 0.9718 0.9717 0.9722
4-gram
Add F1 0.0189 0.0155 0.0145 0.0150 0.0154 0.0143 0.0112
Keep F1 0.0450 0.0446 0.0450 0.0463 0.0448 0.0447 0.0455
Delete P 0.9885 0.9876 0.9879 0.9878 0.9874 0.9874 0.9869

Table 2: Breakdown of the components making up BLEU and SARI scores for the original Dress-Ls output and
the modified texts.

precisions show increasingly larger effects. This
intuitively makes sense since randomly insert-
ing/replacing a word in an originally correct se-
quence of words should affect multiple n-grams
of larger size. None of the decreases are large in
magnitude, but they are all in the same direction
and contribute to the slight drop in BLEU scores.

For SARI, at the 1-gram level, the Add F1 score
actually improves for both random-the and replace-
longest since they add a common word (“the”) that
has a high likelihood of matching with a word in
the reference simplification. However, for longer n-
grams the Add F1 score drops for similar reasons to
the BLEU score precisions drop. Besides the Add
F1 score, however, the other scores remain virtually
unchanged. In aggregate, the Add effect tends to
balance out between increases in smaller n-grams
and decreases in larger n-grams and because the
other components do not change much, the overall
SARI score remains unaffected.

The effects of the modifications on BLEU and
SARI are minimal, especially compared to the ef-
fects on FKGL. While this helps illustrate how a
manipulation of FKGL could be done, it does not
necessarily imply that BLEU and SARI are suffi-
ciently reliable. Even though both metrics are rela-
tively resilient against our modification approaches,
these approaches were designed specifically to ma-
nipulate the FKGL score and, thus, do not serve as
evidence against the concerns that have been raised
about their robustness (Callison-Burch et al., 2006;
Sulem et al., 2018).

System Average length Average syllables % split
Original 23.08 1.346 0
Reference 12.741 1.263 1.857
Dress-Ls 14.392 1.284 1.207
EncDecA 16.986 1.280 0.557
Hybrid 12.382 1.329 0.000
Dress 14.222 1.276 1.207
PBMT-R 22.933 1.304 1.300

Table 3: Post-hoc statistics for original and reference
data from the test corpus and five system outputs.

6 A Better Approach

FKGL should not be used as an evaluation metric.
Instead, it can be used for post-hoc analysis to un-
derstand the behavior of the systems. Even better,
rather than reporting the FKGL score, which can
be affected by multiple types of changes in the sys-
tem, papers can report the individual components
of FGKL, i.e., the average sentence length and the
average number of syllables. This demystifies the
readability score and provides concrete information
about the types of changes that are being made by
the systems. A comparative analysis of 30 metrics
showed that these features are better correlated with
human judgement than FKGL (Martin et al., 2018),
and some recent papers have reported the average
sentence length statistic already (Kriz et al., 2019;
Kumar et al., 2020; Maddela et al., 2021). These
two metrics can be supplemented with other corpus
statistics that also help understand what changes
the systems are making, e.g., the proportion of sen-
tences that are split.

Table 3 shows these three statistics for the five
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text simplification approaches. These statistics al-
low for a concrete analysis of what the different
approaches are doing. All the models reduce the
sentence length, except for PBMT-R. Hybrid is the
most aggressive at creating short sentences, though
it does not do any sentence splitting, so it accom-
plishes this through deletion, which may explain
the low BLEU score. All of the models are select-
ing words with less syllables, except for Hybrid.
Finally, all models except Hybrid are doing sen-
tence splitting, with the EncDecA doing the least
splitting. These statistics paint a much more vivid
picture of what the different approach are doing
than a single readability score.

7 Conclusions

In this paper, we have provided an experimental
analysis of the FKGL score on state-of-the-art text
simplification systems. We find that very basic post-
processing techniques can drastically improve the
FKGL score of a system with negligible effects on
two other metrics, BLEU and SARI. Based on these
findings, we argue that FKGL should no longer
be used as a text simplification evaluation metric.
Instead, the components of FKGL and other related
statistics should be used to help understand what
different systems are doing. If this analysis is not
compelling enough and FKGL continues to be used,
then we propose concrete methods for improving
FKGL, with minimal work and only minor effects
on the other automated metrics.
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Appendix

A Experimental Results for All Systems

Tables 4-8 show the complete FKGL, BLEU and
SARI scores for the modified outputs of all five
systems: Dress-Ls, EncDecA, Hybrid, Dress and
PBMT-R.

B BLEU n-gram Score Breakdown

Table 9 shows the precision scores for the individ-
ual n-grams (1-4) of the unmodified system output
and output with all sentences modified (100%) for
each of the six modification approaches on outputs
of all five systems.

C SARI n-gram Score Breakdown

Table 10 shows the SARI component scores for the
unmodified system output and with all sentences
modified (100%) for each of the six modification
approaches on all five systems.

Dress-Ls
Approach/
% modified 10 20 30 40 50 60 70 80 90 100

FKGL
random-period 4.5426 4.0609 3.5802 3.1014 2.6223 2.5358 2.0595 1.9742 1.7763 1.4154

random-the 5.0006 4.9772 4.9543 4.9319 4.9095 4.8870 5.2557 5.2346 5.2130 5.1919
replace-longest 4.8837 4.7464 4.6050 4.4644 4.3242 4.1857 4.0442 3.9038 3.7647 3.6244

replace-rand-period 4.5510 4.0765 3.6007 3.1251 2.6494 2.5670 2.0910 2.0005 1.5256 1.4359
replace-rand-the 4.9915 4.9607 4.9259 4.8955 4.8636 4.8288 4.7985 4.7638 4.7324 4.7003
random-period

+replace-longest
4.4098 3.8000 3.1911 2.5864 1.9831 1.7665 1.1681 0.9604 0.3671 0.1643

SARI
random-period 0.3626 0.3624 0.3622 0.3619 0.3618 0.3616 0.3613 0.3612 0.3610 0.3608

random-the 0.3627 0.3626 0.3624 0.3623 0.3621 0.3620 0.3619 0.3618 0.3617 0.3616
replace-longest 0.3627 0.3626 0.3625 0.3623 0.3622 0.3622 0.3620 0.3620 0.3619 0.3618

replace-rand-period 0.3626 0.3623 0.3620 0.3617 0.3614 0.3612 0.3609 0.3606 0.3604 0.3601
replace-rand-the 0.3626 0.3624 0.3622 0.3619 0.3617 0.3615 0.3612 0.3611 0.3609 0.3607
random-period

+replace-longest
0.3625 0.3622 0.3619 0.3617 0.3614 0.3612 0.3609 0.3608 0.3606 0.3604

BLEU
random-period 0.2330 0.2287 0.2243 0.2200 0.2158 0.2119 0.2075 0.2033 0.1994 0.1953

random-the 0.2334 0.2293 0.2253 0.2216 0.2174 0.2136 0.2097 0.2059 0.2022 0.1985
replace-longest 0.2343 0.2312 0.2281 0.2247 0.2215 0.2184 0.2151 0.2120 0.2086 0.2052

replace-rand-period 0.2336 0.2297 0.2258 0.2218 0.2176 0.2138 0.2099 0.2057 0.2017 0.1977
replace-rand-the 0.2337 0.2300 0.2261 0.2224 0.2184 0.2148 0.2104 0.2068 0.2032 0.1991
random-period

+replace-longest
0.2306 0.2237 0.2170 0.2104 0.2036 0.1972 0.1903 0.1843 0.1775 0.1710

Table 4: Metric scores of 10-100% modified outputs of Dress-LS
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EncDecA
Approach/
% modified 10 20 30 40 50 60 70 80 90 100

FKGL
random-period 5.2905 4.8237 4.3576 3.8938 3.4304 2.9668 2.8942 2.4334 2.3618 1.9012

random-the 6.1272 6.1077 6.0884 6.0696 6.0507 6.0319 6.0138 5.9956 5.9777 5.9600
replace-longest 5.6413 5.5258 5.4092 5.2943 5.1792 5.0623 4.9459 4.8306 4.7143 4.5984

replace-rand-period 5.2958 4.8351 4.3718 3.9104 3.4496 2.9878 2.9127 2.4525 2.3804 1.9200
replace-rand-the 5.8045 5.8418 5.7950 5.7942 5.8163 5.8146 5.8060 5.7801 5.7838 5.7498
random-period

+replace-longest
5.1811 4.6057 4.0323 3.4621 2.8906 2.3232 2.1496 1.5827 1.4098 0.8463

SARI
random-period 0.3598 0.3597 0.3595 0.3594 0.3592 0.3591 0.3590 0.3588 0.3587 0.3586

random-the 0.3599 0.3598 0.3597 0.3596 0.3596 0.3595 0.3595 0.3594 0.3593 0.3593
replace-longest 0.3600 0.3599 0.3599 0.3598 0.3598 0.3597 0.3598 0.3597 0.3597 0.3597

replace-rand-period 0.3598 0.3596 0.3593 0.3591 0.3590 0.3587 0.3585 0.3583 0.3582 0.3580
replace-rand-the 0.3599 0.3597 0.3596 0.3594 0.3593 0.3591 0.3589 0.3588 0.3587 0.3585
random-period

+replace-longest
0.3598 0.3597 0.3595 0.3593 0.3592 0.3590 0.3590 0.3589 0.3588 0.3587

BLEU
random-period 0.2085 0.2052 0.2019 0.1987 0.1954 0.1921 0.1891 0.1858 0.1827 0.1796

random-the 0.2087 0.2056 0.2024 0.1994 0.1964 0.1935 0.1905 0.1875 0.1844 0.1815
replace-longest 0.2098 0.2075 0.2053 0.2031 0.2007 0.1986 0.1964 0.1941 0.1918 0.1895

replace-rand-period 0.2088 0.2058 0.2025 0.1994 0.1966 0.1932 0.1903 0.1871 0.1841 0.1808
replace-rand-the 0.2089 0.2057 0.2027 0.1995 0.1965 0.1933 0.1900 0.1870 0.1837 0.1805
random-period

+replace-longest
0.2068 0.2019 0.1967 0.1917 0.1869 0.1817 0.1768 0.1721 0.1670 0.1621

Table 5: Metric scores of 10-100% modified outputs of EncDecA

Hybrid
Approach/
% modified 10 20 30 40 50 60 70 80 90 100

FKGL
random-period 4.2706 3.7659 3.2634 3.1522 2.6543 2.5450 2.0501 1.9458 1.4523 1.3512

random-the 4.7434 4.7118 4.6808 4.6503 4.6204 4.5907 4.9520 4.9236 4.8950 4.8678
replace-longest 4.6108 4.4474 4.2792 4.1167 3.9492 3.7866 3.6211 3.4546 3.2903 3.1241

replace-rand-period 4.2884 3.7986 3.3114 3.2161 2.7283 2.5598 2.1379 2.0364 1.5465 1.4524
replace-rand-the 4.7282 4.6833 4.6363 4.5903 4.5449 4.4997 4.4539 4.4070 4.3613 4.3104
random-period

+replace-longest
4.1234 3.4704 2.8198 2.5699 1.9268 1.6807 1.0422 0.7992 0.1686 -0.0665

SARI
random-period 0.3470 0.3469 0.3469 0.3468 0.3468 0.3467 0.3467 0.3466 0.3466 0.3465

random-the 0.3471 0.3471 0.3471 0.3471 0.3471 0.3472 0.3472 0.3472 0.3472 0.3473
replace-longest 0.3471 0.3471 0.3472 0.3472 0.3472 0.3473 0.3473 0.3473 0.3474 0.3474

replace-rand-period 0.3470 0.3469 0.3468 0.3467 0.3466 0.3466 0.3465 0.3464 0.3463 0.3462
replace-rand-the 0.3470 0.3470 0.3470 0.3470 0.3469 0.3469 0.3469 0.3469 0.3468 0.3468
random-period

+replace-longest
0.3470 0.3470 0.3471 0.3471 0.3471 0.3471 0.3471 0.3471 0.3471 0.3471

BLEU
random-period 0.1069 0.1054 0.1042 0.1026 0.1004 0.0981 0.0959 0.0939 0.0917 0.0898

random-the 0.1071 0.1059 0.1047 0.1033 0.1015 0.0994 0.0975 0.0956 0.0938 0.0919
replace-longest 0.1069 0.1055 0.1043 0.1028 0.1016 0.1002 0.0989 0.0975 0.0962 0.0948

replace-rand-period 0.1063 0.1043 0.1025 0.1006 0.0984 0.0965 0.0944 0.0926 0.0904 0.0883
replace-rand-the 0.1063 0.1042 0.1022 0.1004 0.0984 0.0962 0.0941 0.0921 0.0898 0.0879
random-period

+replace-longest
0.1059 0.1036 0.1012 0.0986 0.0957 0.0924 0.0895 0.0866 0.0836 0.0806

Table 6: Metric scores of 10-100% modified outputs of Hybrid
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Dress
Approach/
% modified 10 20 30 40 50 60 70 80 90 100

FKGL
random-period 4.4416 3.9367 3.4778 2.9987 2.5223 2.4322 1.9566 1.8709 1.3976 1.3138

random-the 4.9011 4.8782 4.8557 4.8336 4.8115 4.7899 4.7686 5.1378 5.1166 5.0966
replace-longest 4.7838 4.6432 4.5021 4.3628 4.2182 4.0781 3.9378 3.7971 3.6582 3.5147

replace-rand-period 4.3679 3.7817 3.4981 3.0221 2.5450 2.4596 1.9872 1.8958 1.4210 1.3311
replace-rand-the 4.8922 4.8580 4.8276 4.7936 4.7614 4.7301 4.6980 4.6648 4.6344 4.5964
random-period

+replace-longest
4.3096 3.3390 3.0860 2.4810 1.8723 1.6601 1.0603 0.8498 0.2588 0.0536

SARI
random-period 0.3621 0.3618 0.3616 0.3614 0.3612 0.3610 0.3608 0.3607 0.3605 0.3603

random-the 0.3622 0.3620 0.3619 0.3617 0.3616 0.3615 0.3614 0.3613 0.3612 0.3611
replace-longest 0.3622 0.3621 0.3620 0.3620 0.3619 0.3618 0.3618 0.3617 0.3617 0.3617

replace-rand-period 0.3620 0.3617 0.3614 0.3612 0.3609 0.3607 0.3605 0.3601 0.3599 0.3597
replace-rand-the 0.3621 0.3619 0.3617 0.3615 0.3613 0.3612 0.3609 0.3608 0.3607 0.3605
random-period

+replace-longest
0.3620 0.3618 0.3615 0.3613 0.3612 0.3609 0.3608 0.3606 0.3604 0.3603

BLEU
random-period 0.2230 0.2187 0.2145 0.2104 0.2062 0.2021 0.1979 0.1941 0.1902 0.1864

random-the 0.2233 0.2193 0.2156 0.2116 0.2078 0.2041 0.2005 0.1969 0.1931 0.1895
replace-longest 0.2243 0.2214 0.2183 0.2156 0.2124 0.2095 0.2066 0.2034 0.2004 0.1974

replace-rand-period 0.2234 0.2196 0.2156 0.2121 0.2080 0.2041 0.2005 0.1964 0.1925 0.1889
replace-rand-the 0.2234 0.2198 0.2158 0.2120 0.2080 0.2043 0.2003 0.1964 0.1926 0.1886
random-period

+replace-longest
0.2208 0.2142 0.2078 0.2015 0.1954 0.1887 0.1826 0.1761 0.1700 0.1638

Table 7: Metric scores of 10-100% modified outputs of Dress

PBMT-R
Approach/
% modified 10 20 30 40 50 60 70 80 90 100

FKGL
random-period 7.5360 7.0897 6.2541 5.8091 5.3639 4.9187 4.4746 4.4210 3.9773 3.5354

random-the 8.7462 8.7303 8.7147 8.6992 8.6838 8.6684 8.6535 8.6384 8.6233 8.6087
replace-longest 8.2773 8.1807 8.0855 7.9908 7.8946 7.7988 7.7028 7.6075 7.5115 7.4150

replace-rand-period 7.6177 7.0975 6.2632 5.8203 5.3775 4.9330 4.4944 4.3366 3.9970 3.5487
replace-rand-the 8.3526 8.3343 8.3227 8.3330 8.3251 8.2865 8.3119 8.3015 8.3143 8.3201
random-period

+replace-longest
7.4441 6.9062 5.9773 5.4449 4.9073 4.3749 3.8442 3.7010 3.1695 2.6411

SARI
random-period 0.3568 0.3566 0.3565 0.3563 0.3562 0.3560 0.3559 0.3557 0.3556 0.3555

random-the 0.3568 0.3568 0.3567 0.3566 0.3565 0.3565 0.3564 0.3564 0.3563 0.3562
replace-longest 0.3568 0.3566 0.3564 0.3563 0.3562 0.3560 0.3559 0.3558 0.3557 0.3556

replace-rand-period 0.3566 0.3564 0.3561 0.3559 0.3556 0.3554 0.3553 0.3550 0.3548 0.3546
replace-rand-the 0.3567 0.3565 0.3564 0.3561 0.3560 0.3558 0.3557 0.3555 0.3554 0.3553
random-period

+replace-longest
0.3566 0.3564 0.3561 0.3558 0.3556 0.3554 0.3552 0.3549 0.3549 0.3546

BLEU
random-period 0.1751 0.1730 0.1709 0.1689 0.1668 0.1647 0.1628 0.1608 0.1588 0.1567

random-the 0.1752 0.1732 0.1711 0.1692 0.1674 0.1655 0.1637 0.1617 0.1598 0.1580
replace-longest 0.1754 0.1736 0.1718 0.1700 0.1682 0.1664 0.1647 0.1628 0.1611 0.1592

replace-rand-period 0.1751 0.1732 0.1710 0.1691 0.1670 0.1650 0.1631 0.1610 0.1590 0.1571
replace-rand-the 0.1752 0.1732 0.1713 0.1691 0.1673 0.1651 0.1632 0.1611 0.1590 0.1571
random-period

+replace-longest
0.1736 0.1701 0.1664 0.1628 0.1593 0.1559 0.1523 0.1487 0.1454 0.1418

Table 8: Metric scores of 10-100% modified outputs of PBMT-R
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Percent Modified 0 100
Approach random-

period
random-
the

replace-
longest

replace-
rand-
period

replace-
rand-the

random-
period
+replace-
longest

Dress-Ls
1-gram 0.4590 0.4300 0.4394 0.4468 0.4340 0.4428 0.4186
2-gram 0.2638 0.2289 0.2301 0.2339 0.2289 0.2276 0.2026
3-gram 0.1896 0.1496 0.1509 0.1581 0.1511 0.1497 0.1249
4-gram 0.1384 0.0997 0.1003 0.1074 0.1016 0.1003 0.0763
EncDecA
1-gram 0.4156 0.4300 0.4394 0.4468 0.4340 0.4428 0.4186
2-gram 0.2373 0.2281 0.2300 0.2339 0.2291 0.2275 0.2037
3-gram 0.1686 0.1495 0.1518 0.1581 0.1516 0.1501 0.1265
4-gram 0.1212 0.0990 0.1014 0.1074 0.1019 0.1005 0.0787
Hybrid
1-gram 0.3708 0.4300 0.4394 0.4468 0.4339 0.4432 0.4186
2-gram 0.1328 0.2281 0.2298 0.2339 0.2286 0.2275 0.2038
3-gram 0.0710 0.1494 0.1517 0.1581 0.1509 0.1501 0.1268
4-gram 0.0442 0.0991 0.1015 0.1074 0.1012 0.1007 0.0794
Dress
1-gram 0.4517 0.4300 0.4394 0.4468 0.4336 0.4432 0.4186
2-gram 0.2537 0.2282 0.2299 0.2339 0.2286 0.2281 0.2038
3-gram 0.1800 0.1499 0.1516 0.1581 0.1507 0.1500 0.1266
4-gram 0.1292 0.0998 0.1016 0.1074 0.1010 0.1005 0.0790
PBMT-R
1-gram 0.3577 0.4300 0.4394 0.4468 0.4340 0.4428 0.4186
2-gram 0.2020 0.2280 0.2299 0.2339 0.2289 0.2274 0.2039
3-gram 0.1392 0.1492 0.1518 0.1581 0.1514 0.1500 0.1270
4-gram 0.0979 0.0990 0.1014 0.1074 0.1016 0.1008 0.0796

Table 9: BLEU score breakdown (1-, 2-, 3- and 4-gram scores) for all combination of systems and modification
approaches
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Percent Modified 0 100
Approach random-

period
random-
the

replace-
longest

replace-
rand-
period

replace-
rand-
the

random-
period
+replace-
longest

Dress-Ls
1-gram
Add F1 0.0382 0.0382 0.0518 0.0505 0.0371 0.0504 0.0505
Keep F1 0.1181 0.1181 0.1169 0.1181 0.1186 0.1174 0.1181
Delete P 0.9740 0.9740 0.9741 0.9722 0.9718 0.9717 0.9722
2-gram
Add F1 0.0370 0.0345 0.0322 0.0319 0.0323 0.0311 0.0285
Keep F1 0.0742 0.0739 0.0740 0.0751 0.0736 0.0735 0.0746
Delete P 0.9805 0.9798 0.9800 0.9794 0.9788 0.9787 0.9784
3-gram
Add F1 0.0263 0.0229 0.0215 0.0215 0.0221 0.0211 0.0173
Keep F1 0.0573 0.0570 0.0573 0.0588 0.0569 0.0569 0.0582
Delete P 0.9850 0.9841 0.9844 0.9843 0.9837 0.9836 0.9832
4-gram
Add F1 0.0189 0.0155 0.0145 0.0150 0.0154 0.0143 0.0112
Keep F1 0.0450 0.0446 0.0450 0.0463 0.0448 0.0447 0.0455
Delete P 0.9885 0.9876 0.9879 0.9878 0.9874 0.9874 0.9869
EncDecA
1-gram
Add F1 0.0382 0.0382 0.0518 0.0505 0.0372 0.0511 0.0505
Keep F1 0.1181 0.1181 0.1169 0.1181 0.1188 0.1174 0.1181
Delete P 0.9740 0.9740 0.9741 0.9722 0.9719 0.9718 0.9722
2-gram
Add F1 0.0387 0.0343 0.0317 0.0319 0.0333 0.0316 0.0289
Keep F1 0.0744 0.0738 0.0739 0.0751 0.0736 0.0736 0.0748
Delete P 0.9812 0.9798 0.9800 0.9794 0.9788 0.9788 0.9785
3-gram
Add F1 0.0293 0.0228 0.0217 0.0215 0.0223 0.0215 0.0174
Keep F1 0.0576 0.0570 0.0571 0.0588 0.0570 0.0568 0.0586
Delete P 0.9859 0.9841 0.9843 0.9843 0.9837 0.9836 0.9833
4-gram
Add F1 0.0219 0.0154 0.0148 0.0150 0.0150 0.0147 0.0113
Keep F1 0.0454 0.0449 0.0450 0.0463 0.0448 0.0448 0.0459
Delete P 0.9893 0.9877 0.9879 0.9878 0.9874 0.9874 0.9870
Hybrid
1-gram
Add F1 0.0382 0.0382 0.0518 0.0505 0.0365 0.0511 0.0505
Keep F1 0.1181 0.1181 0.1169 0.1181 0.1186 0.1174 0.1181
Delete P 0.9740 0.9740 0.9741 0.9722 0.9718 0.9717 0.9722
2-gram
Add F1 0.0387 0.0339 0.0319 0.0319 0.0324 0.0312 0.0286
Keep F1 0.0744 0.0739 0.0740 0.0751 0.0732 0.0734 0.0744
Delete P 0.9812 0.9798 0.9800 0.9794 0.9787 0.9787 0.9784
3-gram
Add F1 0.0293 0.0225 0.0215 0.0215 0.0215 0.0210 0.0177
Keep F1 0.0576 0.0571 0.0571 0.0588 0.0563 0.0567 0.0579
Delete P 0.9859 0.9841 0.9843 0.9843 0.9835 0.9836 0.9832
4-gram
Add F1 0.0219 0.0153 0.0145 0.0150 0.0144 0.0142 0.0116
Keep F1 0.0454 0.0451 0.0449 0.0463 0.0440 0.0446 0.0452
Delete P 0.9893 0.9877 0.9879 0.9878 0.9873 0.9874 0.9869
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Percent Modified 0 100
Approach random-

period
random-
the

replace-
longest

replace-
rand-
period

replace-
rand-
the

random-
period
+replace-
longest

Dress
1-gram
Add F1 0.0382 0.0382 0.0518 0.0505 0.0369 0.0511 0.0505
Keep F1 0.1181 0.1181 0.1169 0.1181 0.1187 0.1174 0.1181
Delete P 0.9740 0.9740 0.9741 0.9722 0.9718 0.9717 0.9722
2-gram
Add F1 0.0387 0.0340 0.0324 0.0319 0.0324 0.0317 0.0287
Keep F1 0.0744 0.0738 0.0739 0.0751 0.0735 0.0735 0.0745
Delete P 0.9812 0.9797 0.9800 0.9794 0.9788 0.9787 0.9784
3-gram
Add F1 0.0293 0.0224 0.0215 0.0215 0.0218 0.0216 0.0173
Keep F1 0.0576 0.0568 0.0571 0.0588 0.0567 0.0568 0.0579
Delete P 0.9859 0.9841 0.9843 0.9843 0.9836 0.9836 0.9832
4-gram
Add F1 0.0219 0.0151 0.0147 0.0150 0.0146 0.0147 0.0113
Keep F1 0.0454 0.0446 0.0450 0.0463 0.0445 0.0445 0.0452
Delete P 0.9893 0.9876 0.9878 0.9878 0.9874 0.9873 0.9869
PBMT-R
1-gram
Add F1 0.0382 0.0382 0.0518 0.0505 0.0368 0.0509 0.0505
Keep F1 0.1181 0.1181 0.1169 0.1181 0.1187 0.1172 0.1181
Delete P 0.9740 0.9740 0.9741 0.9722 0.9718 0.9716 0.9722
2-gram
Add F1 0.0387 0.0337 0.0320 0.0319 0.0327 0.0311 0.0288
Keep F1 0.0744 0.0739 0.0740 0.0751 0.0736 0.0731 0.0746
Delete P 0.9812 0.9798 0.9800 0.9794 0.9788 0.9786 0.9784
3-gram
Add F1 0.0293 0.0223 0.0216 0.0215 0.0220 0.0207 0.0177
Keep F1 0.0576 0.0571 0.0572 0.0588 0.0568 0.0564 0.0581
Delete P 0.9859 0.9842 0.9843 0.9843 0.9837 0.9835 0.9832
4-gram
Add F1 0.0219 0.0148 0.0145 0.0150 0.0151 0.0137 0.0116
Keep F1 0.0454 0.0447 0.0449 0.0463 0.0447 0.0442 0.0454
Delete P 0.9893 0.9877 0.9878 0.9878 0.9874 0.9873 0.9869

Table 10: SARI score breakdown (F1 and precision scores used in the score calculation for 1-, 2-, 3- and 4-gram)
for all combination of systems and modification approaches (long table spanning two pages)
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Abstract

We take a collection of short texts, some of
which are human-written, while others are au-
tomatically generated, and ask subjects, who
are unaware of the texts’ source, whether they
perceive them as human-produced. We use
this data to fine-tune a GPT-2 model to push
it to generate more human-like texts, and ob-
serve that the production of this fine-tuned
model is indeed perceived as more human-
like than that of the original model. Con-
textually, we show that our automatic evalua-
tion strategy correlates well with human judge-
ments. We also run a linguistic analysis to un-
veil the characteristics of human- vs machine-
perceived language.

1 Introduction

Pre-trained language models, such as the BERT
(Devlin et al., 2019) and the GPT (Radford et al.,
2018, 2019) families, are nowadays the core com-
ponent of NLP systems. These models, based on
the Transformer (Vaswani et al., 2017) and trained
using huge amounts of crawl data (which can con-
tain substantial noise), have been shown to produce
high quality text, more often than not judged as
human-written (Radford et al., 2019; De Mattei
et al., 2020; Brown et al., 2020). Existing eval-
uations of GPT-2 models (Ippolito et al., 2020;
De Mattei et al., 2020) have shown that while
generated sentences were ranked lower in human
perception than gold sentences, many gold sen-
tences were also not perceived as human-like. To

Author contribution note: Lorenzo De Mattei and
Huiyuan Lai contributed equally.

make the model produce more human-like texts
one could train it only on gold data which is highly
perceived as human, but such data is costly, and full
model retraining is often a computationally non-
viable option. As an alternative route, we explore
whether and how an existing pre-trained model can
be instead fine-tuned to produce more humanly-
perceived texts, and how to evaluate this potentially
shifted behaviour.

We see the advantage of this experiment at least
in two ways. One is that the generation of more
human-like texts is highly beneficial for specific
applications, as for example human-machine in-
teraction in dialogues; the other is that it opens
the opportunity to investigate what linguistic as-
pects make a text more humanly-perceived. We run
our experiments on Italian, using GePpeTto (De
Mattei et al., 2020) as pre-trained model. First,
we collect human judgements on gold texts and
texts generated by GePpeTto in terms of how they
are perceived (human or automatically produced).
We then fine-tune GePpeTto with this perception-
labelled data. In addition, inspired by the classifier-
based reward used in style transfer tasks (Lample
et al., 2019; Gong et al., 2019; Luo et al., 2019;
Sancheti et al., 2020), we reward the model to
push its classification confidence. We evaluate the
new perception-enhanced models in comparison
with the original GePpeTto by running both an
automatic as well as a human evaluation on out-
put generated by the various models. Lastly, we
conduct a linguistic analysis to highlight which lin-
guistic characteristics are more commonly found
in human- and machine-perceived text.
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Contributions We show that a GPT-2 pre-
trained model can be fine-tuned to produce text that
is perceived as more human, and we release this
model for Italian. Second, we provide a stronger
automatic evaluation method where training is done
on perception labels rather than the actual source,
which yields results that correlate with human judg-
ments, providing a different angle for automatic
evaluation of generated sentences. Lastly, we run a
linguistic analysis of the humanly-perceived texts
that can open up to new opportunities for under-
standing and model human-like perception.

2 Data

We collected human judgments over a series of gold
and generated sentences in terms of how much a
given text is perceived as human-like. The obtained
labelled data is used to fine-tune our base model
towards generating more humanly-perceived texts;
it is also used to test the resulting models through
an automatic evaluation strategy that we implement
next to human judgements.

Training Data From the original GePpeTto’s
training corpus (De Mattei et al., 2020), we col-
lected 1400 random gold sentences in the following
way. We sentence split all the documents and we
picked the first sentence of each document. In order
to allow for length variation, which has an impact
on perception, we selected the first 200 sentences
with length 10, 15, 20, 25, 30, 35 and 40 tokens.

We also let GePpeTto generate texts starting
with the first word of randomly selected documents,
we sentence-split the generated texts, and select the
first 200 sentences with length 10, 15, 20, 25, 30,
35 and 40 tokens. This procedure creates a training
set with perception labels containing a total of 2800
instances (1400 gold and 1400 generated).

We asked native Italian speakers if they felt the
text they were seeing had been written, on a 1–5
Likert Scale, by a human (1) or a machine (5). Each
texts was assessed by 7 different judges. The sub-
jects for the task were laypeople recruited via the
crowdsourcing platform Prolific1. We did not con-
trol for, and thus did not elicit, any demographic
features. As a proxy for attention and quality con-
trol, we used completion time, and filtered out par-
ticipants who took too little time to perform the
task (we set a threshold of at least 5 minutes for 70
assessments as a reliable minimum effort).2

1https://www.prolific.co/
2Crowdworkers were compensated with a rate of £5.04 per

Mapping the average of human judgements to
a binary classification (human if < 3), we obtain
the matrix in Tab. 1 showing perception labels and
the actual source labels. While human texts are
more often perceived as human-like than machine-
generated ones, the matrix shows that 44.2% of
the texts are perceived as artificial, suggesting that
a good portion of the training data might lead to
generation that is not so much human-like. We
train two classifiers on 80% of this data on the task
of detecting human-like perception and that of de-
tecting the actual source. The classifiers are built
adding a dropout (Srivastava et al., 2014) and a
dense layer on the top of UmBERTo3, which is a
Roberta (Liu et al., 2019) based Language Model
trained on large Italian corpora. We train them us-
ing Adam (Kingma and Ba, 2015), initial learning
rate 1e-5, and batch size 16. On the remaining
20% of the data we obtain F=0.97 for the source
identification task, and F=0.92 for the perception
task, showing the feasibility of the classification
and thus the possibility of using these classifiers
for evaluation (Section 4).

AI-perceived humanly-perceived

GePpeTto 62.3% 37.7%
Gold 44.2% 55.8%

Table 1: Source vs perception matrix (training data).

Test Data We use 1400 sentences: 350 are pro-
duced by humans, 1050 are generated (350 for each
of the three models we use, see Section 3). As for
training, human texts were selected picking the first
50 sentences with 10, 15, 20, 25, 30, 35 and 40 to-
kens. For each system, we also picked the first
50 generated sentences with length 10, 15, 20, 25,
30, 35 and 40 tokens. Each of the 1400 sentences
was assessed by 5 users, on a 1–5 Likert scale, as
human- or artificial-like.

3 Models

We use three models for text generation, all based
on the GPT-2 architecture (Radford et al., 2019).
The basic model is GePpeTto, a GPT-2-based
model for Italian released by (De Mattei et al.,
2020). The others are built on GePpeTto using

estimated hour. In practice, tasks were completed in a shorter
time than estimated, so the hourly rate was a bit higher.

3https://huggingface.co/Musixmatch/
umberto-commoncrawl-cased-v1
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the perception-labelled data in fine-tuning and in a
reinforcement learning setting.

3.1 GePpeTto

GePpeTto is built using GPT-2 base architecture
with 12 layers and 117M parameters. GePpeTto is
trained on two main sources: a dump of Italian
Wikipedia, consisting of 2.8GB of text; and the
ItWac corpus (Baroni et al., 2009), which amounts
to 11GB of web texts. De Mattei et al. (2020)
show that GePpeTto is able to produce text which
is much closer to human quality rather than to the
text generated by other baseline models. Still, real
human-produced text is recognised as such more
often than GePpeTto’s output.

3.2 GePpeTto fine-tuned

Using the original settings of GePpeTto, the model
is fine-tuned on the training portion of the humanly-
perceived sentences of the perception-labelled data
(Tab. 1), using the Huggingface implementation
(Wolf et al., 2020).4. We use the Adam optimiser
(Kingma and Ba, 2015) with initial learning rate
2e-5. The mini-batch size is set to 8. During fine-
tuning, we set an early stopping with patience 5 if
the performance on validation does not improve.5

The resulting model should produce text recog-
nised more frequently as human-produced than the
original GePpeTto.

3.3 GePpeTto rewarded

To further encourage GePpeTto-F to generate
more humanly-perceived texts, we introduce a con-
fidence reward based on the ‘perception classifier’
(PC) described in Section 2: the model gets re-
warded for generating more human-like text. The
PC’s confidence is formulated as

Rcon f = so f tmax0(PC(y′, θ)) (1)

where θ are the PC’s parameters, fixed during fine-
tuning GePpeTto . Formally, the confidence is

4In preliminary experiments, we also fine-tuned
GePpeTto on a larger silver data-set obtained by letting
the perception classifier select what it deemed are human-
perceived texts from GePpeTto’s training set. The results
of our automatic evaluation were however not encouraging,
suggesting that the increased performance we obtain with the
fine-tuned model is indeed ascribable to manually labelled
gold data.

5Due to small training size, we validate against silver
data obtained by labelling generated and gold text with our
perception-classifier.

used for policy learning that maximizes the ex-
pected reward E[R] of the generated sequence; the
corresponding policy gradient is formulated as

∇φE(R) = ∇φ
∑

k

(P(ys
t |ys

1:t−1; φ))Rk (2)

where φ are the parameters of GePpeTto, and Rk is
the reward of the kth sequence ys sampled from the
distribution of model’s outputs at each time step
in decoding. The framework can be trained end-
to-end by combining the policy gradient with the
cross entropy loss of the base model.

4 Evaluation

We run both a human and an automatic evaluation,
in line with Ippolito et al. (2020)’s and Hashimoto
et al. (2019)’s suggestions in terms of evaluation’s
diversity and quality. For the automatic evaluation,
we train a regressor on the perception-labelled data
(with the original 1–5 values) adding a dropout
(Srivastava et al., 2014) and a dense layer on the
top of UmBERTo. We use Adam (Kingma and Ba,
2015) with initial learning rate is 1e-5, and set the
batch size to 16. We calculate the correlation of
the regressor’s scores with human judgements over
each single data point in the test set (N=1400), and
observe good scores (Pearson=0.54 (p < 10−4) and
RMSE=0.75).

For the human evaluation, we assign to each sen-
tence the average score computed over all human
judgements. We then average all resulting scores
over the seven length bins. Results are shown in
two tables, as follows.

First, as we did for the training data (see Table 1),
we mapped the average of human judgements to
a binary classification (human if< 3), and obtain
the matrix in Table 2. This shows perception labels
and the actual source labels for the three models
and gold data. We see that the human produced
texts are the most humanly-perceived, but both the
fine-tuned and the rewarded model produced texts
that are more humanly-perceived than GePpeTto,
with the fine-tuned model performing better than
the rewarded one.

Second, Table 3 shows the average score
over all length bins for the four models:
GePpeTto, GePpeTto fine-tuned (GePpeTto-F),
GePpeTto rewarded (GePpeTto-R) and the origi-
nal human texts (Human). This table also reports
the average scores over all lengths as assigned by
the regressor.6 The closer to 1, the more humanly-

6Detailed results per length are Appendix Tables A.1-A.2.
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perceived the sentence.

AI-perceived humanly-perceived

GePpeTto 61.1% 38.96%
GePpeTto-F 55.7% 44.3%
GePpeTto-R 59.1% 40.9%
Gold 37.4% 62.6%

Table 2: Source vs perception matrix (test data).

model humans (std) regressor (std)

GePpeTto 2.85 (0.83) 2.74 (0.71)
GePpeTto-F 2.74 (0.83) 2.49 (0.55)
GePpeTto-R 2.84 (0.87) 2.56 (0.57)
Human 2.41 (0.77) 2.47 (0.66)

avg 2.71 (0.85) 2.57 (0.63)

Table 3: Scores for each system as evaluated by hu-
mans and by the regressor, averaged over test set in-
stances and thus over all sentence lengths.

As a first observation, in both the human and the
automatic evaluations the final rank for the systems
is the same, showing the reliability of the automatic
evaluation. The gold texts are perceived as most
human-like by humans (score: 2.41) and by the
regressor (score: 2.47). Regarding systems, the
fine-tuned model (GePpeTto-F) performs better
than both the basic and the rewarded model.

To compare the overall performance of machine
vs humans, in Fig 1 we plot the average perfor-
mance of the three models per length as judged by
humans (blue) and the regressor (red). These two
lines are compared with gold texts, again assessed
by humans (yellow) and the regressor (green).

Comparing the models and the humans as as-
sessed by humans (lines blue and yellow) we see
that while for short sentences humans perceive the
generated and the natural texts equally human-like,
this changes substantially for longer fragments. At
length 40, we observe the largest gap in perception
between the models and the natural texts, with the
latter being perceived much more human-like.

In terms of machine-based evaluation (lines red
and green), the behaviour of the BERT regressor
on human data is very similar to the human judge-
ments (line green vs yellow). Although the two
curves are similar also for the texts generated by
the models, the regressor here overestimates as
human-produced texts that are actually machine
generated (line red vs blue). This is potentially due

Figure 1: Average perception scores for human vs ma-
chine generated texts as assessed by humans and our
regressor. In legend: <producer-assessor>. Machine
scores are averaged across the three models.

to the fact that GePpeTto-F and GePpeTto-R use
the same (human labelled) training data for fine-
tuning which is used to train the regressor model.
This phenomenon appears exacerbated with longer
texts, as the blue and red lines are more distant
after length 20.7 This behaviour of the regressor is
also reflected by its scores being more compressed
towards the middle. Indeed, the average standard
deviations in Table 3, show higher variability in hu-
man judgements than in the regressor’s assessment.
In Table 4 same examples of generated sentences
together with their scores are reported.

5 Linguistic Analysis

We ran a linguistic analysis over the human and the
generated text using Profiling-UD (Brunato et al.,
2020), a tool that extracts linguistic features of vary-
ing complexity, ranging from raw text aspects, such
as average length of words and sentences, to lexi-
cal, morpho-syntactic, and syntactic properties. In
particular, we study (i) which features characterise
the most humanly-perceived texts in the training
data, independently of who generated them; (ii)
the difference between human-produced texts and
those generated by our best model (GePpeTto-F)
in the test set when they are perceived as human.8

Regarding (i), the features that most correlate
with a text being perceived as human have to do
with sentence length and complexity. For example,
the longer the sentence or the clauses therein, or
the longer and deeper the syntactic links, the more
humanly-perceived is the text. On the other side of
the spectrum, linguistic features associated to texts

7The detailed tables in the Appendix further show this
divergence with specific scores per model.

8Findings summarised; detailed correlations in Appendix.
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model output human-score regressor-score

Human

La ex Chiesa di Santa Caterina del Monte di Pietà era una chiesa cattolica
che si trova ad Alcamo, in provincia di Trapani. (The former Church
of Santa Caterina del Monte di Pietà was a Catholic church located in
Alcamo, in the province of Trapani.)

1.71 1.88

GePpeTto-F

La nuova sede fu inaugurata il 19 luglio 1885 e inaugurata ufficialmente
il 30 novembre 1889, giorno in cui fu completata la facciata. (The new
headquarters were inaugurated on July 19, 1885 and officially inaugurated
on November 30, 1889, the day the facade was completed.)

1.86 2.34

GePpeTto-R

La casa si trova in una posizione favorevole all’espansione del mercato
e, in alcuni casi, alla costruzione di tende per bambini. (The house is in
a favorable position for the expansion of the market and, in some cases,
for the construction of children’s tents.)

3.14 2.68

GePpeTto

La squadra era composta di due squadre, una delle quali era la
”Rhodesliga” con il termine del ”Propaganda Fiumana”. (The team
was made up of two teams, one of which was the ”Rhodesliga” with the
term of ”Propaganda Fiumana”.)

3.15 3.07

Table 4: Sample model outputs and their sentence-level score. Prompt: “La” (“The[ f eminine]”).

judged as machine-generated are heavy presence
of punctuation and of interjections and symbols.

For (ii), we zoom in on humanly-perceived texts
only, but looking at the source that generated them.
For human texts, length and complexity are still
the relevant features for being perceived as human;
these are proxied by complex verbal structures char-
actersied by auxiliaries, use of past tense, number
of main predicates in a sentence. For the generated
texts, instead, we observe that both those charac-
teristics that are similar to the human texts, such as
the use of the indicative mood and finite tenses, as
well as those more specific to machine-generated
texts, such as a low density of subordinate clauses
and shorter sentences, are simpler structures where
it is more likely that the machine does not incur ev-
ident mistakes: it is easier for the model to produce
human looking sentences if they are kept short and
simple. With longer sentences the model struggles
to ensure semantic and pragmatic coherence, two
aspects that most likely require further and more
complex modelling beyond simple fine-tuning.

6 Conclusions

We elicited judgements on the human-likeness of
gold and generated Italian texts and used these
judgements to fine-tune a pre-trained GPT-2 model
to push it to produce more human-like texts. Our
evaluation shows that people indeed find the output
of the fine-tuned model more human-like than that
of the basic one. Contextually, we show that our
proposed automatic evaluation correlates well with
human judgements, and it is therefore a reliable
strategy that can be applied in absence of subjects.

An analysis of linguistic features reveals that
while complexity is associated with human-
likeness in gold data, simplicity is a key feature
of artificial texts that are assessed as human-like,
perhaps because simpler texts are less prone to ex-
pose machine behaviour.

Future work will include an expansion of the
perception-labelled data to (i) assess training size
in fine-tuning, and (ii) perform a finer-grained anal-
ysis correlating assessments to different text genres
and subject demographics.

Impact Statement

All work that automatically generates text could un-
fortunately be used maliciously. While we cannot
fully prevent such uses once our models are made
public, we do hope that writing about risks explic-
itly and also raising awareness of this possibility in
the general public are ways to contain the effects of
potential harmful uses. We are open to any discus-
sion and suggestions to minimise such risks. The
contributors of human judgements elicited for this
work have been fairly compensated.

Acknowledgements

We would like to thank the Center for Information
Technology of the University of Groningen for their
support and for providing access to the Peregrine
high performance computing cluster. We are also
grateful to the anonymous GEM reviewers whose
comments contributed to improving this paper.

19



References
Marco Baroni, Silvia Bernardini, Adriano Ferraresi,

and Eros Zanchetta. 2009. The wacky wide web: a
collection of very large linguistically processed web-
crawled corpora. Language Resources and Evalua-
tion, 43(3):209–226.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Dominique Brunato, Andrea Cimino, Felice
Dell’Orletta, Giulia Venturi, and Simonetta
Montemagni. 2020. Profiling-ud: a tool for linguis-
tic profiling of texts. In Proceedings of The 12th
Language Resources and Evaluation Conference,
pages 7145–7151.

Lorenzo De Mattei, Michele Cafagna, Felice
Dell’Orletta, Malvina Nissim, and Marco Guerini.
2020. Geppetto carves italian into a language model.
In Proceedings of the Seventh Italian Conference on
Computational Linguistics, CLiC-it 2020, Bologna,
Italy, March 1-3, 2021, volume 2769 of CEUR
Workshop Proceedings. CEUR-WS.org.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Hongyu Gong, Suma Bhat, Lingfei Wu, JinJun Xiong,
and Wen-mei Hwu. 2019. Reinforcement learning
based text style transfer without parallel training
corpus. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3168–3180.

Tatsunori B. Hashimoto, Hugh Zhang, and Percy
Liang. 2019. Unifying human and statistical eval-
uation for natural language generation. CoRR,
abs/1904.02792.

Daphne Ippolito, Daniel Duckworth, Chris Callison-
Burch, and Douglas Eck. 2020. Automatic detec-
tion of generated text is easiest when humans are

fooled. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1808–1822, Online. Association for Computa-
tional Linguistics.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference for Learning
Representations.

Guillaume Lample, Sandeep Subramanian, Eric Smith,
Ludovic Denoyer, Marc’Aurelio Ranzato, and Y-
Lan Boureau. 2019. Multiple-attribute text rewrit-
ing. In International Conference on Learning Rep-
resentations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Fuli Luo, Peng Li, Jie Zhou, Pengcheng Yang, Baobao
Chang, Zhifang Sui, and Xu Sun. 2019. A dual
reinforcement learning framework for unsupervised
text style transfer. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence,
pages 5116–5122.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Abhilasha Sancheti, Kundan Krishna, Balaji Vasan
Srinivasan, and Anandhavelu Natarajan. 2020. Rein-
forced rewards framework for text style transfer. In
Advances in Information Retrieval, pages 545–560.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(56):1929–1958.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, pages 6000–6010.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
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A Appendix
This Appendix contains:

• detailed results of human and machine evaluation for gold and all models’ data (Tables A.1–A.2),
expanding the compressed results shown in Table 2 in the main paper.

• details of linguistic features (correlated with human and machine perception, Tables A3–A4) which
are discussed in Section 5 in the main paper.

Length

Tipo 10 15 20 25 30 35 40 AVG

GePpeTto 2.80 2.83 3.05 2.89 3.08 2.55 2.77 2.85 (0.83)
GePpeTto-F 2.44 2.68 2.57 2.85 2.74 2.97 2.93 2.74 (0.83)
GePpeTto-R 2.61 3.01 2.87 2.83 2.97 2.85 2.78 2.84 (0.87)
Human 2.59 2.45 2.38 2.37 2.48 2.39 2.18 2.41 (0.77)

avg 2.61 2.74 2.72 2.74 2.82 2.69 2.67 2.71 (0.85)

Table A.1: Average scores for each system grouped by sentence length as assigned by humans on the test set.

Length

Tipo 10 15 20 25 30 35 40 AVG

GePpeTto 2.79 2.78 2.88 2.80 2.76 2.53 2.68 2.74 (0.71)
GePpeTto-F 2.53 2.62 2.52 2.44 2.44 2.46 2.43 2.49 (0.55)
GePpeTto-R 2.68 2.67 2.67 2.45 2.63 2.38 2.44 2.56 (0.57)
Human 2.74 2.70 2.38 2.55 2.51 2.20 2.16 2.47 (0.66)

avg 2.68 2.69 2.61 2.56 2.59 2.39 2.43 2.57 (0.63)

Table A.2: Average scores for each system grouped by sentence length as assigned by the BERT based regressor
on the test set.
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Human Texts Generated Texts

Feature Correlation (p-values) Feature Correlation (p-values)

n tokens -0.2 (7.34e-14) upos dist NOUN -0.15 (1.08e-08)
avg max links len -0.19 (1.85e-13) dep dist compound -0.13 (2.17e-06)
max links len -0.18 (2.52e-11) subj pre -0.1 (8.90e-05)
avg max depth -0.17 (1.86e-10) prep dist 1 -0.09 (6.15e-04)
avg links len -0.13 (2.43e-06) avg prepositional chain len -0.09 (7.12e-04)
avg token per clause -0.12 (1.20e-05) n prepositional chains -0.09 (7.53e-04)
upos dist X -0.1 (1.20e-04) n tokens -0.09 (8.45e-04)
dep dist goeswith -0.1 (1.43e-04) dep dist amod -0.08 (2.37e-03)
verbal head per sent -0.1 (3.50e-04) upos dist ADJ -0.08 (2.39e-03)
subj pre -0.09 (4.07e-04) dep dist nsubj -0.08 (4.03e-03)
verbal root perc -0.09 (6.48e-04) avg max depth -0.08 (4.06e-03)
avg verb edges -0.09 (1.03e-03) avg token per clause -0.08 (4.19e-03)
obj post -0.09 (1.04e-03) dep dist case -0.07 (8.76e-03)
verbs num pers dist + -0.08 (1.54e-03) max links len -0.07 (9.10e-03)
dep dist det -0.08 (1.58e-03) verbs form dist Inf -0.07 (9.78e-03)

...

dep dist iobj 0.04 (9.89e-02) dep dist nmod:tmod 0.04 (1.15e-01)
dep dist appos 0.05 (7.38e-02) verb edges dist 1 0.04 (1.10e-01)
dep dist advcl 0.05 (7.29e-02) dep dist advmod 0.04 (1.01e-01)
dep dist flat 0.06 (1.87e-02) aux mood dist Imp 0.05 (8.17e-02)
lexical density 0.06 (1.84e-02) upos dist CCONJ 0.06 (2.98e-02)
subordinate dist 3 0.06 (1.56e-02) upos dist PROPN 0.06 (2.35e-02)
dep dist nmod:tmod 0.07 (1.38e-02) dep dist discourse 0.08 (4.42e-03)
aux form dist Inf 0.07 (9.01e-03) dep dist appos 0.08 (3.43e-03)
dep dist nummod 0.08 (2.63e-03) upos dist INTJ 0.08 (2.43e-03)
upos dist PROPN 0.11 (4.98e-05) dep dist conj 0.08 (1.61e-03)
upos dist NUM 0.12 (3.36e-06) verbs form dist Ger 0.09 (1.01e-03)
upos dist PUNCT 0.13 (2.08e-06) upos dist SYM 0.11 (4.11e-05)
upos dist SYM 0.13 (1.26e-06) dep dist root 0.11 (1.70e-05)
dep dist punct 0.14 (1.65e-07) upos dist PUNCT 0.25 (1.31e-21)
dep dist root 0.26 (2.07e-22) dep dist punct 0.25 (4.71e-22)

Table A.3: Linguistic features in training data. Generated = GePpeTto base
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Human Texts Generated Texts

Feature Correlation (p-values) Feature Correlation (p-values)

verbal root perc -0.28 (9.25e-08) principal proposition dist -0.2 (1.33e-04)
verbs tense dist Past -0.21 (6.34e-05) dep dist nsubj:pass -0.19 (3.55e-04)
upos dist DET -0.18 (8.41e-04) dep dist aux:pass -0.18 (5.71e-04)
dep dist det -0.17 (1.19e-03) dep dist root -0.18 (7.22e-04)
aux form dist Fin -0.17 (1.33e-03) aux mood dist Ind -0.18 (7.45e-04)
upos dist AUX -0.17 (1.51e-03) aux form dist Fin -0.17 (1.94e-03)
aux num pers dist Sing+3 -0.17 (1.65e-03) aux tense dist Past -0.16 (1.97e-03)
verbal head per sent -0.17 (1.79e-03) aux num pers dist Sing+3 -0.16 (2.87e-03)
aux mood dist Ind -0.16 (2.11e-03) dep dist obl:agent -0.16 (3.25e-03)
dep dist obl -0.16 (2.31e-03) verbal root perc -0.14 (7.63e-03)
dep dist expl -0.16 (2.45e-03) dep dist flat -0.13 (1.20e-02)
dep dist case -0.14 (6.99e-03) dep dist det -0.13 (1.57e-02)
aux tense dist Past -0.14 (7.98e-03) lexical density -0.12 (2.06e-02)
dep dist cop -0.13 (1.22e-02) upos dist AUX -0.12 (2.74e-02)
upos dist ADP -0.13 (1.55e-02) verb edges dist 5 -0.11 (4.33e-02)

...

dep dist flat:name 0.1 (5.16e-02) n prepositional chains 0.12 (2.02e-02)
verbs tense dist Pres 0.11 (3.77e-02) verbs num pers dist Plur+3 0.13 (1.59e-02)
verbs form dist Inf 0.11 (3.54e-02) dep dist punct 0.13 (1.48e-02)
char per tok 0.12 (2.98e-02) upos dist PUNCT 0.13 (1.40e-02)
dep dist compound 0.12 (2.40e-02) dep dist nummod 0.15 (4.12e-03)
dep dist root 0.14 (1.08e-02) dep dist conj 0.15 (3.76e-03)
upos dist PUNCT 0.14 (9.63e-03) upos dist PRON 0.16 (3.56e-03)
dep dist punct 0.14 (9.63e-03) upos dist SYM 0.16 (2.19e-03)
upos dist PROPN 0.15 (6.28e-03) dep dist acl:relcl 0.17 (1.36e-03)
dep dist nmod 0.17 (1.81e-03) dep dist appos 0.17 (1.29e-03)
upos dist SYM 0.17 (1.63e-03) n tokens 0.19 (4.73e-04)
dep dist nummod 0.17 (1.17e-03) tokens per sent 0.19 (4.73e-04)
lexical density 0.17 (1.12e-03) avg links len 0.25 (1.94e-06)
dep dist flat 0.22 (2.46e-05) avg max links len 0.26 (1.02e-06)
upos dist NUM 0.25 (2.08e-06) max links len 0.26 (1.02e-06)

Table A.4: Linguistic features on test data. Generated = GePpeTto-F.
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Abstract

ROUGE is a widely used evaluation metric in
text summarization. However, it is not suit-
able for the evaluation of abstractive summa-
rization systems as it relies on lexical overlap
between the gold standard and the generated
summaries. This limitation becomes more ap-
parent for agglutinative languages with very
large vocabularies and high type/token ratios.
In this paper, we present semantic similarity
models for Turkish and apply them as evalua-
tion metrics for an abstractive summarization
task. To achieve this, we translated the En-
glish STSb dataset into Turkish and presented
the first semantic textual similarity dataset for
Turkish. We showed that our best similarity
models have better alignment with average hu-
man judgments compared to ROUGE in both
Pearson and Spearman correlations.

1 Introduction

Automatic document summarization aims to pro-
duce a summary that conveys the salient informa-
tion in the given text(s). Automatic summarizers
provide reduction in the size of the text, as well
as, combine and cluster different sources of infor-
mation, while preserving the informational content.
There are two approaches to summarization: ex-
tractive and abstractive. Extractive summarization
yields a summary by extracting important phrases
or sentences from the document. In contrast, ab-
stractive summarization provides a much more
human-like summary by capturing the internal se-
mantic meaning and generating new sentences.

ROUGE is a widely used evaluation metric in
text summarization. It compares the system sum-
mary with the human generated summary or sum-
maries, by considering the overlapping units such
as n-gram, word sequences and word pairs (Lin,
2004). However, in abstractive summarization sys-
tems, the generated summary does not necessarily

contain the same words in the gold standard sum-
mary. On the contrary, an abstractive summariza-
tion model is expected to generate new words that
may not even appear in the source. For aggluti-
native languages, the ineffectiveness of ROUGE
metric becomes more apparent. For instance, both
of the following sentences has the meaning ”I want
to call the embassy”:

Büyükelçiliği aramak istiyorum.

Büyükelçiliğe telefon etmek istiyorum.

While, ”aramak” is a verb that takes an object
in accusative case, ”telefon etmek” is a compound
verb in Turkish and the equivalent of the accusative
object in the first sentence is realized with a noun
in dative case (as highlighted with underlines). Al-
though, these sentences are semantically equiva-
lent, ROUGE-1, ROUGE-2 and ROUGE-3 scores
of these sentences are 0.25, 0, and 0.25 respec-
tively.

In this paper, we present a semantic similarity
model which can be applied to abstractive summa-
rization as a semantic evaluation metric. To this
end, we translated the English Semantic Textual
Similarity benchmark (STSb) dataset (Cer et al.,
2017) into Turkish and presented the first seman-
tic textual similarity dataset for Turkish as well.
STSb dataset is a selection of data from English
STS shared tasks between 2012 and 2017. These
datasets have been widely used for sentence level
similarity and semantic representations research
(Cer et al., 2017).

We also leveraged the NLI-TR dataset that has
been presented recently for Turkish natural lan-
guage inference task (Budur et al., 2020). The NLI-
TR dataset combines the translated Stanford Nat-
ural Language Inference (SNLI) (Bowman et al.,
2015) and MultiGenre Natural Language Inference
(MultiNLI) (Williams et al., 2018) datasets.
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Our paper is structured in the following way: In
section 2, we explain recent studies and evalua-
tion metrics. In section 3, we explain natural lan-
guage inference and semantic textual similarity. We
present our STSb Turkish dataset and translation
quality. In section 4, we present our experiments
for semantic textual similarity. In section 5, we
present the experiments for summarization. We ap-
plied our best performing four semantic similarity
models as evaluation metrics to the summarization
results. In section 6, we present our results both
qualitatively and quantitatively by comparing the
semantic similarity and ROUGE scores with human
judgments in Pearson and Spearman correlations.

2 Related Work

The most widely used evaluation metric for sum-
marization is ROUGE which compares the system
summary with the human generated summary or
summaries by considering the overlapping units
such as n-gram, word sequences and word pairs
(Lin, 2004). Recently, there has been a range of
studies focusing on the evaluation of factual cor-
rectness in the generated summaries. Falke et al.
(2019) has studied whether textual entailment can
be used to detect factual errors in generated sum-
maries based on the idea that the source document
should entail the information in a summary. The
authors investigated whether factual errors can be
reduced by reranking the alternative summaries us-
ing models trained on NLI datasets. They found
that out-of-the-box NLI models do not perform
well on the task of factual correctness. Kryscinski
et al. (2020) proposed a model-based approach on
the document-sentence level for verifying factual
consistency in generated summaries. Zhao et al.
(2020) addressed the problem of unsupported in-
formation in the generated summaries known as
factual hallucination. Durmus et al. (2020) and
Wang et al. (2020) suggested question answering
based methods to evaluate the faithfullness of the
generated summaries.

In addition to the studies focusing on summa-
rization evaluation, there are some recently pro-
posed metrics to evaluate generated text with the
gold standard. Zhang et al. (2019) proposed
BERTScore that uses BERT (Devlin et al., 2019)
to compute a similarity score between the gener-
ated and reference text. Several recent works pro-
posed new evaluaiton metrics for machine transla-
tion (BLEURT (Sellam et al., 2020), COMET (Rei

et al., 2020), YiSi (Lo, 2019), Prism (Thompson
and Post, 2020)).

3 Methodology

3.1 Natural Language Inference
Natural language inference is the study of deter-
mining whether there is an entailment, a contradic-
tion or a neutral relationship between a hypothesis
and a given premise. There are two major corpora
in literature for natural language inference in En-
glish. These are Stanford Natural Language Infer-
ence (SNLI) (Bowman et al., 2015) and MultiGenre
Natural Language Inference (MultiNLI) (Williams
et al., 2018) datasets. The SNLI corpus is about
570k sentence pairs while the MultiNLI corpus is
about 433k sentence pairs. The MultiNLI corpus
is in the same format as SNLI, but with more var-
ied text genres. Recently, these corpora have been
translated into Turkish (Budur et al., 2020). In this
study, we used the NLI-TR dataset.1

3.2 Semantic Textual Similarity
Semantic textual similarity aims to determine how
similar two pieces of texts are. There are many
application areas such as machine translation, sum-
marization, text generation, question answering,
dialogue and speech systems. It has become a re-
markable area with the competitions organized by
SemEval since 2012.

Semantic textual similarity studies are very com-
mon in English, and are based on datasets that are
annotated and given similarity scores by human
annotators. However, annotation is costly and time
consuming. Recently, with the increase of suc-
cess in machine translation and the development
of multi-language models, it has become possible
to use datasets by translating them from one lan-
guage to another, e.g., Isbister and Sahlgren (2020),
Budur et al. (2020).

In this study, we use the English STS Benchmark
(STSb) dataset (Cer et al., 2017) that we translated
into Turkish using the Google Cloud Translation
API.2,3 The STSb dataset consists of all the En-
glish datasets used in SemEval STS studies be-
tween 2012 and 2017. It consists of 8628 sentence
pairs (5749 train, 1500 dev, 1379 test), (see Table 3

1NLI-TR dataset consists of the translations of SNLI and
MultiNLI data sets available on GitHub: https://github.com/
boun-tabi/NLI-TR

2https://cloud.google.com/translate/docs/basic/
translating-text

3https://github.com/verimsu/STSb-TR
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Sentence 1 Sentence 2 Similarity Score
Adam ata biniyor. Bir adam ata biniyor.

5.0
(The man is riding a horse.) (A man is riding on a horse.)
Bir kız uçurtma uçuruyor. Koşan bir kız uçurtma uçuruyor.

4.0
(A girl is flying a kite.) (A girl running is flying a kite.)
Bir adam gitar çalıyor. Bir adam şarkı söylüyor ve gitar çalıyor.

3.6
(A man is playing a guitar.) (A man is singing and playing a guitar.)
Bir adam gitar çalıyor. Bir kız gitar çalıyor.

2.8
(A man is playing a guitar.) (A girl is playing a guitar.)
Bir bebek kaplan bir topla oynuyor. Bir bebek bir oyuncak bebekle oynuyor.

1.6
(A baby tiger is playing with a ball.) (A baby is playing with a doll.)
Bir kadın dans ediyor. Bir adam konuşuyor.

0.0
(A woman is dancing.) (A man is talking.)

Table 1: Sample translations from STSb-TR dataset and the corresponding labels taken from the English dataset.
Original English sentences are given in parenthesis.

for details). In this dataset, each sentence pair was
annotated by crowdsourcing and assigned a seman-
tic similarity score. Five scores were collected for
each pair and gold scores were generated by tak-
ing the median value of these scores (Agirre et al.,
2016). Scores range from 0 (no semantic similar-
ity) to 5 (semantically equivalent) on a continuous
scale. Some examples from the STS dataset and
their translations are given in Table 1.

Here, we apply various state-of-the-art models
on the translated dataset, and the best performing
four models are used for semantic similarity based
evaluation metric for the task of abstractive sum-
marization.

3.3 Translation Quality

It is possible to encounter some translation errors in
the translated texts. The most striking mistakes are
related to expressions that are not used in Turkish.
For instance, the sentence in S1 is translated as T1;
however, a more appropriate translation would be
C1, as ”sitting” is translated differently for inani-
mate subjects.

S1: Old green bottle sitting on a table.

T1: Bir masada oturan eski yeşil şişe.

C1: Bir masada duran eski yeşil şişe.

Another typical error is possessive agreement
mismatch. For example, the sentence S2 is trans-
lated as T2 but the correct translation would be C2.

S2: Group of people sitting at table of
restaurant.

T2: Bir grup insan restoran masada otu-
ruyor.

C2: Bir grup insan restoran masasında
oturuyor.

In this paper, we assumed that such translation
errors will not cause a major problem in our sim-
ilarity models. In order to verify our assumption,
we tested the quality of translations by selecting 50
sentence pairs (100 sentences) randomly, consider-
ing the percentage of the categories in the dataset.
So, 6, 19 and 25 pairs chosen from forum, caption
and news categories respectively. These sentences
were translated by three native Turkish speakers
who are fluent in English. We evaluated quality of
the system translations with the three references
using BLEU (Papineni et al., 2002) score. We used
the SacreBLEU4 tool (Post, 2018) version 1.5.1
and found BLEU score as 60.21 which shows that
our system translations can be considered as very
high quality translations (Google). Therefore, no
changes have been made to the translations.

Table 2 shows vocabulary size (cased and un-
cased), type/token ratio, average word length and
average sentence length values for English and
Turkish datasets.5

4https://github.com/mjpost/sacrebleu
5Only the punctuation marks around the word and at the

end of sentences were deleted.
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Language
Vocab Size Vocab Size Type/Token Avg Word Avg Sentence

(Cased) (Uncased) Ratio Length Length
English 18,736 16,225 0.09 4.62 10.15
Turkish 29,461 26,649 0.19 6.20 8.26

Table 2: English and Turkish STSb dataset statistics. Vocab size is the word count and type/token ratio is the
number of different words divided by the total number of words. Word length is the amount of characters in the
word and sentence length is the number of words in a sentence.

Train Dev Test Total
News 3,299 500 500 4,299
Caption 2,000 625 625 3,250
Forum 450 375 254 1,079
Total 5,749 1,500 1,379 8,628

Table 3: STSb dataset statistics in terms of number of
sentence pairs.

4 Experiments for Semantic Textual
Similarity

In order to assess the semantic similarity between
a pair of texts, there are two main model structures:
1) Sentence representation models that try to map a
sentence to a fixed-sized real-value vectors called
sentence embeddings. 2) Cross-encoders that di-
rectly compute the semantic similarity score of a
sentence pair.

In this paper, we experimented with state-of-the-
art sentence representation models that are applica-
ble to Turkish (language-specific and multilingual
models) and BERT cross-encoders. In sentence
representation models, we obtained the semantic
similarity scores using cosine similarity. All mod-
els were tested on the STSb-TR test dataset.

4.1 Sentence Representation Models

We experimented with LASER, LaBSE, MUSE,
BERT, XLM-R and Sentence-BERT models as ex-
plained below.

LASER Language-Agnostic SEntence Represen-
tations (LASER) is a language model based on the
BiLSTM encoder trained on parallel data target-
ing translation. The model has been trained in 93
languages, including Turkish.6 In this study, Turk-
ish sentence embeddings were computed using a
pre-trained LASER model.

LaBSE Language-agnostic BERT Sentence Em-
bedding (LaBSE) is a BERT variant masked and

6https://github.com/facebookresearch/LASER

trained on multilingual data for translation lan-
guage modeling. The model produces language-
independent sentence embeddings for 109 lan-
guages, including Turkish (Feng et al., 2020). Sim-
ilar to the LASER model, Turkish sentence embed-
dings were computed using a pre-trained LaBSE
model.

MUSE Multilingual Universal Sentence Encoder
(MUSE) model is a sentence embedding model
trained on multiple languages at the same time. The
model creates a common semantic embedding area
for a total of 16 languages, including Turkish (Yang
et al., 2020). In this study, CNN7 and Transformer8

models that are shared publicly in TensorFlow Hub
are used.

BERT Bidirectional Encoder Representations
from Transformers (BERT) is designed to pre-
train deep bi-directional representations from unla-
beled text by conditioning together in both left and
right context on all layers (Devlin et al., 2019).
In this study, BERTurk9 and M-BERT10 (Pires
et al., 2019) models were used. Sentence embed-
dings were obtained by averaging the BERT em-
beddings.11 In addition, the models were integrated
into the Siamese network that we explained in sec-
tion 4.1.

XLM-R RoBERTa Transformer model12 has
been trained on a large multilingual data using a
multilingual masked language modeling goal (Con-
neau et al., 2020). In this study, we used the model
to compute sentence embeddings similar to BERT
models. We also integrated it into the Siamese
network used in Sentence-BERT.

7https://tfhub.dev/google/
universal-sentence-encoder-multilingual/3

8https://tfhub.dev/google/
universal-sentence-encoder-multilingual-large/3

9https://huggingface.co/dbmdz/bert-base-turkish-cased
10https://huggingface.co/bert-base-multilingual-cased
11The output of the CLS vectors yields significantly lower

results compared to the results obtained.
12https://huggingface.co/xlm-roberta-base
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Sentence-BERT Sentence-BERT (SBERT)
(also called Bi-Encoder BERT) is a modification
of pre-trained BERT network (or other transformer
models) using Siamese and ternary network
structures (Reimers and Gurevych, 2019). The
model derives close fixed-size sentence embedding
in vector space for semantically similar sentences.
The training loss function differs depending on the
dataset the model was trained on. During the train-
ing on the NLI dataset, the classification objective
function was used; whereas during the training on
the STSb dataset, the regression objective function
was used (Reimers and Gurevych, 2019).

The classification objective function concate-
nates the sentence embeddings by element-wise
difference and multiplies by a trainable weight. The
model optimizes the cross entropy loss:

o = softmax(Wt(u, v, |u− v|)),WtεR
3n×k

where n is the size of the sentence embedding, and
k is the number of labels.

In the regression objective function, the cosine
similarity between two sentence embeddings, opti-
mize the models for mean square error loss.

4.2 Cross-Encoders

We adopted cross-encoder architecture as explained
in Reimers and Gurevych (2019). In the cross-
encoder, both sentences are passed to the network
and a similarity score between 0 and 1 obtained;
no sentence embeddings are produced.13 We ex-
perimented with BERTurk, M-BERT, and XLM-R
with training on NLI-TR and STSb-TR datasets.

4.3 Results for Semantic Textual Similarity

All models were individually trained on NLI-TR
and STSb-TR training datasets. Also, the models
trained on the NLI-TR dataset were fine-tuned on
the STSb-TR dataset. All models were then tested
on the STSb-TR test dataset.

We trained/fine-tuned the models on STSb-TR
dataset with 4 epochs and 10 random seeds14 as
suggested by Reimers and Gurevych (2018; 2019).
Then, we reported the average test results of 5 suc-
cessful models that perform best on the validation
set. The models were evaluated by calculating the
Spearman and Pearson correlations between the

13https://www.sbert.net/examples/applications/
cross-encoder/README.html

14Only S-XLM-R + STS was trained with 20 random seeds
to have at least 5 successful models.

Model Pearson Spearman
Not trained for STS

Avg. BERTurk embeddings 54.48 55.23
Avg. M-BERT embeddings 50.44 50.43
Avg. XLM-R embeddings 20.22 41.81
LASER 69.86 70.18
LaBSE 72.24 71.74
MUSE-CNN 71.09 69.91
MUSE-Transformer 76.32 74.84

Trained on STS
BERTurk + STS 83.32 82.22
M-BERT + STS 79.08 78.15
XLM-R + STS 79.18 78.56
S-BERTurk + STS 81.97 81.43
S-M-BERT + STS 73.28 72.84
S-XLM-R + STS 71.89 71.02

Trained on NLI + STS
BERTurk + NLI + STS 85.36 84.59
M-BERT + NLI + STS 79.30 78.39
XLM-R + NLI + STS 81.94 81.21
S-BERTurk + NLI + STS 82.85 83.31
S-M-BERT + NLI + STS 75.74 75.41
S-XLM-R + NLI + STS 77.26 77.32

Table 4: Experiment results for semantic textual sim-
ilarity. BERTurk, M-BERT and XLM-R are cross-
encoder models. S-BERTurk, S-M-BERT and S-XLM-
R are bi-encoder models. Pearson and Spearman corre-
lations were reported as ρ x 100.

estimated similarity scores and the gold labels. Ta-
ble 4 shows the results as ρ x 100. According to
the results, training the models first on the NLI-TR
dataset increases the model performance. This is
particularly noticeable for the XLM-R models. The
BERTurk model also gives very good results when
trained directly on the STSb-TR dataset. Here,
we observe that the existing multilingual LASER,
LaBSE, MUSE models without any training for
semantic textual similarity, give very good results.
Compared to these models, the performance of
BERT models without training are quite low. The
best results were obtained by training the BERTurk
model on the NLI-TR dataset first, and then on the
STSb-TR dataset.

5 Experiments for Summarization

To investigate the effectiveness of our semantic
similarity models for summarization evaluation, we
computed the correlations of ROUGE scores and
our best performing four similarity models with
human judgments for a state-of-the-art abstractive
model. We reported semantic similarity scores for
extractive baselines as well in order to observe their
alignmnet with the ROUGE scores.
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Cross-Encoder Bi-Encoder ROUGE Other Metrics
Model NLI+STS STS NLI+STS STS ROUGE-1 ROUGE-2 ROUGE-L BERTScore
Lead-1 52.11 55.71 59.18 61.67 26.56 17.31 25.31 73.72
Lead-3 60.78 61.86 69.72 71.01 30.04 18.90 28.83 74.15
mT5 59.00 61.03 66.43 68.29 33.22 22.44 31.90 75.90

Table 5: Results of the summarization models on MLSUM dataset. The values under Cross-Encoder are the
average similarity scores predicted by the models; whereas, the values under Bi-Encoder are the average cosine
similarities of sentence embeddings computed by these models. All the values were scaled to 100.

Relevance Consistency Fluency Human Average
Metric Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman
Rouge-1 42.79 43.87 28.18 32.36 21.40 20.30 36.79 37.51
Rouge-2 38.26 41.63 27.39 35.78 16.43 20.83 32.76 38.02
Rouge-L 41.83 41.95 26.29 28.85 20.17 18.63 35.15 35.11
BERTScore 45.49 45.75 25.14 22.47 24.74 19.85 37.88 38.07
S-BERTurk+STS 55.44 52.82 30.25 30.04 25.63 26.70 44.26 45.86
S-BERTurk+NLI+STS 58.77 58.72 32.80 32.67 31.24 30.17 48.80 51.85
BERTurk+STS 56.87 53.54 38.02 32.46 34.10 27.88 51.32 48.59
BERTurk+NLI+STS 59.98 59.17 39.95 34.24 34.62 29.31 53.54 52.10

Table 6: Pearson and Spearman correlations of ROUGE, BERTScore and proposed evaluation metrics with human
judgments.

5.1 Dataset

MLSUM is the first large-scale MultiLingual SUM-
marization dataset which contains 1.5M+ arti-
cle/summary pairs including Turkish (Scialom
et al., 2020). The authors compiled the dataset fol-
lowing the same methodology of CNN/DailyMail
dataset. They considered news articles as the text
input and their paired highlights/description as the
summary. Turkish dataset was created from Inter-
net Haber15 by crawling archived articles between
2010 and 2019. All the articles shorter than 50
words or summaries shorter than 10 words were
discarded. The data was split into train, validation
and test sets, with respect to the publication dates.
The data from 2010 to 2018 was used for training;
data between January-April 2019 was used for val-
idation; and data up to December 2019 was used
for test (Scialom et al., 2020). In this study, we
obtained the Turkish dataset from HuggingFace
collection.16 The dataset consists of 249,277 train,
11,565 validation, and 12,775 test samples.

5.2 Models

We experimented on MLSUM Turkish dataset with
extractive baselines Lead-1 and Lead-3 and a state-
of-the-art abstractive model mT5 described below.

Lead-1 We selected the first sentence of the
source text as a summary.

15www.internethaber.com
16https://github.com/huggingface/datasets/tree/master/

datasets/mlsum

Lead-3 We selected the first three sentences of
the source text as a summary, based on the obser-
vation that the leading three sentences are a strong
baseline for summarization (Nallapati et al., 2017;
Sharma et al., 2019).

mT5 Multilingual T5 (mT5) (Xue et al., 2020) is
a variant of T5 model (Raffel et al., 2020) that was
pre-trained for 101 languages including Turkish on
a new Common Crawl-based dataset. For Turkish
summarization, we used mT5 model fine-tuned on
MLSUM dataset available on HuggingFace.17 The
model was trained with 10 epochs, 8 batch size and
10e-4 learning rate. The max news length was 784
and max summary length was determined as 64.18

5.3 Evaluations

We evaluated the summarization models using se-
mantic similarity-based evaluation, ROUGE scores,
and human judgments. All the values were scaled
to 100.

Semantic Similarity Evaluations We used the
best performing four semantic similarity models to
evaluate the summarization models. The values un-
der Cross-Encoder are the average similarity scores
predicted by the models; whereas, the values under
Bi-Encoder are the average cosine similarities of
sentence embeddings computed by these models.

17https://huggingface.co/ozcangundes/
mt5-small-turkish-summarization

18During inference, we set max summary length to 120.
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Figure 1: Pearson correlations between different evaluation metrics and human evaluations.
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Figure 2: Spearman correlations between different evaluation metrics and human evaluations.

ROUGE We reported F1 scores for ROUGE-1,
ROUGE-2 and ROUGE-L. ROUGE scores were
computed using rouge package version 0.3.1.19

BERTScore We reported F1 score for
BERTScore (Zhang et al., 2019).

Human Evaluations Human evaluations were
conducted to show the effectiveness of our seman-
tic similarity based evaluation metric. We randomly
selected 50 articles from the test set with their pre-
dicted summaries via mT5 model. Following the
work of Fabbri et al. (2021), we asked native Turk-
ish annotators to rate each predicted summary in
terms of relevance (selection of important content
from the source), consistency (the factual align-
ment between the summary and the summarized
source) and fluency (the quality of individual sen-
tences) in the range of 1 (very bad) to 5 (very good).

19This is the package and version that the authors of ML-
SUM reported: https://github.com/recitalAI/MLSUM.

Overall, 5 annotators (3 university students, 1 Ph.D.
student, and 1 professor) evaluated the summaries.
Average relevance was 3.50 ± 0.78, average con-
sistency was 4.45± 0.83, and average fluency was
4.34± 0.77.

6 Results

Quantitative Analysis We computed Pearson
and Spearman correlations of human judgments
with semantic similarity and ROUGE scores. Cor-
relation values can be seen in Table 6 and are visu-
alized in Figure 1 and Figure 2.20 The results show
that, our cross-encoder models have significantly
better correlations with relevance, consistency, flu-
ency, and human average. The correlations are
higher compared to the bi-encoder models. This

20All the correlations were significant (p<.05) except
for the correlations between Fluency and S-BERTurk+STS,
BERTScore, ROUGE-L as well as correlations between
BERTScore and Consistency.
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Article-1
Seattle şehrinin merkezinde meydana gelen olayda, Kanadalı olduğu belirtilen adam, bir otomobilden söktüğü sunroof
camıyla bölgede bulunan araçların ön camlarını parçaladı. Araçların kaputlarına da çıkan adam, çevredeki birçok araca
maddi hasar verdi. Sonrasında, çevrede bulunan otopark görevlisi adama müdahale etmek istedi. Elindeki cam tavanla bu
sefer görevliye saldıran adam, çevredeki diğer insanların müdahalesiyle etkisiz hale getirildi. Olay yerine gelen polis, adamı
gözaltına alırken; adamın uyuşturucu etkisi altında olduğu bildirildi.
Reference Summary
ABD’de bir adam, elindeki sunroof camıyla otomobillerin ön camlarını parçaladı. Adama müdahale etmek isteyen park
görevlisi de adamın saldırısına uğradı.
Generated Summary
ABD’de bir otomobilden söktüğü sunroof camıyla bölgede bulunan araçların ön camlarını parçalayan adam, çevredeki diğer
insanların müdahalesiyle etkisiz hale getirildi.
ROUGE-(1/2/L): 30.00, 10.53, 25.00
Semantic Similarity Scores BERTurk+NLI+STS (Cross Encoder / Bi-Encoder): 73.67 / 74.35
Human Evaluations (relevance / consistency / fluency / avg): 3.81 / 4.36 / 4.36 / 4.18

Article-2
Yangın, Salihli-Köprübaşı yolu Taytan Mahallesi Çaldırlık mevkisinde meydana geldi. Edinilen bilgiye göre, seyir halinde
ilerleyen Servet Durmuş idaresindeki 43 HE 737 plakalı otomobilin motor bölümünde yangın çıktı. Alevlerin büyümesiyle
birlikte otomobil ateş topuna döndü. Sürücü Durmuş hemen itfaiye ekiplerine haber verirken olay yerine gelen Manisa
Büyükşehir Belediyesi Salihli İtfaiye Amirliği ekipleri yangına müdahale etti. Söndürülen otomobil kullanılamaz hale geldi.
Yangınla ilgili soruşturma başlatıldı.
Reference Summary
Manisa’nın Salihli ilçesinde seyir halinde ilerleyen otomobil alevlere teslim oldu.
Generated Summary
Manisa’da seyir halindeki otomobilin motor bölümünde yangın çıktı.
ROUGE-(1/2/L): 11.11 / 0 / 11.11
Semantic Similarity Scores BERTurk+NLI+STS (Cross Encoder / Bi-Encoder): 76.16 / 81.75
Human Evaluations (relevance / consistency / fluency / avg): 4.0 / 4.8 / 5.0 / 4.6

Table 7: Example articles from MLSUM Turkish test dataset with their reference and generated summaries. The
words that appear in both reference and generated summary are in blue, while the semantically similar words are
in red. The italic text pieces in the article appear in the generated summary.

also shows that predicted similarity scores are more
reliable than computed cosine similarities.

While the main idea of this paper is to evaluate
abstractive summarization, we also showed that an
extractive Lead-3 baseline yields better semantic
similarity scores compared to the abstractive mT5
although it outperforms the extractive baselines in
terms of BERTScore and ROUGE scores.

Qualitative Analysis We analyzed the effective-
ness of our proposed metrics qualitatively as well.
In Table 7, we show two example articles. In
the first one, there are some overlapping words
between two sentences and they share semanti-
cally similar information in the following parts:
”ABD’de bir adam, elindeki sunroof camıyla oto-
mobillerin ön camlarını parçaladı” and ”ABD’de
bir otomobilden söktüğü sunroof camıyla bölgede
bulunan araçların ön camlarını parçalayan adam”.
So, we can say that both ROUGE and semantic sim-
ilarity scores can be acceptable for this example.
On the other hand, the second example is more crit-
ical as it has only one overlapping word between
the reference and generated summary; however,
there is a high semantic similarity between them
and the predicted summary has high human evalua-

tion scores. Our proposed metrics can capture this
but apparently ROUGE cannot.

7 Conclusion

In this study, we presented the first Turkish seman-
tic textual similarity corpus, called STSb-TR, by
translating the original English STSb dataset via
machine translation. We showed that the dataset
has high quality translations and does not require
costly human annotation. We applied state-of-the-
art models to the STSb-TR dataset, and used the
best performing four models as evaluation met-
rics for the text summarization task. We used
natural language inference (NLI) models and ob-
served that we can improve our semantic similar-
ity models. We found high correlations between
human judgments and our models, compared to
BERTScore and ROUGE scores. Our qualitative
analyses showed that the proposed models can
capture the semantic similarity of reference and
predicted summaries which cannot be caught by
ROUGE scores. We conclude that our models can
be applied as evaluation metric to abstractive sum-
marization in Turkish.
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Abstract
The MultiWOZ dataset (Budzianowski et al.,
2018) is frequently used for benchmarking
context-to-response abilities of task-oriented
dialogue systems. In this work, we identify
inconsistencies in data preprocessing and re-
porting of three corpus-based metrics used on
this dataset, i.e., BLEU score and Inform &
Success rates. We point out a few problems
of the MultiWOZ benchmark such as unsat-
isfactory preprocessing, insufficient or under-
specified evaluation metrics, or rigid database.
We re-evaluate 7 end-to-end and 6 policy opti-
mization models in as-fair-as-possible setups,
and we show that their reported scores cannot
be directly compared. To facilitate compari-
son of future systems, we release our stand-
alone standardized evaluation scripts. We also
give basic recommendations for corpus-based
benchmarking in future works.

1 Introduction

While human judgements are irreplaceable in dia-
logue systems evaluation and using full dialogue
evaluation instead of evaluating isolated responses
given ground-truth contexts cannot fully measure
system performance (Liu et al., 2016; Takanobu
et al., 2020), corpus-based evaluation metrics, such
as BLEU and corpus-based entity match and suc-
cess rate (Wen et al., 2017), are still very important
for model development and are often used to com-
pare models and establish state-of-the-art. We show
on the MultiWOZ benchmark (Budzianowski et al.,
2018), one of the most frequently used and most
challenging dialogue system datasets today, that
these comparisons do not hold if several basic con-
ditions are not met, and that these conditions are
not met for most of the recent works using corpus-
based evaluation on this dataset. This means the
assessment of progress in terms of dialogue model-
ing is obscured by noise coming from differences in
preprocessing or metrics implementation variants.

This paper is not a critique of the MultiWOZ
benchmark or of systems evaluated on it. Instead, it
is a call for consistency and increased rigor in auto-
matic evaluation. In addition to providing the anal-
ysis and identifying problems with the benchmark
and current state-of-the-art reporting, we include
recommendations for consistency in corpus-based
score comparisons. In particular, we advocate for:
(1) using standardized implementations of metrics;
(2) evaluating either on detokenized surface texts,
or using standardized preprocessing and postpro-
cessing; (3) reporting the exact scripts used for
evaluation; (4) release of system outputs. We also
show that there is room for additional metrics of
output diversity, and we add an observation on the
overlap between the dialogue goals and states in
training and test sections of the MultiWOZ data.

Our work can be summarized as follows:

• We identify, list, and discuss consistency issues
associated with the MultiWOZ benchmark;

• We compare and re-evaluate 13 end-to-end or
policy optimization systems, using a single im-
plementation of metrics and preprocessing;

• We release the outputs of all compared systems
in a unified format and provide stand-alone stan-
dardized evaluation scripts that allow for consis-
tent comparison of future works on this dataset;1

• In addition to standard MultiWOZ corpus-based
metrics, we evaluate all systems in terms of the
diversity of their outputs.

2 Related Work

Most works on evaluation methods in dialogue re-
sponse generation (Deriu et al., 2021) focus on
human evaluation (Walker et al., 1997), e.g., choos-
ing the best methodology with respect to quality

1https://github.com/Tomiinek/MultiWOZ_
Evaluation
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and consistency (Santhanam and Shaikh, 2019) or
robustness (Dinan et al., 2019). Recent surveys in
natural language generation reflect on divergence
and inconsistency in human evaluation practice
(Howcroft et al., 2020; Belz et al., 2020), in a simi-
lar spirit to our examination, but on a broader scale.

Despite the availability of simulator evaluation
(Schatzmann et al., 2006; Young et al., 2010; Zhu
et al., 2020), corpus-based metrics have been the
go-to evaluation method in end-to-end neural dia-
logue systems since the first implementations (Wen
et al., 2017; Eric and Manning, 2017) and are a de-
facto standard until today (cf. Section 3.3). There
are works showing problems of corpus-based met-
rics: limited correlation with human judgements
(Novikova et al., 2017; Takanobu et al., 2020) and
mixed performance depending on human reference
texts used (Freitag et al., 2020) or evaluated sys-
tems (Mathur et al., 2020). Many works aim at
creating more reliable metrics (Galley et al., 2015).
Recent focus is on trained neural metrics (Dziri
et al., 2019; Mehri and Eskenazi, 2020), but they
are not yet in wide use.

Our work is probably the closest to Post (2018)’s
assessment of inconsistencies in different imple-
mentations of BLEU (Papineni et al., 2002, see
Section 3.2), calling for comparability and propos-
ing a standard implementation. To our knowledge,
we are the first to evaluate the use of corpus-based
metrics in dialogue systems in this fashion.

3 Benchmark and Systems

3.1 The MultiWOZ dataset

The MultiWOZ 2.0 dataset (Budzianowski et al.,
2018) includes about 10k task-oriented dialogues
in 7 domains (restaurants, hotels, tourist attractions,
trains, taxi, hospital, police) with dialogue state and
system action annotation. Larger domains (restau-
rants, hotels, attractions, trains) have an associated
database. The data was collected via human-to-
human interaction on a crowdsourcing platform us-
ing the Wizard-Of-Oz approach (Wen et al., 2017).
Crowd workers were instructed with goals such as
booking or finding information about a restaurant
or train (see Table 1). The dataset authors provided
supporting code2 and baselines for dialogue state
tracking (DST), context-to-text (CTR), and action-
to-text generation tasks.

2https://github.com/budzianowski/
multiwoz/

Side Utterance

User Can you help me find a train that will arrive in birm-
ingham new street by 16:15?

Sys. What day would you like to travel?

User I would like to leave Friday from Cambridge.

Sys. TR2716 will leave cambridge at 13:01 and arrive at
birmingham at 15:44. The trip will take 163 minutes
and cost 75.10 pounds. Would you like to book?

User Yes, I would like to book for 3 people.

Sys. I booked the train. It was 225.3 and your reference is
AS5SBC8P . Do you need help with anything else?

User Yes I also need information on queens’ college.

Sys. It’s located in west Cambridge on silver street.
The postcode is cb39et. The phone number is
01223335511. The entrance fee is 2.50 pounds. Do
you need anything else?

User No, that’s great. Thank you. Good-bye.

Sys. Thank you for using the Cambridge TownInfo centre.

Table 1: Example multi-domain conversation from the
MultiWOZ dataset (conversation ID: PMUL1266).

MultiWOZ 2.1: Eric et al. (2020) released an
update with re-annotated dialogue states and added
explicit system action annotation.

MultiWOZ 2.2 (Zang et al., 2020) has more
fixes for state annotation in 17.3% of turns, a rede-
fined ontology, and canonical forms for slot values
(e.g. “13:00” for “1pm”) for better DST evaluation.
Additionally, it introduces slot span annotations al-
lowing easy delexicalization, which was previously
based only on string matching heuristics.

3.2 Corpus-based Metrics on MultiWOZ
All standard CTR metrics on MultiWOZ – BLEU,
Inform & Success rate – are calculated on delexi-
calized texts, i.e., texts where dialogue slot values,
such as venue names, are replaced by placeholders
(Wen et al., 2015). While using delexicalized ut-
terances prevents errors in venue names to affect
the evaluation, it prevents the use of an interactive
human evaluation, model-based evaluation metrics
known from open-domain dialogue research (Gao
et al., 2020), or end-to-end evaluation with user
simulators such as ConvLab (Zhu et al., 2020).

BLEU (Papineni et al., 2002), originally de-
signed for machine translation (MT) evaluation, is
based on comparison of n-grams in human-written
references and machine-generated hypotheses. Fol-
lowing Wen et al. (2017), BLEU is used to measure
fluency of output responses where the human utter-
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ances are used as the reference. Using the metric
for assessing fluency of the responses is not ideal,
because as opposed to the intended use of BLEU,
there is only a single reference available. Moreover,
the set of valid responses is arguably larger for di-
alogue than for MT. Liu et al. (2016) show that
metrics adopted from MT correlate very weakly
with human judgements in dialogue responses.

Inform & Success rates: The Inform rate relates
to informable slots, which are attributes that allow
the user to constrain database searches, e.g., restau-
rant location or price range. The Success rate fo-
cuses on requestable slots, i.e., those that can be
asked by the user, e.g., phone number. Both are
calculated on the level of dialogues.

Su et al. (2015) consider a dialogue to be suc-
cessful if the evaluated system provided all of the
requested information for an entity satisfying the
user’s constraints. Following this definition, Wen
et al. (2017) set aside the Match rate describing
whether the entity found at the end of each dialogue
matches the user’s goal. However, MultiWOZ dia-
logues include multiple interleaving domains and
calculating the rates only at the end is not sufficient.

Therefore, Budzianowski et al. (2018) mark a
dialogue as successful if for each domain in the
user’s dialogue goal: (1) the last offered entity
matches (satisfies the goal constraints), and (2) the
system mentioned all requestable slots required by
the user. The Inform rate then marks the proportion
of dialogues complying to (1), Success rate is the
proportion of fully successful dialogues.

The offered entities and mentions of requestable
slots are tracked over the delexicalized responses
for the whole dialogue, making use of slot place-
holders. If an utterance contains a slot naming an
entity, e.g., restaurant name or train ID, the cur-
rent dialogue state for the corresponding domain is
used to query the database and an entry is sampled
from the search results. At the end of a dialogue,
the recorded entities and requestable slots are com-
pared to expected values from the dialogue goal
(see Appendix A for an example). The dialogue can
thus be considered unsuccessful if the system does
not mention a venue name or train ID at the right
turn,3 does not track the user’s search constraints,
or ignores the user’s requests.

3It must in practice hit the single suitable turn because
responses are generated given ground-truth dialogue context.

3.3 Systems Evaluating on MultiWOZ
We discuss performance of 13 recent systems that
use CTR evaluation on MultiWOZ – 7 end-to-
end and 6 policy-optimization systems, which use
ground-truth dialogue states during training and in-
ference. We include models for which we got test
set predictions and systems with public code for
which we managed to replicate reported results.4

Out of the 13 compared works, 7 only report
BLEU, Inform, and Success with no other evalua-
tion; 4 use human ratings of individual outputs, and
only 2 include human evaluation on full dialogues.5

An important representative of the end-to-end
systems is DAMD (Zhang et al., 2020b). It uses a
multi-action data augmentation and multiple GRU
(Cho et al., 2014) decoders. Similarly, LABES
(Zhang et al., 2020a) employs a few GRU-based
decoders, but it represents the dialog state as a
latent variable. DoTS (Jeon and Lee, 2021) also
uses GRUs, but the model makes use of a BERT
encoder (Devlin et al., 2019) to get a context rep-
resentation. MinTL (Lin et al., 2020) applies a
diff-based approach to state updates, with back-
bones based on the T5 and BART models (Raffel
et al., 2020; Lewis et al., 2020). UBAR is based on
a fine-tuned GPT-2 model (Radford et al., 2019),
similarly to AuGPT (Kulhánek et al., 2021) which
uses back-translations for response augmentation,
and SOLOIST (Peng et al., 2020) which makes use
of machine teaching (Shukla et al., 2020). We used
author-provided outputs for SOLOIST and AuGPT,
author-trained checkpoints for DoTS, LABES,6

and UBAR, and we trained DAMD and MinTL7

from scratch using publicly available code. DAMD,
MinTL and SOLOIST use MultiWOZ 2.0; the re-
maining models trained on the 2.1 version. DAMD,
LABES, MinTL, and UBAR are based on the same
code base and use similar evaluation scripts.

We also compared 6 policy optimization mod-
els. SFN (Mehri et al., 2019), HDNO (Wang et al.,
2021), and LAVA (Lubis et al., 2020) use reinforce-
ment learning for training. HDSA (Chen et al.,
2019) uses a BERT backbone and exploits the hi-
erarchical structure of dialog acts. MarCo (Wang

4We were not successful in getting code, model weights,
or original predictions for other systems, such as SimpleTOD
(Hosseini-Asl et al., 2020), or ARDM (Wu et al., 2021).

5Note that full interaction is not possible with policy opti-
mization models unless an external DST model is applied.

6We were able to generate outputs for 91.66% test utter-
ances with this checkpoint. We note this in Tables 4, 5 and 6.

7We were only able to reproduce the T5-small model and
use it in this comparison.
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Delexical. Utterance

Original Cafe jello gallery has a free entrance fee. The address is cafe jello gallery, 13 magdalene street and the post
code is cb30af. Can i help you with anything else?

MWZ 2.2 [address] has a [entrancefee] entrance fee. The address is [name], [address] and the post code is [postcode].
Can I help you with anything else?

HDSA [attraction name] has a free entrance fee. The address is [attraction address] and the post code is [attrac-
tion postcode]. Can i help you with anything else?

DAMD [value name] has a [value price] entrance fee. The address is cafe jello gallery, [value address] and the post
code is [value postcode]. Can i help you with anything else?

AuGPT [address] has a free entrance fee. The address is cafe jello gallery, [address] and the post code is [postcode].
Can I help you with anything else?

UniConv [attraction name] has a [attraction pricerange] entrance fee. The address is [attraction name], 13 [attrac-
tion address] and the post code is [attraction postcode]. Can i help you with anything else?

LAVA [attraction name] has a free entrance fee. The address is [attraction name], [value count] [attraction address]
and the post code is [restaurant postcode]. Can i help you with anything else?

Table 2: An example utterance from the MultiWOZ dataset with different styles of delexicalization. The first row
shows the non-delexicalized source response. Other styles are paired with the systems that use or introduced them.

et al., 2020) and UniConv (Le et al., 2020) generate
explicit system actions in parallel with the response.
We use the public predictions for LAVA and the
provided pretrained models for other models. Uni-
Conv and HDNO are trained on MultiWOZ 2.1,
other systems use the 2.0 version. As opposed to
end-to-end models, the version affects the evalua-
tion because the ground-truth state is supplied to
the model. The comparison of these systems is thus
not completely fair, but we believe that the differ-
ences are small in comparison with the differences
in evaluation scripts and setups (see Section 5.2).

4 Benchmark Caveats

While MultiWOZ and the associated metrics de-
scribed in Section 3 represent the state-of-the-art
in corpus-based dialogue evaluation practice, the
benchmark has the following limitations that re-
searchers need to be aware of: (1) delexicaliza-
tion problems – imprecise delexicalization based
on string matching and varying implementations
thereof (Section 4.1), (2) lack of standardized
postprocessing (i.e., lexicalization methods, Sec-
tion 4.2), (3) database problems, i.e., multiple sur-
face forms of database values and no information
about booking availability (Section 4.3), (4) atypi-
cal metric implementations (Section 4.4), (5) lack
of diversity evaluation (Section 4.5), (6) similarity
between training and test data (Section 4.6).

4.1 Preprocessing

CTR evaluation metrics used in the benchmark
work with delexicalized texts (see Section 3.2).
However, the implementation of delexicalization

provided with the dataset is limited; it only applies
to some expressions, leaving other slot values lex-
icalized. That is why most systems use their own
delexicalization methods. The original delexical-
ization uses placeholders consisting of the domain
name and the slot name, e.g. taxi phone. Recent
works following DAMD (Zhang et al., 2020b) re-
move domain names from the placeholders and
determine the active domain from changes in the
predicted dialogue state or model it directly.

We identified five different delexicalization
styles among the 13 systems described in Sec-
tion 3.3. Table 2 shows a sample system turn for
which the outputs of all the delexicalization ap-
proaches are different. This is a problem since
all works use their own preprocessed data as refer-
ences for BLEU computation. We checked the test
set for slot placeholders and found that 70.61% of
the utterances contain a slot in at least one delex-
icalized variant and only 17.52% responses with
slots exactly match for all the systems.8

Moreover, preprocessing scripts of some works
remove contracted verb forms or keep suffixes such
as “-s”, “-ly” when delexicalizing nouns or adverbs,
e.g., “moderately” becomes “[pricerange]-ly”.

4.2 Postprocessing

The MultiWOZ code base does not implement
backward lexicalization of texts. Out of 12 sys-
tems for which we have the source code available,
only four offer scripts for lexicalizing slot values
and thus allow further in-depth evaluation.

88 utterances (including the example in Table 2) are pair-
wise different between all 5 delexicalizations.
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4.3 Database: Surface Forms and Booking
The original MultiWOZ implementation of the
database performs only subtle normalization of the
database search constraints, such as replacing “&”
with “and”. However, the slot values can have mul-
tiple valid surface forms; e.g., “4pm” and “16:00”
or “the botanical gardens at cambridge university”
and “cambridge university botanic gardens” corre-
spond to the same database entities. Database query
normalization is crucial for end-to-end systems, as
opposed to the policy optimization models, which
use ground-truth dialogue states with normalized
values. The flexibility of the database might affect
the Inform & Success rates, because they are based
on information about database entries complying
with the current dialogue state.

The original database does not contain any infor-
mation about booking availability, because during
the data collection, crowd workers were sometimes
instructed to refuse a booking at a specific time,
ask for another place, etc., and accept the book-
ing with new constraints. This brings a problem
into the evaluation, because some works use the
ground-truth booking information (mined from the
dialogue state and system action annotations) even
during evaluation, whereas other ignore it and let
their systems behave randomly.

4.4 Evaluation
BLEU: The original MultiWOZ BLEU imple-
mentation internally uses a trivial tokenization
splitting on whitespace. However, current mod-
els often use subword tokenization and complex
detokenization to remove any redundant whites-
pace (Sennrich et al., 2016; Kudo and Richardson,
2018). This new-style detokenization might pro-
duce words with leading or trailing punctuation.
Some works ignore this fact completely, or use an
alternative BLEU implementation, including tok-
enization, from NLTK (Bird and Loper, 2004).

Inform & Success rate: We found two main
problems here. The first one comes from random
database entry sampling – if multiple entities match
the dialogue state, one of them is sampled at ran-
dom from the database results. The set of entries
complying with the dialogue state does not have to
be a subset of the ground-truth set of entries com-
plying with a given prescribed user goal from the
test set. If the database results and the ground-truth
set have an imperfect overlap, the sampling may
choose an entry from the difference of the two sets,

which is counted as a failure. However, if an entry
from the intersection of the two sets is chosen, it
counts as a match, which may lead to overestimat-
ing the system performance. Some systems bypass
this by comparing the sets and accepting a dialogue
as matching if the sets are intersecting, or if the
offered set is a non-empty subset of the ground-
truth set. However, these differences result in large
variances in the rates (see Section 5).

Another problem is related to the domain-
oblivious delexicalization proposed by Zhang et al.
(2020b). MultiWOZ responses contain slots from
multiple domains at the same time very rarely, so
it is sufficient to consider a single active domain
for each turn. However, some works that adopt this
new delexicalization use the ground-truth active
domain during evaluation. Note that true domains
have to be inferred from changes in ground-truth
dialogue states and system actions.

4.5 Output Diversity Metrics

The standard MultiWOZ metrics do not cover the
diversity of the outputs, which can show the for-
mulaic or repetitive nature of a system’s responses
(Holtzman et al., 2020). While diversity is typically
measured for non-task-oriented dialogue (Li et al.,
2016), we argue that it can serve as an indicator
of the naturalness of using a system over longer
periods of time even in task-oriented dialogue such
as MultiWOZ (Oraby et al., 2018).

4.6 Dataset folds

MultiWOZ authors split the data into train, vali-
dation, and test folds randomly. Following Lam-
pouras and Vlachos (2016)’s analysis of train-test
overlap on other datasets, we inspected the goals
of all 1000 test dialogues; 174 of them are also
present in the train or validation folds. The test fold
does not contain any unseen slot-value pairs, and
has only 12 new domain-slot-value triplets. This
means that the evaluation does not really check
the generalization capabilities of the systems’ state
tracking, and it theoretically allows the systems to
memorize the whole database and bypass it during
operation, which is a rather unrealistic assumption.

5 Experiments

In this section, we work with outputs produced
by all systems described in Section 3.3. We: (1)
unify their responses in terms of delexicalization
styles, and then compare BLEU when different
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System BLEU score Inform & Success rate
Delexical. Tokenization Venue comparison Venue updates Reduced search Domain source

DAMD DAMD word intersection name, id 3 state change
MinTL DAMD sub-word intersection name, id 3 state change
UBAR DAMD sub-word intersection name, id 3 state change
SOLOIST HDSA sub-word - - - slot names
AuGPT AuGPT sub-word, NLTK first end 7 predicted
LABES DAMD word intersection name, id 3 state change
DoTS HDSA word sampling name, id 7 slot names

MarCo HDSA word, NLTK subset name, id 7 slot names
HDSA HDSA word, NLTK subset name, id 7 slot names
HDNO HDSA word sampling name, id 7 slot names
SFN HDSA word sampling name, id 7 slot names
UniConv UniConv word sampling name, id, ref. 7 slot names
LAVA LAVA word sampling name, id 7 slot names

Table 3: Setups of compared systems with respect to the used delexicalization method, tokenization, and Inform
& Success implementation. The “Venue comparison” column describes the method of comparing offered and
goal database entries, “Venue updates” indicates when the set of database entries complying to the current state
is updated, “Reduced search” reflects the database implementation that ignores other search constraints if a venue
name or train ID is present, and “Domain source” describes the source of information about the active turn domain.

delexicalizations are applied, (2) evaluate Inform
& Success under identical conditions,9 (3) evaluate
diversity and discuss similarity of the responses.

5.1 Setup
We report BLEU scores for six different delexi-
calized references (see Table 2). Five of them are
styles used in HDSA, DAMD, AuGPT, UniConv,
and LAVA. The sixth is delexicalization obtained
from the MultiWOZ 2.2 span annotations. To make
the BLEU-based comparison as fair as possible, we
normalized the raw models’ outputs. First, we re-
move start-of-sequence tokens, all “-s” and “-ly”
strings and all “s” or “es” attached to a slot place-
holder. Subsequently, we lowercase the utterances,
identify slots names and map them to a unified slot
name ontology. The ontology contains only 18
slot names (the original domain-aware delexical-
ization uses around 40 slot names). It is possible
to map all the slot names used in the 6 different
delexicalization styles onto it. To make a single
mapping possible, the result is not lossless and re-
duces the finer level of detail provided by some sys-
tems. For example, slots named departure, destina-
tion, and taxi destination are all replaced with the
PLACE placeholder. Finally, we pass the utterances
through Moses tokenizer and detokenizer10 (Koehn
et al., 2007). To calculate BLEU, we use the Sacre-
BLEU package11 (Post, 2018), which provides an

9Note that we work with original authors’ predictions,
published pre-trained weights, or models trained from scratch,
and thus we are not able to carry out a statistical analysis for
the reported numbers.

10See https://github.com/alvations/sacremoses
11See https://github.com/mjpost/sacrebleu

implementation compatible with the original and is
now a de-facto standard in MT (cf. Section 2).

Inform & Success rates depend on the database.
Our database uses fuzzy matching for the different
surface forms (see Section 4.3) using the Fuzzy-
Wuzzy package12 with a similarity threshold of
90%. We use several rules to transform time strings,
venue names, food types, and venue types to canon-
ical forms matching the entries in the database (e.g.,
“ten o’clock p.m.” is replaced with “22:00”).

Our implementation of the Inform & Success
rates follows the definition in Section 3.2. The list
of offered database entries, i.e. those complying
to the current dialogue state, is updated only if
a venue name or a train ID is mentioned (cf. Ta-
ble 3). Following HDSA, we accept a dialogue as
matching if the set of offered entries is a non-empty
subset of the set of entries matching the particular
dialogue goal. Active domains of turns are taken
from the original slot names if possible. If slot
placeholders do not include the domain name, we
either use model predictions if available, or esti-
mate the domain from changes of state predictions
in subsequent turns.

To better explain differences in the reported and
our scores, we provide an optimistic Inform & Suc-
cess following differences from the original im-
plementation found in some systems, which can
potentially overestimate results. In this setting, we:
(1) use the intersection entry matching instead of
subset matching, (2) ignore other search constraints
if a name or ID is provided, (3) use ground-truth

12See https://github.com/seatgeek/fuzzywuzzy
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Delexical. End-to-end models Policy optimization models
DAMD MinTL UBAR SOLOIST AuGPT LABES* DoTS MarCo HDSA HDNO SFN UniConv LAVA

MWZ 2.2 16.4 19.4 17.6 13.6 16.8 18.9 16.8 17.3 20.7 17.8 14.1 18.1 10.8
HDSA 15.5 18.6 16.3 15.1 15.5 17.1 15.7 19.0 22.5 19.4 15.6 17.9 11.4
DAMD 16.9 20.0 17.9 14.1 16.5 18.7 16.7 17.8 21.4 18.3 14.6 18.3 11.0
AuGPT 15.8 18.6 16.7 13.2 17.0 17.9 16.6 17.1 20.4 17.7 13.5 18.0 10.5
UniConv 15.1 18.2 15.9 13.7 15.5 16.9 15.5 17.6 20.6 18.1 14.1 18.8 10.9
LAVA 15.4 18.6 16.3 15.1 15.5 17.1 15.7 19.0 22.5 19.4 15.6 17.9 11.4
Reported 16.6 19.1 17.0 16.5 17.2 18.1 15.9 19.5 23.6 19.0 16.3 19.8 12.0

Table 4: Comparison of BLEU scores. The first column denotes the delexicalization style used for creating refer-
ences. The highest score is highlighted for each system separately. The last row shows BLEU scores reported by
authors. “*” denotes that scores for this system are computed on a subset of 91.66% test utterances.

Metric End-to-end models Policy optimization models

DAMD MinTL UBAR SOLOIST AuGPT LABES* DoTS MarCo HDSA HDNO SFN UniConv LAVA

Inform 57.9 73.7 83.4 82.3 76.6 68.5 80.4 94.5 87.9 93.3 93.4 66.7 95.9
Inform (rep.) 76.3 80.0 95.7 85.5 91.4 78.1 86.7 92.5 82.9 92.8 82.7 84.7 97.5
Inform (opt.) 73.7 79.3 88.6 86.1 78.1 75.8 84.4 96.9 91.6 97.7 96.7 67.5 97.5

Success 47.6 65.4 70.3 72.4 60.5 58.1 68.7 87.2 79.4 83.4 82.3 58.7 93.5
Success (rep.) 60.4 72.7 81.8 72.9 72.9 67.1 74.2 77.8 68.9 83.0 72.1 76.3 94.8
Success (opt.) 63.0 71.1 75.0 76.2 62.4 65.5 74.4 89.9 83.2 90.2 87.0 60.1 95.9

Table 5: Comparison of Inform & Success. “rep.” marks authors’ reported results, “opt.” denotes results for the
optimistic setting (see Section 5.1). “*” for LABES marks that scores were computed on 91.66% of the test set.

active domains.13 Note that (2) is more permis-
sive with respect to the system’s state tracking as
the ground-truth context used during response pre-
diction often contains ground-truth names or IDs.
These are then used for the database search even if
user constraints are not predicted correctly.

5.2 Results

BLEU: Table 4 summarizes BLEU evaluation
using different reference texts. We notice that us-
ing a different delexicalization might substantially
change the score (up to 2% BLEU absolute). Most
systems perform best on the references produced by
their native delexicalization used for training. We
can also see that different delexicalization styles
result not only in different absolute values, but also
in a different relative ordering of the systems. This
shows that having a single standard delexicalization
(which should always be used for model evaluation
and score comparison, and preferably also during
model development) is very important for any fair
comparison between the models. Unlike in the case
of end-to-end systems, the reported scores of the
policy optimization models are higher then ours.

13We adopt the scripts for getting ground-truth active do-
mains from DAMD’s code base.

Inform & Success rate: Table 5 shows our and
reported numbers for Inform & Success. The cor-
pus data, i.e. ground-truth responses and dialogue
states, yield Inform 93.7% and Success of 90.9%.
When evaluating in the optimistic setup, these num-
bers grow to 97.9% and 96.6%, respectively.

Our numbers differ from the reported scores of
end-to-end models to a large degree, e.g., DAMD’s
reported performance is around 20% higher for
both rates. However, the optimistic setting results
in much lower differences. This shows that DAMD
has problems with DST, which is hidden in the opti-
mistic setup. The original UBAR numbers are very
high because some ground-truth data were used dur-
ing evaluation. AuGPT reports higher rates caused
by a different Inform rate computation, where the
set of offered venues is obtained only at the end of
the dialogue. Our scores are similar to the reported
ones for SOLOIST and DoTS. UniConv has the
most different rates among the policy optimization
models (ca. 17% for both metrics). LAVA reports
higher rates similar to ours in the optimistic setting,
but the difference is small and may be caused by
MultiWOZ version differences. Our rates for SFN
are much higher than the reported. MarCo’s and
HDSA’s difference in rates can be accounted to our
more flexible database.
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Measure Ref.
End-to-end models Policy optimization models

DAMD MinTL UBAR SOLO. AuGPT LAB.* DoTS MarCo HDSA HDNO SFN UC LAVA

Unique tokens 1407 212 297 478 615 608 374 411 319 259 103 188 338 176
Unique trigrams 25212 1755 2525 5238 7923 5843 3228 5162 3002 2019 315 1218 2932 708
Entropy tokens 7.21 6.12 6.19 6.40 6.45 6.62 6.22 6.48 6.27 6.16 5.46 6.03 6.46 5.50
Con. ent. bigram 3.37 1.65 1.81 2.10 2.41 2.15 1.83 2.10 1.94 1.64 0.84 1.63 1.79 1.27
MSTTR-50 0.75 0.62 0.66 0.68 0.66 0.70 0.67 0.66 0.67 0.67 0.59 0.62 0.69 0.54
Avg. turn length 14.07 14.27 14.78 13.54 18.45 12.90 14.20 14.66 16.01 14.42 14.96 14.93 14.17 13.28

Table 6: Comparison of lexical diversity measures. “Ref.” shows values for delexicalized MultiWOZ 2.2 references
(see Section 3). Each system has its own column. “*” denotes that scores for this system are computed on a subset
of 91.66% test utterances. SOLO., LAB., UC stand for SOLOIST, LABES, and UniConv, respectively.

5.3 Evaluating Diversity

While the scores and rates differ between the eval-
uated systems, the generated utterances are similar
and uniform (cf. Appendix B). To further under-
stand differences between the systems, we analyzed
the diversity of their responses (see Table 6).

We compare the texts on several diversity mea-
sures, following van Miltenburg et al. (2018) and
Dušek et al. (2020): number of unique output to-
kens and trigrams, Shannon entropy and bigram
conditional entropy, mean segmental type-token
ratio (MSTTR-50),14 and average output length.
We used the normalized texts with unified slot on-
tology (see Section 5.2) for the comparison. The
ground-truth responses with MultiWOZ 2.2 delexi-
calization were used as reference. Even though the
systems use different delexicalization schemes, we
can draw some conclusions from the analysis. First,
all the systems use rather small vocabularies. The
number of used trigrams is orders of magnitude
lower compared to human-produced texts. The bi-
gram conditional entropy is also much lower for
all systems. Models which employ reinforcement-
learning, i.e. HDNO, SFN, and LAVA, produce
the least diverse outputs. HDNO uses only 315
trigrams, which is around 1.2% of the distinct tri-
grams seen in reference texts. On the other hand,
AuGPT, UBAR, and DoTS seem to use a broader
range of expressions. Extraordinarily diverse and
long are the outputs of SOLOIST. However, they
are still much more closer to other models then to
the human reference.

14MSTTR measures the average type-token ratio over the
output text cut into segments of equal length (50 in our case).
This reduces dependency on the overall text length, which is
very strong in regular type-token ratio.

6 Conclusion

The MultiWOZ benchmark is unique for its size
and the inclusion of a complete database, making it
possible to build end-to-end task-oriented dialogue
systems. Because of its naturalness and thanks to
multiple fixes and revisions of state annotations,
it became very popular for dialogue state track-
ing. However, it still has limitations for context-
to-response generation, partially because of lack
of standardized preprocessing and postprocessing.
Since standard, easy-to-use evaluation scripts are
not available, researches are motivated to include
their own modifications. This may appear unim-
portant, but as we showed in our analysis of 13
systems’ outputs, it results in large differences in
scores and makes any comparison or tracking of
progress in this area problematic.

We contribute to the solution of this problem by
releasing evaluation scripts, which allow consistent
evaluation of future work. We further include the
evaluation of output diversity, which adds an impor-
tant aspect missing from corpus-based MultiWOZ
evaluation so far.

Future work should include a manual revision of
MultiWOZ 2.2 span annotation to reduce training
noise and to enable fair evaluation on lexicalized
outputs. More important, however, is the use of hu-
man evaluation and evaluation of full dialogues in
addition to corpus-based metrics (Liu et al., 2016;
Takanobu et al., 2020), which is still not standard
for end-to-end dialogue systems (cf. Section 3.3).
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Goal database entries (ID): 19212, 19185, 19197, 19219

(cheap and Chinese search constraints)

Goal requested information: ADDRESS, POST

Turn utterances Dialogue state
Offered Active Provided

Entries Domain Info

User: I’d like to find a resturant that serves cheap Chinese food!

food: chinese,
pricerange: cheap no update restaurant Ø

Ground-truth system: Charlie Chan is located in the centre and
it is cheap! Would you like me to book it for you?

System: there are COUNT PRICE FOOD restaurant. do you
have a preference of area?

User: Yes, go ahead and book it and please send me the address.

food: chinese,
pricerange: cheap,
area: centre

19212,
19185,
19219

restaurant ADDRESS

Ground-truth system: The address is Regent Street City Centre.
What day and time would you like to book? How many people?

System: okay, i have booked NAME, which is located at AD-
DRESS. is there anything else i can do for you today?

User: I do not need to book it. What is the postcode and the area
please?

food: chinese,
pricerange: cheap,
area: centre

19212,
19185,
19219

restaurant POST,
ADDRESS

Ground-truth system: The postcode is cb21db

System: NAME is in the AREA and the postcode is POST. is
there anything else i can help you with today?

User: Thanks very much!

food: chinese,
pricerange: cheap,
area: centre

no update - POST,
ADDRESS

Ground-truth system: You’re welcome! Have a great day! Good-
bye.

System: thank you for using our services.

Table 7: Inform & Success calculation on the predictions of the UBAR model (conversation ID: SNG0805).

A Inform & Success Calculation Details

Table 7 walks through the process of Inform & Suc-
cess calculation. Rows group conversation turns.
The first column shows the last user utterance,
the corresponding ground-truth system response
and the delexicalized and normalized generated
response. The second column shows the current di-
alogue state. The “Offered entities” column shows
the changes of the set of matching venue or train
IDs. Note that the set is updated only if the gen-
erated response contains the NAME or TRAINID
placeholder. The “Active domain” column shows
the currently active domain. The “Provided Info”
column lists requestable slots mentioned until the
given point.

This sample conversation is (1) matching, i.e.
contributes positively to the Inform rate, because
the set of offered entities or database entries at the

end of the dialogue is a non-empty subset of the set
of goal database entries, and also (2) successful be-
cause it is matching and all requested information
defined by the dialogue goal, i.e., the restaurant
address and post code, were provided. Note that
the ground-truth context is used to generate system
utterances during the evaluation, and thus the di-
alogue state might contain information from past
ground-truth system utterances (such as the area
slot in our example, which was never mentioned in
the generated system or user utterances).

B Generated Texts Comparison

Tables 8 and 9 give a comparison of delexicalized
utterances generated by all examined systems for
two different contexts. Slot placeholders are shown
in capital letters. While there are some differences
in the systems’ behavior, the outputs often contain
very similar phrasing.
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Context User: Hello, I am doing research on plant life in England, and visiting cambridge as part of that, can you give
me more info on the cambridge university botanic gardens.

System Normalized utterance

Corpus that sounds like an exciting trip! NAME is located in the AREA on ADDRESS. its admission fee is PRICE.

DAMD the address is ADDRESS and the postcode is POST. is there anything else i can help you with?

MinTL NAME is a TYPE in the AREA. it is located at ADDRESS. their phone number is PHONE.

UBAR NAME is a TYPE located in the AREA at ADDRESS. it is PRICE to enter and is located on ADDRESS. is
there anything else i can help you with?

SOLOIST certainly! NAME is located at ADDRESS. their phone number is PHONE. is there anything else i can help
you with?

AuGPT NAME is a TYPE located in the AREA of town. the entrance fee is 4 pounds. the address is ADDRESS.

LABES NAME is located in the AREA area of town

DoTS NAME is a TYPE in the AREA. it’s free to enter. do you need any other information?

MarCO NAME is a nightclub in the AREA of town. the address is ADDRESS and the postcode is POST.

HDSA it is a museum in the AREA of town. the entrance fee is free. would you like the address?

HDNO NAME is a museum in the AREA. the address is ADDRESS. the phone number is PHONE. is there anything
else i can help you with?

SFN NAME is located at ADDRESS. the postcode is POST. the phone number is PHONE. can i help you with
anything else?

UniConv sure! it is a TYPE in the AREA part of town. would you like the address?

LAVA the NAME is located at ADDRESS, postcode POST. the phone number is PHONE.

Table 8: Side-by-side comparison of system outputs for the 1st system turn of the conversation PMUL3012.

Context User: I’m looking for a nice place to eat.

System: There are many fine places to eat. What type of cuisine would you prefer?

User: I don’t care about the cuisine type, but I want it to be somewhere expensive and in the centre please.

System Normalized utterance

Corpus there are COUNT PRICE eateries in the AREA. how about one of my favorites - NAME? they serve FOOD
food and it’s delicious!

DAMD how about NAME? it is an FOOD restaurant that is in the AREA of town and is in the PRICE price range .

MinTL there are COUNT restaurant that meet your criteria. do you have a preference for type of food?

UBAR there are COUNT PRICE restaurant in the AREA. do you have a cuisine preference?

SOLOIST how about NAME? it is an FOOD restaurant that is in the AREA of town and is in the PRICE price range .

AuGPT there are 33 PRICE restaurants in the AREA. What type of food would you like?

LABES i have COUNT restaurants that meet your criteria.

DoTS i would recommend NAME. would you like to make a reservation?

MarCO there are COUNT restaurant that meet your criteria. i recommend NAME.

HDSA i recommend NAME. would you like a reservation?

HDNO NAME is a FOOD restaurant in the AREA. would you like me to book a table for you?

SFN there are COUNT PRICE restaurant in the AREA. what type of cuisine would you like?

UniConv there are 33 PRICE TYPE in the AREA. what type of food are you looking for?

LAVA NAME is located at ADDRESS, postcode POST. the phone number is PHONE.

Table 9: Side-by-side comparison of system outputs for the 2nd system turn of the conversation PMUL2489.
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Abstract

Personalized response generation is essential
for more human-like conversations. How-
ever, how to model user personalization in-
formation with no explicit user persona de-
scriptions or demographics still remains under-
investigated. To tackle the data sparsity prob-
lem and the huge number of users, we uti-
lize tensor factorization to model users’ per-
sonalization information with their posting his-
tories. Specifically, we introduce the person-
alized response embedding for all question-
user pairs and form them into a three-mode
tensor, decomposed by Tucker decomposi-
tion. The personalized response embedding is
fed to either the decoder of an LSTM-based
Seq2Seq model or a transformer language
model to help generate more personalized re-
sponses. To evaluate how personalized the
generated responses are, we further propose a
novel ranking-based metric called Per-Hits@k
which measures how likely are the generated
responses come from the corresponding users.
Results on a large-scale English conversation
dataset show that our proposed tensor factor-
ization based models generate more personal-
ized and higher quality responses compared
to baselines. We have publicly released our
code at https://github.com/GT-SALT/

personalized_response_generation.

1 Introduction

Building human-like conversational systems has
received much attention in artificial intelligence
communities, and personalized response genera-
tion is one essential step towards this goal, as more
personalized responses are often associated with
increased user engagement (Shum et al., 2018;
Huang et al., 2020). To this end, we focus on
the task of personalized response generation in
this work, and argue that incorporating personal-
ization into text generation can benefit many down-

stream applications such as social chit-chat chat-
bots (Zhang et al., 2018) and auto-complete re-
sponses like Smart Replies (Kannan et al., 2016).

Prior text generation work on modeling person-
alization mainly relied on explicitly given persona
or demographic information. For instance, (Zhang
et al., 2018; Wolf et al., 2019; Xu et al., 2020) uti-
lized a set of persona sentences to profile users,
and other line of research leveraged demographics
to model user personalization (Zheng et al., 2019,
2020). Despite its effectiveness, such approaches
are limited when it comes to real world scenar-
ios. First, explicit persona or demographic infor-
mation is often not available. Second, collecting
such personalization information is usually costly
and time-consuming, which also suffers from ei-
ther artificially designed persona descriptions from
third-party annotators or subjective and unreliable
self-reports from users themselves (Stone et al.,
1999). Although such explicit personalization in-
formation is often unavailable, content that users
produce is generally ubiquitous and can indicate
their preferences, personal information, styles, and
knowledge in a relatively implicit but objective
manner. Our work thus utilizes these posts and
comments users made to learn latent representa-
tions of their personalization information.

Different generation models have been designed
to learn user personalization information and fur-
ther impose such representation on text generation.
For instance, Li et al. 2016 proposed the Speaker
model based on Seq2Seq framework by introduc-
ing trainable speaker embedding for each user and
feeding it to decoder at each step of decoding. How-
ever, there are always a large number of distinct
users and users often participate in only a few con-
versations; as a result, the speaker embedding may
be under-fitted given the limited data points asso-
ciated with a user. Another line of research uses
generative memory network (Zhang et al., 2018),
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which first retrieves some most relevant responses
to a user’s input as the memory and then encodes
them into an embedding. The difference between
the embedding from memory network and speaker
embedding is that the former encodes both informa-
tion of question and user, while the latter represents
only users. Nevertheless, the set of observable
question-user pairs and their responses is still a
small subset of the whole user and question sets,
leading to the sparsity issue.

Matrix Factorization (MF) has been widely used
to infer latent relationships between users and items
in recommender systems, especially for data spar-
sity issues (kumar Bokde et al., 2015). Motivated
by this, we propose to model latent interactions
between questions and users by looking at who
participated in which conversations, and infer user
personalization information from data automati-
cally, for personalized response generation tasks.
Differently, as the score or rating used in recom-
mender system usually denotes users’ preferences
towards items, such scalar is not enough to repre-
sent the semantic meaning of a response. Thus,
we introduce a response vector to indicate the re-
sponse content that a user will make for a given
conversation, i.e., personalized response embed-
ding, resulting in a tensor form representation for
all question-user pairs. Decomposing this tensor
(tensor factorization, TF) will lead to the factorized
representations for each user, question, and dimen-
sion of the response embedding. We propose to
augment response generation models with such TF-
induced modules, which are model-agnostic and
can be applied to many different generation mod-
els. Specifically, we introduce a TF module based
framework on top of LSTM-based Seq2Seq model
and transformer language model for personalized
response generation, and further train them together
in an end-to-end fashion. Evaluating response gen-
eration usually considers content relatedness and
language quality to ensure that generated text is
grammatically correct and fluent, using BLEU and
Perplexity. However, evaluating personalization
in personalized response generation is relatively
challenging as there lacks effective metrics.

To this end, we propose a novel evaluation metric
Per-Hits@k to model personalization , which for
the response of a user first calculates its perplexity
values via language models of all users, and then
ranks the perplexity via this user’s language model
to examine whether it is ranked as top-k, based

on a pre-trained GPT-2 language model (Radford
et al., 2019) for each user. Our contributions are:

• propose a tensor factorization based frame-
work to model personalization for response
generation task;

• introduce a metric Per-Hits@k, to evaluate the
personalization of the generated responses;

• experimental results on a large-scale person-
alized Reddit dataset show that our TF-based
framework outperforms previous methods sig-
nificantly in terms of both content generation
quality and personalization.

2 Related Work

Personalized Response Generation Personal-
ization has received much attention in the natural
language processing community, such as person-
alized image captioning (Chunseong Park et al.,
2017), personalized machine translation (Rabi-
novich et al., 2017), personalized response genera-
tion (Li et al., 2016), personalized intent classifica-
tion and personalized slot tagging (Liu et al., 2016).
Prior studies formulate the task of response gener-
ation as generating an output given an input text,
mainly based on either the sequence-to-sequence
(Seq2Seq) models (Vinyals and Le, 2015) or the
pretrained models like GPT-2 (Radford et al., 2019)
and BART (Lewis et al., 2019). When it comes to
personalized response generation, Speaker model
(Li et al., 2016) extended traditional response gen-
eration models by assigning each user with a train-
able speaker ID embedding. Another line of re-
search focuses on leveraging persona descriptions
or demographic attributes (Zheng et al., 2020; Qian
et al.; Wolf et al., 2019; Luo et al., 2019), building
on recent personalized dialogue datasets such as
PERSONA-CHAT (Zhang et al., 2018) and Per-
sonalDialog (Zheng et al., 2019). For instance, Xu
et al. (2020) utilized the predefined user persona
description together with their semantically corre-
lated content for generating personalized responses
in dialogue systems.

Different learning paradigms have also been in-
troduced for personalized response generation such
as reinforcement learning (Mo et al., 2016; Yang
et al., 2018; Xu et al., 2020) and transfer learn-
ing to benefit from a source domain with suffi-
cient training data (Yang et al., 2017). However,
most aforementioned approaches require explicit
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persona or demographic information which is of-
ten unavailable in real world scenarios. To fill this
gap, we propose to learn latent representation of
personalized user information from users’ posts
and model personalization jointly together with
traditional generation methods for personalized re-
sponse generation.

Evaluation Metrics for Personalized Response
Generation Current automatic evaluation met-
rics for response generation can be broadly cat-
egorized into three classes. (1) Content related-
ness measures how related a generated response
is with its corresponding ground-truth, with repre-
sentative metrics such as BLEU (Papineni et al.,
2002), NIST (Doddington, 2002), and METEOR
(Lavie and Agarwal, 2007). Speaker sensitive
responses evaluation model (SSREM) (Bak and
Oh, 2020) enhances the relatedness score with a
context-response classifier. (2) Language quality
mainly refers to the fluency and diversity, where
the former is measured via perplexity (Chen et al.,
1998) and the latter is assessed via distinct diversity
(Li et al., 2015; Yang et al., 2020) that indicates how
diverse the generated responses are. (3) Style ad-
herence aims to evaluate the adherence of the gener-
ated responses’ language style to the user’s own lan-
guage style; example metrics include the average
negative log-likelihood (NLL) of one poet’s gen-
erated lyrics on it’s poet specific language model
(Vechtomova et al., 2018), stylistic alignment (Syed
et al., 2020) that looks at the language style align-
ment at the surface, lexical and syntactic level, and
Hits@1/N (Dinan et al., 2019) that measures how
accurate the generated response can be classified to
its corresponding user by a classifier. Our proposed
Per-Hits@k metric thus belongs to the style adher-
ence class, a more fine-grained metric compared to
the average NLL metric (Vechtomova et al., 2018).

3 Preliminaries

3.1 Tucker Decomposition
To learn latent association between users, questions
and responses for personalized response genera-
tion, we choose Tucker decomposition, one widely
used tensor factorization algorithm. Tucker de-
composition (Tucker, 1966) decomposes a given
3-mode tensor X ∈ RI×J×K into a core ten-
sor G ∈ RR1×R2×R3 and three factor matrices
A ∈ RI×R1 , B ∈ RJ×R2 , C ∈ RK×R3 :

X ≈ G ×1 A×2 B×3 C

Here, ×i denotes the mode-i product of a tensor by
a matrix (i ∈ {1, 2, 3}). Any element X(i,j,k) in X
can be approximated by:

R1∑

r1=1

R2∑

r2=1

R3∑

r3=1

G(r1,r2,r3)A(i,r1)B(j,r2)C(k,r3)

3.2 LSTM-based Seq2Seq Model

LSTM-based Seq2Seq model consists of an en-
coder LSTM, a decoder LSTM, and attention mech-
anism (Yao et al., 2015). Suppose the source text
is S = (x1, x2, . . . , xm) and the target text is
T = (xm+1, xm+2, . . . , xN ), the encoder LSTM
first encodes S into hidden vector he

m and cell vec-
tor cem, then the decoder LSTM has its initial hid-
den vector hd

0 and cell vector cd0 as:

hd
0 = he

m

cd0 = cem

The hidden vector of decoder at time step t is:

hd
t = g(hd

t−1, c
d
t−1,y

∗
t ),

where g is the LSTM cell operation and y∗t is the
embedding of the input token at time step t.

Standard Seq2Seq models are not personalized,
because there is no mechanism to incorporate user-
specific information into their input. Speaker
Model (Li et al., 2016) alleviates this by explic-
itly concatenating a trainable speaker embedding
vj to y∗t for user j. Therefore, the hidden vector of
decoder of Speaker model at time step t is:

hd
t = g(hd

t−1, c
d
t−1, [y

∗
t ;vj ]),

3.3 Transformer Language Model

DialoGPT (Zhang et al., 2020) is a pre-trained con-
versational response generation model. Based on
the architecture of GPT-2 (Radford et al., 2019),
DialoGPT is trained on 147M Reddit discussions.
For a question-user pair (i, j) with source input
S and target response T , DialogGPT generates re-
sponses by modeling the conditional probability:

P (T | S) =
N∏

n=m+1

P (xn | x1, x2, . . . , xn−1)
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Figure 1: LSTM-based Seq2Seq model with our proposed tensor factorization module. The cell vector cem from
the encoder and the attention mechanism are omitted for brevity.

4 Method

We formulate the task of personalized response
generation as follows: given a set of question-user
pair (q, u) ∈ Sq × Su where Sq and Su refer to
the question set and user set respectively, generate
a response r for this question-user pair (q, u), i.e.,
posted by user u for question q. The overall model
architecture is described in Figure 1.

4.1 Tensor Factorization Module

To enable personalized response generation, we
first need to automatically infer personalized sig-
nals that users demonstrate in their participation
such as questions that they might interact with, as
such signatures are often not explicitly available.
To this end, we introduce personalized response
embedding pi,j , a K-dimensional vector, to repre-
sent the latent relationship between a question i and
a user j. We then form a tensor using all pi,j over
all question-user pairs and factorize this tensor, to
learn latent interactions between questions, users,
and their responses.

Formally, for a dataset with I = |Sq| questions
and J = |Su| users, we have a tensorP ∈ RI×J×K

where P(i,j,:) = pi,j denotes each (i, j) pair. The
notation P(i,j,:) refers to the mode-3 fiber (or tube)
of the tensor P . P can be further formulated via
Tucker Decomposition as follows:

P = G ×1 Q×2 U×3 R

Here Q ∈ RI×R1 , U ∈ RK×R2 , R ∈ RK×R3

are the factor matrices, and G ∈ RR1×R2×R3 is a
core tensor. Once these factor matrices and core
tensor are determined, the personalized response
embedding pi,j for any question-user pair (i, j) can

be calculated as:

pi,j = P(i,j,:) = RG(3) (uj ⊗ qi)
>

where qi and uj denote i-th and j-th row vector of
Q and U respectively. ⊗ is the Kronecker product
of two matrices.

Next, we introduce different mechanisms to in-
corporate TF modules especially pi,j into tradi-
tional LSTM-based models and Transformer Lan-
guage Models. This is essential to train better TF
modules since it is impossible to directly supervise
pi,j as no ground truth is available.

4.2 LSTM-based Model with TF Module
To utilize TF module for standard LSTM-based
Seq2Seq models, we propose to incorporate pi,j

into the initial hidden vector and cell vector of the
LSTM decoder to help generate more personalized
response, as personalized response embedding pi,j

is expected to also encode the target response:

hd
0 = (1− λ) · he

m + λ · pi,j

cd0 = (1− λ) · cem + λ · pi,j ,
(1)

Here λ is a coefficient to balance the information
from the LSTM encoder and the personalized re-
sponse embedding. Note that our TF module is
agnostic to encoder-decoder frameworks, and can
be applied to any Seq2Seq model similarly, includ-
ing but not limited to Seq2Seq, Speaker model
(Li et al., 2016), Seq2Seq with memory network
(Zhang et al., 2018), and Speaker model with mem-
ory network. Figure 1 describes how the TF mod-
ule is integrated with an LSTM-based Seq2Seq
model. The TF module is randomly initialized and
trained together with the Seq2Seq model. This al-
lows TF module to access the supervision from the
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output response, thus learn the latent interaction
between users and questions and produce personal-
ized response embedding for the decoder.

4.3 Transformer with TF Module

Recent success of DialoGPT (Zhang et al., 2020)
on conversational response generation shows the
potential of (pre-trained) transformer language
model for the task of response generation. Thus
we propose to incorporate TF module with trans-
former language model, (DialoGPT in specific) for
personalized response generation. Since DialoGPT
is a language model rather than a Seq2Seq model,
it does not have a encoder-decoder architecture but
only one transformer model. Thus we cannot uti-
lize pi,j as the initial hidden vector for decoder
like that in Eq. 1. Instead, we propose to add per-
sonalized response embedding pi,j with the input
token embedding, token type embedding and posi-
tional embedding together as the input embedding
to DialoGPT model. As shown in Figure 2, the
personalized response embedding pi,j is added to
token “<EOS>”, “klein” and “bleu” in the input
to decode the j-th user’s response for the i-th ques-
tion. The TF module that produces pi,j is also
trained together with the DialoGPT model in an
end-to-end fashion.

5 Experiments

5.1 Dataset

To study the task of personalized response gen-
eration with no explicit personalization informa-
tion, we used a personalized Reddit dataset PER-
CHAT, consisting of 200,156 responses that users
posted to different questions, from r/AskReddit1

(Wu et al., 2021). Building upon Wu et al. (2021),
we used active users who joined more than av-
erage discussions, and popular questions that re-
ceived more comments. This led to 4724 users
under 39,187 questions. These users and questions
were sampled because they were active users who
joined more discussions or popular questions that
received more comments. We filtered all forms
of url links, emails and digits into unique tokens
“url”, “email” and “digit”. Replicated words and
punctuation were processed to their standard forms.
We sampled 3 responses for each user for users in
the validation and test set, and the rest are used
for training. The proportion of split size of train,
validation, test is 171812 : 14172 : 14172.

1https://www.reddit.com/r/AskReddit/
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Figure 2: Input representation for DialoGPT model with TF
module. TF module’s personalized response embedding pi,j

is added with response token’s word embedding, token type
embedding and positional embedding.

5.2 Baselines and Our Models

We introduced several baselines for comparison
with our proposed models. We introduced several
baselines for comparison with our proposed mod-
els. (1) DialoGPT: A response generation model
based on DialoGPT-medium provided in Zhang
et al. 2019; (2) Seq2Seq: A standard Seq2Seq
model with attention mechanisms with no person-
alization information; (3) Speaker model: Our im-
plementation of the speaker model (Li et al., 2016).
Following (Kottur et al., 2017), the Speaker em-
beddings were not initialized randomly but set as
the average sentence embeddings from a user’s all
historical responses via sentence-BERT (Reimers
and Gurevych, 2020); the dimension was reduced
to 30 by principal component analysis. (4) Mem-
ory network: Our implementation of the generative
memory network (Zhang et al., 2018) based on our
Seq2Seq model with attention. We retrieved top-10
most relevant responses from a user for each ques-
tion as the memory in the memory network; (5)
Memory+Speaker: The generative memory net-
work (Zhang et al., 2018), together with the use of
the speaker embedding (Li et al., 2016).
Our models were based on the aforementioned
baseline models by further incorporating our
proposed TF module, i.e., the personalized re-
sponse embedding from the TF module. Di-
aloGPT+TF is a DialoGPT model with person-
alized response embedding added to each time
step at the decoding stage shown in Figure 2.
Seq2Seq+TF, Speaker+TF, Memory+TF, Mem-
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ory+Speaker+TF are constructed on top of our
baseline models with personalized response em-
bedding added to the decoder as Eq. 1.

5.3 Evaluation Metrics
We evaluated different models with F1, BLEU,
Distinct-N, perplexity (PPL), and our proposed Per-
Hits@k. Here, F1 (Dinan et al., 2019) refers to the
harmonic mean of precision and recall computed
based on the tokens between generated and ground
truth response. BLEU (Papineni et al., 2002) was
first proposed for machine translation but is also
widely used for evaluating response generation.
Distinct-N (Li et al., 2015) aims to evaluate lexical
diversity and we tested distinct unigrams (Distinct-
1) and bigrams (Distinct-2). We used perplexity to
evaluate the fluency of the generation model.
Per-Hits@k for Personalization Evaluation To
evaluate the personalization in generated responses
for a user, one needs to have a good understand-
ing of that particular user who might sometimes
have a very long posting history (500 responses per
user on average in our dataset), making it hard for
annotators to evaluate how personalized the gen-
erated response is for a user. Besides, not every
response from a user will reveal their personaliza-
tion information. Thus, we propose an automatic
evaluation metric to evaluate the personalization
degree of different generation models called Per-
Hits@k. Suppose we have N users and there are
Mi responses generated for user i to be evaluated.
We firstly train a user-specific language model LMi

for each user i on all their responses in training set.
We then test the j-th response’s perplexity of user
i on all users’ language models, and denote its per-
plexity on user-n’s language model as pplni,j . We
rank the perplexity of user i’s j-th response over
N user language models (the lower the perplex-
ity, the higher rank), and denote the ranking of the
perplexity on user i’s language model LMi with
rank(pplii,j). We define the value of Per-Hits@k
in Per-Hits@k metric as:

Per-Hits@k =
1

∑N
i=1Mi

N∑

i=1

Mi∑

j=1

1x≤k(rank(ppl
i
i,j))

This measures how likely the generated response
will be ranked as top-k with its corresponding user
language model among N users. In our implemen-
tation, we fine-tuned GPT-2 (small) (Radford et al.,
2019) for each user i to instantiate this user i’s lan-
guage model LMi. To ensure the quality of LMi,

we only consider a subset of users (N = 500) and
choose these users who have the most responses.

5.4 Implementation Details
We implemented our models with PyTorch (Paszke
et al., 2019). For TF module, the core tensor
is of size 50 × 50 × 50, dimension of personal-
ized response embedding is 512 for all Seq2Seq-
based models with TF module (denote as Seq2Seq-
based+TF), while it is 1024 for the DialoGPT+TF
model. For any Seq2Seq-based+TF model, both
encoder and decoder have 2 LSTM layers with
hidden size of 512, while DialoGPT+TF model is
based on the pre-trained medium DialoGPT model
with hidden size of 1024. Any word appears more
than three times were included in the vocabulary
of Seq2Seq-based+TF models, and the size of the
vocabulary is 30K. DialoGPT+TF model uses the
pre-trained Byte-Pair-Encoding (BPE) tokenizer
of size 50,257. The λ coefficient in Eq. 1 is set
to 0.2. Adam (Kingma and Ba, 2014) is used as
the optimizer and the learning rate was set to 1e-3
for TF-Speaker model and 1e-5 for TF-DialoGPT
by grid search. Top-k (k = 2) sampling (Fan
et al., 2018) was used without any re-scoring tech-
niques to generate response at test stage. We se-
lected models with the highest average Per-Hits@k
(k = 1, 2, 3, 4, 5) on validation set.

5.5 Results
As shown in Table 1, we reported F1, BLEU,
Distinct-N and Per-Hits@k on test data. Distinct-
N and Per-Hits@k on ground truth test data and
Per-Hits@k on random ranking were also reported.
Overall, we found that TF based models signif-
icantly improved the personalization metric Per-
Hits@k compared to all baselines, with comparable
and even better performances in terms of other met-
rics. Specifically, our proposed Seq2Seq+TF model
had an average hist@k score 4 times higher than the
Seq2Seq baseline and the Memory+Speaker+TF
model had the highest personalization score. This
demonstrates that our proposed TF module can
model users’ personalization well using users’ post-
ing history. Furthermore, 1) Per-Hits@k on ground
truth data was far below its upper bound 100%
but still much higher than Per-Hits@k of genera-
tion models, showing the effectiveness of our Per-
Hits@kmetric to evaluate user personalization. For
example, a Per-Hits@1 score of 9.47% indicated
that 9.47% of the ground truth responses were
ranked as top-1 by its users’ language model over
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Method F1 BLEU Distinct-N % PPL Per-Hits@k %
% % D-1 D-2 1 2 3 4 5 Avg.

Random ranking - - - - - 0.20 0.40 0.60 0.80 1.00 0.60
Ground truth - - 7.25 45.51 - 9.47 15.73 19.93 23.00 25.40 18.71

DialoGPT 13.64 0.86 3.24 18.68 27.20 0.40 0.67 1.00 1.27 1.60 0.99
Seq2Seq 14.42 1.22 0.66 4.01 92.24 0.60 0.87 1.00 1.20 1.53 1.04
Speaker 15.34 1.41 2.79 14.27 98.75 1.00 1.93 2.93 3.40 3.80 2.61
Memory 14.42 1.28 3.34 16.36 108.27 1.27 2.20 2.73 3.20 3.67 2.61

Memory+Speaker 14.60 1.11 3.52 17.64 110.31 1.53 2.73 3.47 4.33 5.00 3.41

DialoGPT+TF 13.61 0.80 3.61 20.40 27.01 0.53 1.00 1.27 1.67 1.73 1.24∗

Seq2Seq+TF 15.40∗ 1.58∗ 3.20∗ 15.95∗ 105.21 2.07∗ 3.20∗ 4.53∗ 5.40∗ 5.80∗ 4.20∗

Speaker+TF 15.33 1.59 3.35∗ 17.19∗ 107.88 2.07∗ 3.33∗ 3.80 4.67 5.40∗ 3.85∗

Memory+TF 14.99∗ 1.38∗ 3.52 16.69 107.46 2.40∗ 3.33∗ 4.00∗ 5.00∗ 5.60∗ 4.07∗

Memory+Speaker+TF 14.99∗ 1.40∗ 3.34 16.29 107.55 2.60∗ 4.00∗ 4.93∗ 6.00∗ 6.53∗ 4.81∗

Table 1: Performance comparison with baselines. A Wilcoxon signed-rank test was performed for Per-Hits@k and
paired t-test was performed for other metrics, the significant ones (p < 0.05) over its baseline are marked as ∗.

Method F1 BLEU Distinct-N % PPL Per-Hits@k %
% % D-1 D-2 1 2 3 4 5 Avg.

Ground truth - - 26.51 73.31 - 100 100 100 100 100 100

DialoGPT 15.67 0.11 28.33 65.18 20.96 1.41 2.11 2.82 2.82 2.82 2.39
Seq2Seq 16.05 0.47 21.69 52.29 60.10 2.11 2.11 2.82 4.93 4.93 3.38
Speaker 19.69 4.40 19.42 48.47 55.81 3.52 6.34 9.15 9.86 9.86 7.75
Memory 19.02 4.33 23.08 54.56 60.44 4.23 7.04 8.45 9.15 9.86 7.75

Memory+Speaker 19.89 3.18 22.98 58.51 59.03 4.93 7.75 11.97 14.79 16.20 11.13

DialoGPT+TF 15.11 0.17 30.29 65.19 21.30 2.11 2.82 2.82 3.52 3.52 2.96∗

Seq2Seq+TF 22.98∗ 5.77 20.43 49.75 57.38 9.86∗ 13.38∗ 16.90∗ 16.90∗ 17.61∗ 14.93∗

Speaker+TF 20.70 4.16 22.72∗ 53.02∗ 56.50 10.56∗ 13.38∗ 14.08 15.49 15.49 13.80∗

Memory+TF 21.31∗ 3.10 23.45 55.10 57.65 11.27∗ 12.68 13.38 15.49 16.20 13.80∗

Memory+Speaker+TF 20.79 2.31 23.67 58.58 57.64 10.56∗ 14.08∗ 15.49∗ 16.90∗ 18.31∗ 15.07∗

Table 2: Performance comparison with baselines on top-1 focused test set. A Wilcoxon signed-rank test was performed for
Per-Hits@k and paired t-test was performed for other metrics, the significant ones (p < 0.05) over its baseline are marked as ∗.

the 500 users. One explanation why Per-Hits@1
on ground truth data was far below 100% might
be that these responses from a user do not neces-
sarily always reveal their persona. 2) Although
both Seq2Seq and DialoGPT did not model user
personalization explicitly, they had higher than ran-
dom Per-Hist@k. 3) Compared to Seq2Seq, both
Speaker and Memory model had about double Per-
Hits@k and some degree of improvements over
BLEU, F1, and Distinct-N. Combining the Mem-
ory and Speaker models led to further improve-
ment on Per-Hits@k. Seq2Seq model with per-
sonalized response embedding form TF module
(Seq2Seq+TF) achieved higher Per-Hits@k than
all baselines, and our Memory+Speaker+TF model
showed the highest Per-Hits@k score, demonstrat-
ing the effectiveness of our proposed TF module
in capturing user personalization by learning the
latent interactions between questions, users, and
their responses. 4) Compared to Seq2Seq model,
DialoGPT performed worse on content related-
ness measures like BLEU and F1 and personal-

ization measure Per-Hits@k. But our TF module
still improved the personalization on top of Di-
aloGPT model, as well as the diversity measure
Distinct-N. Note that the perplexity could not be
compared between DialoGPT and LSTM-based
models since they have different vocabulary sets.
5) Memory+Speaker model had better Per-Hits@k
but lower BLEU than Seq2Seq model, while our
TF module improved Memory+Speaker model’s
BLEU and Per-Hits@k at the same time. Due to
the open-ended nature of these discussions, we
observed relatively low BLEUs across different
models, in line with prior work on personalized
generation (Zheng et al., 2020; Li et al., 2016).

Since we have relatively high Per-Hits@k on
the ground truth test set, we hypothesize that those
top ranked responses in the ground truth test set by
Per-Hits@k might be more likely to contain user
personalization information. In other words, for
certain question-user pairs, a user is more likely to
respond with some personalized content that could
be better recognized by their language model. We
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Method F1 BLEU Distinct-N % PPL Per-Hits@k %
% % D-1 D-2 1 2 3 4 5 Average

Random 15.45 1.36 3.09 14.90 97.05 1.33 1.73 1.87 2.53 2.93 2.08
History 15.34 1.41∗ 2.79 14.27 98.75 1.00 1.93 2.93∗ 3.40 3.80 2.61
TF-u 15.24 1.48∗ 2.48 12.52 101.77 1.07 1.60 2.40 2.73 2.93 2.15

History+TF-u 15.60∗ 1.59∗ 3.02 15.42∗ 101.30 1.33 2.67 3.67∗ 4.20∗ 4.93∗ 3.36∗

Table 3: Speaker model with different speaker embedding initialization methods. A Wilcoxon signed-rank test was performed
for Per-Hits@k and paired t-test was performed for other metrics, the significant ones (p < 0.05) over Random are marked as ∗

top-m Per-Hits@k from Seq2Seq+TF
1 2 3 4 5 Avg.

1 9.86 13.38 16.90 16.90 17.61 14.93
2 6.78 9.32 11.86 11.86 12.71 10.51
3 6.35 8.36 11.04 11.37 12.04 9.83
4 5.51 7.54 9.86 11.01 11.59 9.10
5 4.99 6.82 8.92 9.97 10.50 8.24

500 2.07 3.20 4.53 5.40 5.80 4.20

Table 4: Per-Hits@k on different top-m focused test sets.

denote these question-user pairs that are ranked
top-k by the Per-Hits@k from the test set as the
top-m focused set. We evaluated Per-Hits@k of
Seq2Seq+TF on different top-m (m = 1, 2, 3, 4, 5)
test set in Table 4. Note that top-500 is the full test
set we used for Per-Hits@k in Table 1. Per-Hits@k
was higher on smaller top-m test set, showing the
effectiveness of our Per-Hits@k measure, because
Per-Hits@k of the same Seq2Seq+TF model was
higher on the focused question-user subset when
m is small, while lower on the larger and general
test set. We then evaluated the baselines and our
proposed models on top-1 focused test set in Ta-
ble 2. Compared to the results on the full test set
(Table 1), the gaps between our models and base-
lines on BLEU, F1, and Per-Hits@k are larger on
this top-1 test set. This suggests that our TF mod-
ule can help generate more personalized response
for a user, especially in a context where a user is
more likely to write personalized response.

5.6 Analysis and Ablation Studies

The Rank of Tucker Decomposition We first
studied the influence of the rank of Tucker decom-
position used in our TF module, i.e. the shape
of the core tenser G. We trained Seq2Seq+TF
model with core tensor of shape R×R×R,R ∈
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. From Fig-
ure 3(a), we found that Per-Hits@k first increased
along with the rank, indicating that TF mod-
ule with higher rank might better model latent
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Figure 3: Per-Hits@k of Seq2Seq+TF model with (a):
different Tucker’s rank; (b): different balancer λ.

user-questioninteractions. When the rank reaches
around 50, there seems to be limited averaged gains
on Per-Hits@k. Thus, we chose core tensor of
shape 50× 50× 50 for our TF module.

The Balancer λ We then studied the influence of
the λ coefficient in Eq 1 which is used to balance
the question information from the encoder and per-
sonalized response embedding from the TF mod-
ule. We varied Seq2Seq+TF model’s λ from 0 to
1, as shown in Figure 3(b). Note that Seq2Seq+TF
with λ = 0 is the Seq2Seq baseline. We observed
that Per-Hits@k increased a lot when λ changed
from 0 to 0.1, confirming the effectiveness of our
proposed TF module in modeling user personaliza-
tion. Moreover, TF module was not sensitive to
the hyper-parameter λ as Per-Hits@k were stable
for λ ∈ [0.1, 0.4]. Per-Hits@k decreased when λ
was larger than 0.4, suggesting the importance to
balance the encoder and TF module.

User Factor Matrix To examine whether the TF
module has learned user personalization informa-
tion in user factor matrix U, we trained a Speaker
model that initialized the speaker embeddings with
user embeddings in U and other initialization meth-
ods. Specifically we studied the user factor matrix
(TF-u) from the Seq2Seq+TF model in Table 1 and
compared it with: 1) random speaker embeddings
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Figure 4: Per-Hits@k calculated by GPT2 and KenLM for
different models. Pearson correlation r=0.941, with p < .001.

(Random) and 2) average sentence embeddings of
each user’s historical responses (History) which
is used in our Speaker model baseline; 3) we fur-
ther concatenated the history embeddings and our
user embeddings in U to be the initial Speaker em-
beddings (History+TF-u). The results of the four
variants of Speaker model are shown in Table 3.
We found that both History and TF-u initialization
improved Per-Hits@k over Random to some extent,
suggesting that our TF module has learned some
degree of user personalization in its user factor ma-
trix U. Although TF-u had smaller Per-Hits@k
improvement over Random, History+TF-u has the
best Per-Hits@k, indicating that the personaliza-
tion information learned by TF module is different
to that from users’ posting history.

Robustness of Personalization Metric To test
the robustness of our Per-Hits@k metric, we
trained trigram language models with the KenLM
toolkit (Heafield et al., 2013) for the user spe-
cific language models used in Per-Hits@k. While
GPT-2 is a transformer-based language model pre-
trained on large corpus and can be fine-tuned on
each user’s corpus, KenLM is impossible to follow
this approach because it can only be trained in an
end-to-end way, i.e. language models of KenLM is
directly trained on each user’s corpus. Thus we had
two Per-Hits@k variants: Per-Hits@k-GPT2 (the
one we used in previous sections) and Per-Hits@k-
KenLM. We evaluated Per-Hits@k-GPT2 and Per-
Hits@k-KenLM for all the models we trained with
different settings and plot all (Per-Hits@k-KenLM,
Per-Hits@k-GPT2) pairs for k ∈ {1, 2, 3, 4, 5} in
Figure 4. With a correlation of 0.941 between two
variants, we conclude that Per-Hits@k is robust

because it produces consistent and similar judge-
ments regardless of which language model it uses.

6 Conclusion and Discussion

This work proposed a tensor factorization module
to model user personalization from users’ posting
history for the task of personalized response gener-
ation, where explicit persona or demographic infor-
mation is unavailable. To automatically evaluate
the personalization of generated response, we pro-
posed a new evaluation metric called Per-Hits@k.
Extensive experiments on a large-scale dataset
show that our proposed TF module outperforms
previous methods significantly in terms of its con-
tent generation quality and also the personalization
of generated responses. Our ablation studies fur-
ther demonstrated the effectiveness and robustness
of our TF based generation framework.

One limitation to note for our work is that our
tensor factorization based framework to model per-
sonalization has only been tested on a corpus de-
rived from Reddit (Wu et al., 2021). We acknowl-
edge that potential user population bias might be
introduced in this process. Another limitation of
our results lies in dealing with new users, i.e., the
cold start problem. Future research could further
examine these issues, build upon our work to ex-
amine how different types of implicit information
such as social knowledge and commonsense might
be learned together with these user profiles in this
tensor factorization manner, and model personal-
ization in multi-turn dialogue systems.
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Abstract

This paper reviews and summarizes human
evaluation practices described in 97 style trans-
fer papers with respect to three main evalua-
tion aspects: style transfer, meaning preserva-
tion, and fluency. In principle, evaluations by
human raters should be the most reliable. How-
ever, in style transfer papers, we find that pro-
tocols for human evaluations are often under-
specified and not standardized, which hampers
the reproducibility of research in this field and
progress toward better human and automatic
evaluation methods.

1 Introduction

Style Transfer (ST) in NLP refers to a broad spec-
trum of text generation tasks that aim to rewrite a
sentence to change a specific attribute of language
use in context while preserving others (e.g., make
an informal request formal, Table 1). With the suc-
cess of deep sequence-to-sequence models and the
relative ease of collecting data covering various
stylistic attributes, neural ST is a popular genera-
tion task with more than 100 papers published in
this area over the last 10 years.

Despite the growing interest that ST receives
from the NLP community, progress is hampered by
the lack of standardized evaluation practices. One
practical aspect that contributes to this problem is
the conceptualization and formalization of styles in
natural language. According to a survey of neural
style transfer by Jin et al. (2021), in the context
of NLP, ST is used to refer to tasks where styles
follow a linguistically motivated dimension of lan-
guage variation (e.g., formality), and also to tasks
where the distinction between style and content is
implicitly defined by data (e.g., positive or nega-
tive sentiment). Across these tasks, ST quality is
usually evaluated across three dimensions: style
transfer (has the desired attributed been changed

Figure 1: Number of papers employing human evalu-
ations for style transfer (S), meaning preservation (M),
fluency (F), all of them (S∪M∪F), at least one of them
(S∩M∩F), or another aspect (OTHER).

FORMALITY
Gotta see both sides of the story. (informal)
You have to consider both sides of the story. (formal)

SENTIMENT
The screen is just the right size. (positive)
The screen is too small. (negative)

AUTHOR IMITATION
Bring her out to me. (modern)
Call her forth to me. (shakespearean)

Table 1: Examples of three ST attributes: formality, sen-
timent and Shakespearean transfer.

as intended?), meaning preservation (are the other
attributes preserved?), and fluency (is the output
well-formed?) (Pang and Gimpel, 2019; Mir et al.,
2019). Given the large spectrum of stylistic at-
tributes studied and the lack of naturally occurring
references for the associated ST tasks, prior work
emphasizes the limitations of automatic evaluation.
As a result, progress in this growing field relies
heavily on human evaluations to quantify progress
among the three evaluation aspects.
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Inspired by recent critiques of human evalua-
tions of Natural Language Generation (NLG) sys-
tems (Howcroft et al., 2020; Lee, 2020; Belz et al.,
2020, 2021; Shimorina and Belz, 2021), we con-
duct a structured review of human evaluation for
neural style transfer systems as their evaluation is
primarily based on human judgments. Concretely,
out of the 97 papers we reviewed, 69 of them re-
sort to human evaluation (Figure 1), where it is
treated either as a substitute for automatic metrics
or as a more reliable evaluation.

This paper summarizes the findings of the review
and raises the following concerns on current human
evaluation practices:

1. Underspecification We find that many at-
tributes of the human annotation design (e.g.,
annotation framework, annotators’ details) are
underspecified in paper descriptions, which
hampers reproducibility and replicability;

2. Availability & Reliability The vast majority
of papers do not release the human ratings
and do not give details that can help assess
their quality (e.g., agreement statistics, quality
control), which hurts research on evaluation;

3. Lack of standardization The annotation pro-
tocols are inconsistent across papers which
hampers comparisons across systems (e.g.,
due to possible bias in annotation frame-
works).

The paper is organized as follows. In Section 2,
we describe our procedure for analyzing the 97
papers and summarizing their evaluations. In Sec-
tion 3, we present and analyze our findings. Finally,
in Section 4, we conclude with a discussion of
where the field of style transfer fares with respect
to human evaluation today and outline improve-
ments for future work in this area.

2 Reviewing ST Human Evaluation

Paper Selection We select papers for this study
from the list compiled by Jin et al. (2021) who
conduct a comprehensive review of ST that covers
the task formulation; evaluation metrics; opinion
papers and deep-learning based textual ST meth-
ods. The paper list contains more than 100 papers
and is publicly available (https://github.com/
fuzhenxin/Style-Transfer-in-Text). We re-
viewed all papers in this list to determine whether

they conduct either human or automatic evalua-
tion on system outputs for ST, and therefore should
be included in our structured review. We did not
review papers for text simplification, as it has
been studied separately (Alva-Manchego et al.,
2020; Sikka et al., 2020) and metrics for auto-
matic evaluation have been widely adopted (Xu
et al., 2016). Our final list consists of 97 papers:
86 of them are from top-tier NLP and AI venues:
ACL, EACL, EMNLP, NAACL, TACL, IEEE, AAAI,
NeurIPS, ICML, and ICLR, and the remaining 11 are
pre-prints which have not been peer-reviewed.

Review Structure We review each paper based
on a predefined set of criteria (Table 2). The ratio-
nale behind their choice is to collect information
on the evaluation aspects that are underspecified in
NLP in general as well as those specific to the ST

task. For this work, we call the former global crite-
ria. The latter is called dimension-specific criteria
and is meant to illustrate issues with how each di-
mension (i.e., style transfer, meaning preservation,
and fluency) is evaluated.

Global criteria can be split into three categories
which describe: (1) the ST stylistic attribute, (2)
four details about the annotators and their com-
pensation, and (3) four general design choices of
the human evaluation that are not tied to a specific
evaluation dimension.

For the dimension-specific criteria we repurpose
the following operationalisation attributes intro-
duced by Howcroft et al. (2020): form of response
elicitation (direct vs. relative), details on type of
collected responses, size/scale of rating instrument,
and statistics computed on response values. Finally,
we also collect information on the quality criterion
for each dimension (i.e., the wording used in the
paper to refer to the specific evaluation dimension).

Process The review was conducted by the au-
thors of this survey. We first went through each of
the 97 papers and highlighted the sections which
included mentions of human evaluation. Next, we
developed our criteria by creating a draft based on
prior work and issues we had observed in the first
step. We then discussed and refined the criteria
after testing it on a subset of the papers. Once the
criteria were finalized, we split the papers evenly
between all the authors. Annotations were spot-
checked to resolve uncertainties or concerns that
were found in reviewing dimension-specific crite-
ria (e.g., scale of rating instrument is not explicitly
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GLOBAL CRITERIA

task(s) ST task(s) covered
presence of human annotation presence of human evaluation
annotators’ details details on annotator’s background/recruitment process
annotators’ compensation annotator’s payment for annotating each instance
quality control quality control methods followed to ensure reliability of

collected judgments
annotations’ availability availability of collected judgments
evaluated systems number of different systems present in human evaluation
size of evaluated instance set number of instances evaluated for each system
size of annotation set per instance number of collected annotations for each annotated instance
agreement statistics presence of inter-annotator agreement statistics
sampling method method for selecting instances for evaluation from the original test sets

DIMENSION-SPECIFIC CRITERIA

presence of human evaluation whether there exists human evaluation for a specific aspect
quality criterion name quality criterion of evaluated attribute as mentioned in the paper
direct response elicitation presence of direct assessment

(i.e., each instance is evaluated on its own right)
relative judgment type (if applicable) type of relative judgment (e.g., pairwise, ranking, best)
direct rating scale (if applicable) list of possible response values
presence of lineage reference whether the evaluation reuses an evaluation framework from prior work
lineage source (if applicable) citation of prior evaluation framework

Table 2: Descriptions of attributes studied in our structured review.

defined but inferred from the results discussion)
and global criteria (e.g., number of systems not
specified but inferred from tables). We release the
spreadsheet used to conduct the review along with
the reviewed PDFs that come with highlights on the
human evaluation sections of each paper at https:
//github.com/Elbria/ST-human-review.

3 Findings

Based on our review, we first discuss trends of
stylistic attributes as discussed in ST research
through the years (§3.1), followed by global cri-
teria of human evaluation (§3.2), and then turn to
domain-specific criteria (§3.3).

3.1 Evolution of Stylistic Attributes
Table 3 presents statistics on the different style at-
tributes considered in ST papers since 2011. First,
we observe a significant increase in the number
of ST papers starting in 2018 (in 2017 there were
8 ST papers; the following year there were 28).
We believe this can be attributed to the creation
of standardized training and evaluation datasets
for various ST tasks. One example is the Yelp
dataset, which consists of positive and negative
reviews, and is used for unsupervised sentiment
transfer (Shen et al., 2017). Another example is

the GYAFC parallel corpus, consisting of informal-
formal pairs that are generated using crowdsourced
human rewrites (Rao and Tetreault, 2018). Sec-
ond, we notice that new stylistic attributes are stud-
ied through time (21 over the last ten years), with
sentiment and formality transfer being the most
frequently studied.

3.2 Global Criteria

Annotators Table 4 summarizes statistics about
how papers describe the background of their hu-
man judges. The majority of works (38%) rely on
crowd workers mostly recruited using the Ama-
zon Mechanical Turk crowdsourcing platform. In-
terestingly, for a substantial number of evalua-
tions (45%), it is unclear who the annotators are
and what their background is. In addition, we find
that information about how much participants were
compensated is missing from all but two papers.
Finally, many papers collect 3 independent annota-
tions, although this information is not specified in
a significant percentage of evaluations (42%). In
short, the ability to replicate a human evaluation
from the bulk of current research is extremely chal-
lenging, and in many cases impossible, as so much
is underspecified.
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STYLE 2011 2012 2016 2017 2018 2019 2020 2021 TOTAL

anonymization 1 1
attractiveness 1 1 2
author imitation 1 2 2 1 5 11
debiasing 2 2
social register 1 1
expertise 1 1
formality 1 1 9 10 3 24
gender 1 2 3 6
political slant 2 1 1 4
sentiment 4 14 14 18 3 53
romantic/humorous 2 1 1 4
simile 1 1
excitement 1 1
profanity 1 1
prose 1 1 2
offensive language 1 1 2
multiple 1 1 2
persona 1 1 1 3
poeticness 1 1
politeness 1 1 2
emotion 1 1
TOTAL 1 1 2 8 28 31 48 6 125

Table 3: Number of ST papers per stylistic attribute across years. Some papers evalute multiple style attributes.

CROWD-SOURCING PAPER’S DESCRIPTION OF ANNOTATORS COUNT

YES
“qualification test” 6
“number of approved HITs’ 2
“hire Amazon Mechanical Turk workers” 18

NO

“bachelor or higher degree; independent of the authors’

12
“research group”, “annotators with linguistic background”
“well-educated volunteers”, “graduate students in
computational linguistics” “major in linguistics”
“linguistic background”, “authors”

UNCLEAR
“individuals”, “human judges”, “human annotators”

31
“unbiased human judges”, “independent annotators”

Table 4: Annotators’ background for human evaluation as described in ST papers.

Annotations’ Reliability Only 31% of evalua-
tion methods that rely on crowd-sourcing employ
quality control (QC) methods. The most common
QC strategies are to require workers to pass a qual-
ification test (Jin et al., 2019; Li et al., 2016; Ma
et al., 2020; Pryzant et al., 2020) to hire the top-
ranked workers based on pre-computed scores that
reflect the number of their past approved tasks (Kr-
ishna et al., 2020; Li et al., 2019), to use location

restrictions (Krishna et al., 2020), or to perform
manual checks on the collected annotations (Rao
and Tetreault, 2018; Briakou et al., 2021). Further-
more, only 20% of the papers report inter-annotator
agreement statistics, and only 4 papers release the
actual annotations to facilitate the reproducibility
and further analysis of their results. Without this
information, it is difficult to replicate the evaluation
and compare different evaluation approaches.
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Data Selection Human evaluation is typically
performed on a sample of the test set used for au-
tomatic evaluation. Most works (62%) sample in-
stances randomly from the entire set, with a few
exceptions that employ stratified sampling accord-
ing to the number of stylistic categories considered
(e.g., random sampling from positive and negative
classes for a binary definition of style). For 25%
of ST papers information on the sampling method
is not available. Furthermore, the sample size of
instances evaluated per system varies from 50 to
1000, with most of them concentrated around 100.

3.3 Dimension-specific Criteria
Quality Criterion Names Table 5 summarizes
the terms used to refer to the three main dimensions
of style transfer, meaning preservation, and fluency.
As Howcroft et al. (2020) found in the context of
NLG evaluation, we see that the names of these
dimensions are not standardized for the three ST

evaluation dimensions. Each dimension has at least
six different ways that past literature has referred
to them. We should note that even with the same
name, the nature of the evaluation is not necessar-
ily the same across ST tasks: for instance, what
constitutes content preservation differs in formality
transfer and in sentiment transfer, since the latter
arguably changes the semantics of the original text.
While fluency is the aspect of evaluation that might
be most generalizable across ST tasks, it is referred
to in inconsistent ways across papers which could
lead to different interpretations by annotators. For
instance, the same text could be rated as natural
but not grammatical. Overall, the variability in
terminology makes it harder to understand exactly
what is being evaluated and to compare evaluation
methods across papers.

Rating Type Table 6 presents statistics on the
rating type (direct vs. relative) per dimension over
time. Direct rating refers to evaluations where
each system output is assessed in isolation for that
dimension. Relative rating refers to evaluations
where two or more system outputs are compared
against each other. Rating types were more in-
consistently used before 2020, with recent conver-
gences toward direct assessment. Among papers
that report rating type, direct assessment is the most
frequent approach for all evaluation aspects over
the years 2018 to 2021.

Possible Responses Tables 7, 8, and 9 summa-
rize the range of responses elicited for direct and

STYLE
attribute compatibility, formality, politeness level,
sentiment, style transfer intensity, attractive cap-
tions, attribute change correctness, bias, creativ-
ity, highest agency, opposite sentiment, sentiment,
sentiment strength, similarity to the target at-
tribute, style correctness, style transfer accuracy,
style transfer strength, stylistic similarity, target
attribute match, transformed sentiment degree.

MEANING
content preservation, meaning preservation, se-
mantic intent, semantic similarity, closer in mean-
ing to the original sentence, content preservation
degree, content retainment, content similarity, rel-
evance, semantic adequacy.

FLUENCY
fluency, grammaticality, naturalness, gibberish
language, language quality.

Table 5: Quality criterion names used in ST human eval-
uation descriptions for the three evaluation dimensions.

20
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20
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20
16

20
17

20
18

20
19

20
20

20
21

To
ta

l

STYLE

DIRECT 1 1 1 8 10 12 4 40
RELATIVE 1 4 7 12
NONE 2 6 11 11 15 45

MEANING

DIRECT 1 12 10 18 4 45
RELATIVE 1 4 4 9
NONE 1 2 7 8 11 14 43

FLUENCY

DIRECT 1 1 10 10 19 4 45
RELATIVE 4 2 6
NONE 1 1 2 8 6 7 46

Table 6: Number of papers using each rating type for
the three evaluation dimensions across years.

relative ratings. They cover diverse definitions of
scales within each rating type. Across evaluation
aspects, the dominant evaluation framework is di-
rect ratings on a 5-point scale. However, while
that configuration is what the field tends to focus
on, there is clearly a wide array of choices that
the field also considers which, once again, makes
comparing human evaluations head to head very
difficult.
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DIRECT (40)





Rating Scale (1) [-2,-1,0,1,2]
(3) [-3,-2, -1, 0, 1, 2, 3]
(1) [polite, slightly polite, neutral, slightly rude, rude]
(4) [positive, negative, neutral]
(1) [positive, negative, relaxed, annoyed]
(1) [more formal, more informal, neither]
(2) [0,1,2]
(2) [1,2,3]
(1) [0,1,2,3,4,5]

(19) [1, 2, 3, 4, 5]
(2) [1,2,3,4,5,6,7,8,9,10]
(1) binary

Not available (2)

RELATIVE (12)
{

Best selection (5)
Pairwise (7)

Table 7: Style results. Numbers in parentheses denote paper counts per category. The most popular rating type
across each dimension is highlighted.

DIRECT (45)





Rating Scale (1) [-2,-1,0,1,2]
(6) [0,1,2]
(1) [1,2,3]
(1) [1,2,3,4]

(25) [1, 2, 3, 4, 5]
(1) [0,1,2,3,4,5]
(4) [1,2,3,4,5,6]
(3) [1,2,3,4,5,6,7,8,9,10]

Not available (3)

RELATIVE (9)





Best selection (3)
Pairwise (3)
Ranking (3)

Table 8: Meaning Preservation results. Numbers in parentheses denote paper counts per category. The most
popular rating type across each dimension is highlighted.

DIRECT (45)





Rating Scale (1) [”easy to understand”, ”some grammar errors”, ”impossible to understand”]
(1) [”incorrect”, ”partly correct”, ”correct”]
(1) [0,1]
(3) [0,1,2]
(2) [1,2,3]
(4) [1,2,3,4]
(1) [0,1,2,3,4]

(26) [1, 2, 3, 4, 5]
(1) [0,1,2,3,4,5]
(1) [1,2,3,4,5,6]
(2) [1,2,3,4,5,6,7,8,9,10]

Not available (2)

RELATIVE (6)





Best selection (1)
Pairwise (4)
Ranking (1)

Table 9: Fluency results. Numbers in parentheses denote paper counts per category. The most popular rating type
across each dimension is highlighted.
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Figure 2: Lineage statistics (i.e., number of papers) for each ST evaluation aspect over years.

Lineage Figure 2 shows how often the human
evaluation setup used in each reviewed paper is
based on cited prior work, for each dimension over
time. Only 19% of papers repurpose or reuse some
prior work for the evaluation of style. Most of these
papers target ST for formality or sentiment. Even
when evaluating fluency or meaning preservation,
more than 50% of the papers do not refer to any
prior work. This is striking because it suggests that
there is currently not a strong effort to replicate
prior human evaluations.

For papers that mention lineage, the most
common-set up for evaluating meaning preserva-
tion (24%) and fluency (28%) is Li et al. (2018).
43% of ST papers that work on sentiment also refer
to Li et al. (2018). Some papers follow Agirre et al.
(2016) for measuring textual similarity, Heilman
et al. (2014) for grammaticality and Pavlick and
Tetreault (2016) for formality.

4 Discussion & Recommendations

4.1 Describing Evaluation Protocols

Our structured review shows that human evaluation
protocols for ST are mostly underspecified and
lack standardization, which fundamentally hinders
progress, as it is for other NLG tasks (Howcroft
et al., 2020). The following attributes are com-
monly underspecified:

1. details on the procedures followed for recruit-
ing annotators (i.e., linguistic background of

expert annotators or quality control method
employed when recruiting crowd-workers)

2. annotator’s compensation to better understand
their motivation for participating in the task,

3. inter-annotator agreement statistics,

4. number of annotations per instance (3-5 is the
most popular choice of prior work),

5. number of systems evaluated,

6. number of instances annotated (minimum of
100 based on prior works),

7. selection method of the annotated instances
(suggestion is same random sampled for all
annotated systems).

8. detailed description of evaluated frameworks
per evaluation aspect (e.g., rating type, re-
sponse of elicitation).

Furthermore, we observe that annotated judg-
ments are hardly ever made publicly available and
that, when specified, evaluation frameworks are not
standardized.

As a result, our first recommendation is simply to
include all these details when describing a protocol
for human evaluation of ST. We discuss further
recommendations next.
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4.2 Releasing Annotations

Making human-annotated judgments available
would enable the development of better automatic
metrics for ST. If all annotations had been released
with the papers reviewed, we estimate that more
than 10K human judgments per evaluation aspect
would be available. Today this would suffice to
train and evaluate dedicated evaluation models.

In addition, raw annotations can shed light on
the difficulty of the task and nature of the data:
they can be aggregated in multiple ways (Oortwijn
et al., 2021), or used to account for annotator bias
in model training (Beigman and Beigman Kle-
banov, 2009). Finally, releasing annotated judg-
ments makes it possible to replicate and further
analyze the evaluation outcome (Belz et al., 2021).

4.3 Standardizing Evaluation Protocols

Standardizing evaluation protocols is key to estab-
lishing fair comparisons across systems (Belz et al.,
2020) and to improving evaluation itself.

Our survey sheds light on the most frequently
used ST frameworks in prior work. Yet more re-
search is needed to clarify how to evaluate, com-
pare and replicate the protocols. For instance, Mir
et al. (2019) point to evidence that relative judg-
ments can be more reliable than absolute judgments
(Stewart et al., 2005), as part of their work on de-
signing automatic metrics for ST evaluation. How-
ever, research on human evaluation of machine
translation shows that this can change depending
on the specifics of the annotation task: relative judg-
ments were replaced by direct assessment when
Graham et al. (2013) showed that both intra and
inter-annotator agreement could be improved by
using a continuous rating scale instead of the pre-
viously common five or seven-point interval scale
(Callison-Burch et al., 2007).

For ST, the lack of detail and clarity in describ-
ing evaluation protocols makes it difficult to im-
prove them, as has been pointed out for other NLG

tasks by Shimorina and Belz (2021) who propose
evaluation datasheets for clear documentation of
human evaluations, Lee (2020) and van der Lee
et al. (2020) who propose best practices guidelines,
and Belz et al. (2020, 2021) who raise concerns
regarding reproducibility. This issue is particularly
salient for ST tasks where stylistic changes are de-
fined implicitly by data (Jin et al., 2021) and where
the instructions given to human judges for style
transfer might be the only explicit characterization

of the style dimension targeted. Furthermore, since
ST includes rewriting text according to pragmatic
aspects of language use, who the human judgments
are matters since differences in communication
norms and expectations might result in different
judgments for the same text.

Standardizing and describing protocols is also
key to assessing the alignment of the evaluation
with the models and task proposed (Hämäläinen
and Alnajjar, 2021), and to understand potential
biases and ethical issues that might arise from,
e.g., compensation mechanisms (Vaughan, 2018;
Schoch et al., 2020; Shmueli et al., 2021).
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Abstract

We propose an approach to automatically test
for originality in generation tasks where no
standard automatic measures exist. Our pro-
posal addresses original uses of language, not
necessarily original ideas. We provide an algo-
rithm for our approach and a run-time analy-
sis. The algorithm, which finds all of the origi-
nal fragments in a ground-truth corpus and can
reveal whether a generated fragment copies
an original without attribution, has a run-time
complexity of θ(n log n) where n is the num-
ber of sentences in the ground truth.

1 Introduction

This research addresses an ethical consideration for
Natural Language Generation, namely, plagiarism.
The Oxford English Dictionary defines original (ad-
jective) as “present or existing from the beginning;
first or earliest” and “created directly and person-
ally by a particular artist; not a copy or imitation”.
But, if we apply the definitions of “original” to
language, then there are two ways in which a piece
of generated text may be original. For one, the
text may express an “original idea”, such as Ein-
stein did in 1905 with “E = mc2”. On the other
hand, a non-original idea may be expressed in an
original way, via, for example, figurative language.
Our proposed approach addresses original uses of
language. It does not necessarily address original
ideas.

How do we protect intellectual property when it
comes to language generators that are trained on a
world-wide-web of data? Our language generators
have to be held accountable. They should also be
protected. What if a language generator generates
an original analogy? What if it writes a poem that
is so great that it ends up in the history books?
Multiple language generators may be trained on
the same ground truth (e.g., Wikipedia) with the

same embedding vectors (e.g., BERT (Devlin et al.,
2018) and GPT (Vaswani et al., 2017; Radford
et al., 2018)) and the same technologies (deep neu-
ral networks, LSTM cells (Hochreiter and Schmid-
huber, 1997), transformers (Vaswani et al., 2017)).
It will become a question of ”Whose generator said
it first?” With automatic language generation, we
need a way to automatically measure, store, and
reference original ideas and language. We propose
one possible solution to these originality-related
problems.

For the purposes of our analyses, we define
ground truth as the set of sentences that are com-
pared with the generated sentences. The ground
truth may be larger than the training set, but should
include the training set. The gound truth would
also, ideally, grow. For example, the ground truth
could start out as the training set, but as new sen-
tences are generated with a trained model, then the
new sentences may be added to the ground truth.
We also claim that generated sentences should only
be added to the ground truth if they are original or
include citations where appropriate.

2 Background

Our criteria and basis for evaluating measurements
of originality are:

1. Can we tell whether a generated sentence is
an original use of language?

2. Can we tell whether the sentence contains a
fragment from the ground truth that is a can-
didate for protection as intellectual property?

Therefore, when measuring generation original-
ity by comparing the generated sentence with the
sentences in the ground truth, then the answers to
numbers 1 and 2 above are binary. Either the gener-
ated sentence is an original use of language or it is
not. Either the generation is at risk of plagiarism or
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it is not. However, if we consider that the ground
truth may not be representative of all the sentences
that have ever been generated, then there is a mea-
sure of uncertainty that may be added to the binary
outcome.

There are no standard automatic measures for
novelty and originality in stylized language genera-
tion (Mou and Vechtomova, 2020). High perplex-
ity (PPL) and a low BLEU (Papineni et al., 2002)
score may suggest novelty, but they are not suffi-
cient for testing for originality. High PPL and a
low BLEU score may be achieved when there is lit-
tle overlap between the generated language and the
ground truth, but nonesense and off-topic sentences
are rewarded. While nonesense sentences may be
novel, they may be grammatically incorrect, and
sentences that are grammatically correct will likely
have some overlap with fragments (n-grams) in the
ground truth, such as using phrases like “she said
that”. So, we want a generation originality test that
doesn’t penalize n-gram overlap. (An original use
of language may combine common n-grams in a
new way.) We also want a generation originality
test that flags potential plagiarism of original frag-
ments in the ground truth, which neither BLEU nor
PPL does.

We propose a generation originality test (GOT)
that addresses original uses of language. It does not
necessarily address original ideas. GOT is equally
appropriate for stylized text generation, where nov-
elty is desirable, and for other generation tasks
where there is not an imposed style but the genera-
tion is open-ended, including summarization tasks.

3 Proposed Approach

Our proposed generation originality test (GOT) de-
termines whether:

1. any fragment in a generated sentence equals
an “original” fragment in the ground truth, in
which case the generation may be in violation
of a copyright law, if no citation of the original
source is included; or,

2. the generated sentence is “original”, per Defi-
nition 1, below.

Definition 1 (Original Sentence). A sentence,
whether generated or in the ground truth, of n to-
kens is original if there exists an original k-gram
within the sentence for some k≤n. The originality
of k-grams is defined next.

The definition of originality of a fragment (or
k-gram) depends on whether we are referring to a
generated fragment or to a fragment in the ground
truth. Generated fragments are tested against the
ground truth. If the generated fragment does not
appear in the ground truth, then the generated frag-
ment is considered original. If it appears once in
the ground truth, then it is considered not original
and so a citation may be needed. See Table 1 for a
summary of the criterion for each type of fragment
to be true. In Table 1, C equals the number of times
that fragment appears in the ground truth.

Type Criterion
Ground Truth

Fragment
Original C = 1

Not Original C ≥ 2

Generated
Fragment

Original C = 0
Not Original,

Citation Needed
C = 1

Not Original,
No Citation

Needed
C ≥ 2

Table 1: Criterion per fragment type, where C is the
number of times the fragment appears in the ground
truth. Note, C is always with respect to counts in
the ground truth, even when evaluating generated frag-
ments.

Ground-truth fragments that appear once and
only once in the ground truth are considered orig-
inal.1 Likewise, fragments that appear more than
once in the ground truth are considered “not origi-
nal”. For example, “lengthened shadow” appeared
twice in our ground truth and so it is not considered
an original phrase in the ground truth. Combining
non-original fragments to generate a new idea or
analogy, however, could be considered an original
use of language. For example, “the writer is the
lengthened shadow of a man” contains the frag-
ments “the writer is” and “the lengthened shadow”
and “of a man” which are not original fragments in
our ground truth. However, the way in which they
are combined in this example creates an original
use of language – in this case, a metaphor. (Exam-
ples of fragments that appeared many times in our

1For simplicity of explanation, we qualify a fragment as
“original”, and therefore a candidate for protection of intellec-
tual property, if it appears “once and only once” in the ground
truth. However, with very large datasets, it may be necessary
to relax the criteria from “once and only once” to a relatively
small number of occurrences, in order to consider a fragment
a candidate for protection of intellectual property.
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training set are “it is” and “human life”.)

Here is one possible use of GOT. If a generated
sentence contains a fragment that appears once
and only once in the ground truth (after duplicate
sentences are removed from the ground truth), then
the generated sentence may be discarded because
it contains a fragment from the ground truth that is
a candidate for protection as intellectual property.
In other words, the sentence may be in violation
of a copyright law. Otherwise, the sentence could
include a citation of the source for the original
fragment.

The definition of ground-truth original fragments
actually calls for more nuance, which we will elabo-
rate and explain how to compute next. We maintain
a count per fragment that is incremented each time
the fragment appears in a new sentence in a new
document or by a different author (if the author
can be determined in both instances) in the ground
truth. In other words, if a fragment in the ground
truth is repeated in the same document, or by the
same author across documents, then the count for
that fragment is incremented only once. (Therefore,
an author, if known, should also be stored for each
fragment, at least until the count for that fragment
is greater than 1. When the count for a fragment is
greater than 1, then it has already been determined
that the fragment was seen a second time in a dif-
ferent document by a different known, or unknown,
author.) The count for a fragment will be 1 if it
occurs just once in the ground truth, or if all of its
occurrences are in the same document or by the
same author; otherwise, the count will be greater
than 1. Now, a ground-truth fragment is said to be
original if and only if its count is 1.

See Algorithm 1 for psuedo-code to test for orig-
inality and find all original fragements in a dataset.

To examine fragments, we use a window length
of wl varying between 2 and the sentence length,
where wl is the number of words in the fragment.
If the first or last word in the window is a deter-
minant (e.g., ‘a’ or ‘the’), any use of the verbs
to be and to have (‘is’, ‘are’, ‘am’, ‘was’, ‘were’,
‘has’, ‘had’, ‘have’), punctuation mark, or preposi-
tion/subordinating conjunction (e.g., ‘to’, ‘of’, or
‘from’), the window is moved one step to the right.
(Shortening the window to get rid of the determi-
nant, special verb, special character, or preposition
would result in a window size already covered in
the previous step.) All words and characters are
allowed in the other positions of the window, so,

for example, a comma or preposition may appear
in the middle of a window of size 3 or more.

3.1 Runtime Complexity
The following complexity analysis is with respect
to Algorithm 1. We are representing F and O with
balanced binary search trees (e.g., red-black tree
(Guibas and Sedgewick, 1978; OKASAKI, 1999))
where the comparator is lexicographic ordering.
Searching, insertion and deletion in such trees take
θ(log n) comparisons. Since the length of frag-
ments is assumed to be constant on average, then
each comparison takes constant time, implying that
each search/insert/delete operation in O and F take
θ(log n) time.

Given our representation of F and O with bal-
anced binary search trees, consider the following
time complexity analysis:

• Let n = number of sentences in the dataset.
The first for-loop (line 1) iterates n times.

• Let c = the average length (i.e., number of
tokens) of a sentence in our ground truth. We
found that c = 25, a fairly small constant.
Therefore, the two for-loops in Steps 4 and 5
iterate on average a constant number of times.

• The binary search in F (line 10) has a runtime
complexity of θ(log n).

• Depending on the result of the binary search
of F (line 10) there may be an insertion to F
(line 14) which has a runtime complexity of
θ(log n).

• Then the number of calculations in lines 1-20
is the following function of n: 2c2n log n.

• The code segment of lines 21-26 takes θ(n)
time because the number of wl-token frag-
ments in the ground truth dataset (of n sen-
tences where each sentence consists of c to-
kens on average) is at most cn.

• Therefore, the runtime complexity is:
θ(n log n).

This algorithm would be executed before gener-
ation tasks, but may also be executed whenever the

2If the first or last word in the window is a determi-
nant (e.g., ‘a’ or ‘the’), special verb (‘is’, ‘are’, ‘am’, ‘was’,
‘were’, ‘has’, ‘had’, ‘have’), punctuation mark, or preposi-
tion/subordinating conjunction (e.g., ‘to’, ‘of’, or ‘from’), the
window is moved one step to the right.
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Algorithm 1 Find Original Fragments in the Ground Truth
Require: Input S, the sentences in the ground truth to evaluate
Require: Input F , list of fragments already discovered, may be empty set;
Require: Input CountPerFrag(f), for all f ∈ F
Require: O, list of original fragments . Count per o ∈ O should always be 1

1: for each s ∈ S do
2: l = number of tokens in sentence s
3: sentParts = set of tokens in s
4: for each wl in range 2 to l do . wl = length of window
5: for each i in range 0 to l − wl + 1 do . assume zero-based indexing
6: if sentParts[i] or sentParts[i+ wl − 1] = special token2 then
7: Continue to next i
8: else
9: frag = sentParts[i : i+ wl]

10: if frag ∈ F then . binary search of F
11: CountPerFrag[frag] = CountPerFrag[frag] + 1
12: Break from for-loop in line 5
13: else . frag was not found in F
14: Add frag to F
15: CountPerFrag[frag] = 1
16: end if
17: end if
18: end for
19: end for
20: end for
21: Set O to the empty set;
22: for each frag in F do
23: if CountPerFrag[frag] == 1 then
24: Add frag to O;
25: end if
26: end for

reference set changes or is updated (for example,
based on generated language).

4 Example: Results on One Application

To see how GOT performed on a generation task,
we applied it to a metaphor generator that we built,
based on an RNN (Elman, 1990) architecture with
LSTM cells (Hochreiter and Schmidhuber, 1997)
for training a language model on the language of
metaphors, using only metaphors and their topics
as input. (A topic was inserted at the beginning of
each input sentence.)

The model was trained to predict the next word
in the sentences from our ground truth—a set of
22,113 quotes, where each quote contains at least
one metaphor and is labeled with a topic. There
are 1,684 unique topics (e.g., “animals”, “fear”,
“fishing”, “grandparents”, “happiness”, ”motives”,
“politics”, and more examples listed in Table 2) and
the dataset is currently available to the public online
as part of “Dr. Mardy’s Dictionary of Metaphorical
Quotations” (Grothe, 2008).

To the trained language model, we apply an in-
ference engine that uses weighted random choice
with a “constraining factor” to encourage language
coherence and originality in the output, and pat-

terns of metaphors to encourage the generation
of grammatically correct metaphors (Brooks and
Youssef, 2020). The constraining factor, c (for
c ≥ 1), causes the inference engine to select—with
a probability of 1

c—the most likely word to ap-
pear next. Otherwise, and with a probability of
1− 1

c , the inference engine will make a weighted
random selection. Selecting the most likely next
word encourages language coherencey in the out-
put, while weighted random selection encourages
originality. (We found that a constraining factor of
3 or 4 worked best with our model.)

A generated sentence failed the GOT if a frag-
ment of at least 2 words appeared as an “original”
fragment in the training set; that is, if the fragment
appeared just once in the ground truth. Using our
metaphor generator, we generated 500 metaphors
from randomly chosen topics. Applying GOT on
each of the 500 generated metaphors, we found that
only 32 repeated an “original” fragment from the
training set. From this experiment, we conclude
that out of the 500 generated metaphors, 468 of
them, or just over 93%, can be considered origi-
nal. (Table 2 provides examples from our metaphor
generator on randomly generated topics.)
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Topic Generated Metaphor
tears The arrested waters shone and danced.
fathers Expectations are premeditated resentments.
character Today is the companion of genius.
friends Assumptions are the termites of relationships.
writers The writer is the lengthened shadow of a man.
world This world is the rainbow of us.
truth The brain is the eden of a star.
innocence The cure for silence is the salt of speech.
imagination Success is the only deadline.

Table 2: Examples of Generated Metaphors

5 Conclusion

Our approach to originality testing includes two
contributions:

• An automatic test, where no standard existed,
for originality in generated language

• An automatic test, where no standard existed,
for identifying where generators are in viola-
tion of copying an original use of language
without attribution

The first contribution tells us whether a gener-
ation is an original use of language. The second
contribution tells us whether a generation is, at
least, not at risk of committing plagiarism. For
example, the sentence “A bird built a nest” is not
an original use of language; however, it is at least
probably not in violation of plagiarism since it does
not contain a fragment that is so rare that it should
be protected as an original use of language.
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Abstract
We present an end-to-end neural approach to
generate English sentences from formal mean-
ing representations, Discourse Representation
Structures (DRSs). We use a rather standard
bi-LSTM sequence-to-sequence model, work
with a linearized DRS input representation,
and evaluate character-level and word-level de-
coders. We obtain very encouraging results
in terms of reference-based automatic metrics
such as BLEU. But because such metrics only
evaluate the surface level of generated out-
put, we develop a new metric, ROSE, that tar-
gets specific semantic phenomena. We do this
with five DRS generation challenge sets fo-
cusing on tense, grammatical number, polar-
ity, named entities and quantities. The aim of
these challenge sets is to assess the neural gen-
erator’s systematicity and generalization to un-
seen inputs.

1 Introduction

Faithfully generating text from structured repre-
sentations is an important task in NLP. Common
tasks include generations from tables (Parikh et al.,
2020), knowledge graphs (Gardent et al., 2017) and
meaning representations (Horvat et al., 2015; Flani-
gan et al., 2016; Dušek and Jurčı́ček, 2019). Re-
cently, many research efforts have focused on the
graph-based semantic formalism Abstract Mean-
ing Representation (AMR, Banarescu et al., 2013),
with approaches based on machine translation
(Pourdamghani et al., 2016; Konstas et al., 2017),
specialized graph encoders (Song et al., 2018; Zhu
et al., 2019; Cai and Lam, 2020; Zhao et al., 2020;
Jin and Gildea, 2020) and pre-trained language
models (Mager et al., 2020; Ribeiro et al., 2020).

However, far less attention has been given to
generating text from formal meaning representa-
tion, such as Discourse Representation Structures
(DRSs). DRSs are proposed in Discourse Repre-
sentation Theory (Kamp and Reyle, 1993; Kadmon,

2001; Geurts et al., 2020), a well-studied semantic
formalism, covering a wide range of linguistic phe-
nomena. Differently from AMR, DRSs explicitly
model scope, tense and definiteness. The lack of
this information makes AMR-to-text challenging
(Wang et al., 2020), but their inclusion presents a
challenge for the generation methods as well, as
they, for example, have to deal with a lot more vari-
ables in the representation (van Noord et al., 2018a).
Another difference with AMR is that DRSs are in
principle language neutral (at least the version of
DRS that we use in this paper), with gold standard
annotations publicly available in four languages
(Abzianidze et al., 2017). For these reasons, devel-
oping portable and high-quality generation systems
for DRSs is a promising research direction.

While there has been some initial work on DRS-
to-text generation (Basile and Bos, 2011; Narayan
and Gardent, 2014; Basile, 2015), most DRS-based
work has focused on semantic parsing, that is map-
ping text to DRS (Liu et al., 2018; van Noord et al.,
2018b, 2019; Liu et al., 2019b; Evang, 2019; van
Noord et al., 2020; Fancellu et al., 2020). Our work
has two main contributions. The first is on the mod-
elling side, as we take the first step in DRS-to-text
generation with neural networks.1 Specifically, we
use a bi-LSTM sequence-to-sequence model that
processes linearized DRSs representations and pro-
duces English texts using a character-level decoder
(see pipeline in Figure 1).

Our second contribution regards the evaluation
of the produced text. Given the known limita-
tions of reference-based automatic metrics for nat-
ural language generation (Reiter and Belz, 2009;
Novikova et al., 2017a) and in particular for AMR-
to-text (May and Priyadarshi, 2017; Manning et al.,
2020), we design five DRS-specific challenge sets
(Popović and Castilho, 2019) and use them to per-

1Concurrently to this work, Liu et al. (2021) published a
DRS-to-text model that is based on tree-LSTMs.
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Figure 1: An example of the DRS data and a corresponding reference text with their processing procedures.

form a fine-grained manual evaluation. The general
goal of these challenge sets is to assess the robust-
ness of a DRS generator with respect to a number
of linguistic phenomena. More specifically, we
assess (i) generation systematicity with respect to
three semantic phenomena (tense change, polarity
change, singular↔plural switch), and (ii) gener-
alization to unseen input literals (named entities
and quantities). The idea is that by changing the
meaning of a DRS in a controlled way, robustness
of systems can be monitored in detail and assessed
accordingly. Besides assessing the quality of a
generator, these challenge sets also showcase the
ease to which DRSs can be manipulated to express
novel meaning combinations. All challenge sets
are publicly available.2

2 Data and Methodology

In this section we describe the data and methodol-
ogy we use for DRS generation. First we explain
and motivate our representation of DRSs (input to
the NLG system) and the generated text (see Fig-
ure 1 for a full overview of our source and target
representations). Then we provide details of our
NLG system, which is based on a recurrent neural
network, and show how it is trained.

2.1 Input/Source Representation: DRSs

Discourse Representation Structures model the
meaning of an entire text, ranging from isolated
sentences to entire documents. A large repertoire

2https://github.com/wangchunliu/
DRS-generation

of semantic phenomena is covered by DRSs, in-
cluding quantification, negation, pronouns, com-
paratives, discourse relations, and presupposition.
There are several variants of DRS; we use the fully
interpretable version as employed in the Parallel
Meaning Bank (Abzianidze et al., 2017), where
concepts (triggered by nouns, verbs, adjectives and
adverbs) are represented by WordNet synsets (Fell-
baum, 1998), and semantic relations by Verbnet
roles (Kipper et al., 2008).

DRS can be represented in box format or clause
format (see Figure 1), where the letters x, e, s, and
t are used for discourse referents denoting individ-
uals, events, states, and time, respectively, and b
is used for variables denoting DRSs. The clause
format is a flat version of the standard box format,
which represents DRS as a set of clauses. Due to its
simple and flat structure, it has proven to be more
suitable for machine learning tasks (van Noord
et al., 2018a). The variables that occur in a DRS are
rewritten using the relative naming method based
on de Bruijn-indexing (Bruijn, de, 1972)).

We mostly follow van Noord et al. (2018b) in
how to represent DRSs for neural processing, but
make some important improvements. The idea
is to represent meaningful units as atomic entites.
These include the variable indices ($0, @1), the
DRS operators (REF, NOT), the semantic relations
(e.g., Agent, Patient, Theme), the deictic con-
stants (now, speaker, hearer), and the con-
cepts (e.g., touch.v.01).

The latter is a notable exception to van No-
ord et al. (2018b). By representing concepts, that
correspond to WordNet-synsets, as single entities,
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we make sure that each concept is mapped to a
language-independent embedding, even though its
surface form may resemble the corresponding En-
glish word. This prevents the model from learning
to predict target words (e.g., touch) by copying
(part of) the characters that compose the Wordnet-
synset (e.g., touch.v.01) in the input DRS.

The remaining parts of the DRSs are represented
at the character-level. These include time/date
expressions (e.g., " 1 9 6 8 "), value expres-
sions such as scores (e.g., " 2 - 0 "), quan-
tities (e.g., " 2 6 0 0 ") , and proper names
(e.g., " b r a d ∼ p i t t "). They are
all enclosed in quotation marks in the DRS rep-
resentation. It would not make sense to repre-
sent these entities as words because times, dates,
and quantities are clearly of compositional nature.
Names are literal expressions, and therefore also
are best represented by separate characters. More-
over, this representation reduces the size of the
vocabulary, which in turn could reduce the learning
difficulty of the model.

2.2 Output/Target Representation: Text

The spectrum to represent text ranges from sin-
gle characters on one end till (tokenised) words or
multi-word expressions on the other end, and there
are many possibilities in between too, for instance
using byte-pair encodings to combine characters
into sub-words. As our aim is to get a relatively
straightforward baseline NLG system, rather than
exploring the full range of text representation pos-
sibilities, we considered just two ways to repre-
sent text: character-based, where raw characters
are separate entities and spaces are indicated by a
special symbol (three vertical bars); or (tokenised)
word-based, where tokenised words form the ba-
sic entities. The character-based approach has the
advantage that post-processing is straightforward.
The use of word-level representations is the clas-
sical approach in natural language processing, but
requires a de-tokenisation step after generating. To-
kenisation and de-tokenisation is carried out with
the Moses tokenizer (Koehn et al., 2007).

2.3 Neural Generation Model

We use a standard recurrent encoder-decoder ar-
chitecture with attention as implemented in the
Marian toolkit (Junczys-Dowmunt et al., 2018), us-
ing two bi-directional LSTM layers (Hochreiter
and Schmidhuber, 1997). In particular, we use an
embedding size of 300 for both the encoder and

Parameter Value Parameter Value

dim-emb 300 dim-rnn 300
dec-cell lstm enc-depth 2
enc-cell lstm dec-depth 2
mini-batch 48 lr-decay 0.5
lr-decay-strategy epoch normalize 0.9
beam-size 10 learn-rate 0.002
dropout-rnn 0.2 cost-type ce-mean
label-smoothing 0.1 optim adam
early-stop 3 valid-metric cross-entropy

Table 1: Hyperparameter settings of our experiments.
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Figure 2: The correlation between the vocabulary size
and the frequency threshold, along with the correla-
tion between metric scores and the frequency threshold.
Threshold set to 0 means using the full vocabulary.

decoder, a mini-batch size of 48 and the Adam
optimizer (Kingma and Ba, 2015) with a learning
rate of 0.002. All hyper-parameters are shown in
Table1. We use the English gold standard train-
ing, dev and test data of PMB 3.0.03, containing
6,620, 885 and 898 instances, respectively. Dur-
ing training, we merge the gold standard with the
only partially manually annotated silver standard
of 97,598 instances. Differently from van Noord
et al. (2018b), we do not fine-tune on the gold stan-
dard data in a second step, as this did not lead to
improved performance.

Vocabulary For a word-level model, it can be
beneficial to not include the full vocabulary. For
example, it might learn to handle unknown words
better if it was exposed to unknown word tokens
during training. We experimented with the vocabu-
lary size of the target representation on the devel-
opment set, as is shown in Figure 2. We find that
the we get best performance when including the
full vocabulary, with decreasing performance as we
decrease the vocabulary. We use this setting for our
word-level experiments.

3https://pmb.let.rug.nl/data.php
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3 Semantic Challenge Sets

Challenge sets are often used in Machine Transla-
tion to assess a model’s ability to systematically
deal with specific linguistic phenomena that may
be infrequent in standard test sets (Popović and
Castilho, 2019). Following this practice, we cre-
ated five challenge sets for DRSs generation that
focus on various semantic phenomena (see Table 2
and Figure 3). The variations are obtained by (man-
ually) applying a minimal modification to a DRS
and editing the corresponding text accordingly.

The resulting semantic challenge sets can be
viewed as stress tests: if the generator performs
well on these test suites it shows that it can deal
with specific semantic phenomena adequately in
unforeseen circumstances. We carry out these mod-
ifications on subsets of the PMB test data, and we
group them into those that assess systematic pre-
dictions (tense, polarity, and grammatical number)
and those that assess generalisation to unseen input
(names and quantities). The specific challenge sets
are described in detail below.

Original Tom has three thousand books.

Tense Tom had three thousand books.
Polarity Tom does not have three thousand books.
Number Tom has one book.
Names Kirk has three thousand books.
Quantity Tom has 3,200 books.

Table 2: Examples of how the challenge set DRSs are
created. We show the reference texts of the modified
DRSs here.

3.1 Tense Change

In English, tense is expressed by morphology and
the use of auxiliary verbs. It is therefore a challeng-
ing phenomenon for NLG. There are three types of
tense found in the DRSs of the Parallel Meaning
Bank: past (t < now), present (t = now), and future
tense (t > now). Aspect is not covered in detail in
the Parallel Meaning Bank, and therefore we won’t
address it in the paper and as a result it won’t be
part of the current semantic challenge sets.

For creating the challenge set, we used the fol-
lowing procedure. For the first 200 examples in the
test set that contained information about tense in
their corresponding DRSs, we changed the tense in
the DRS: past to present or future, present to past
or future, and future to past or present. The corre-
sponding text was changed to reflect the change in

tense. Example: She bought a vacuum cleaner at
the supermarket. → She will buy a vacuum cleaner
at the supermarket.

3.2 Polarity Change
As negation plays a crucial role to determine the
truth conditions of a sentence, there has been ample
interest in recognizing negation in text (Morante
and Blanco, 2012; Basile et al., 2012) and translat-
ing accurately (Sennrich, 2017; Tang, 2020). Here
we focus on generation, that is expressing negation
appropriately in a sentence given a meaning rep-
resentation. Negation is expressed in a DRS with
a unary operator, introducing an embedded DRS.
For the first 100 instances of the test set we re-
moved negation if it was already present, or, more
frequently, added it if it was not. Again, the corre-
sponding reference text was changed to reflect this
change in meaning. Example: I cooked dinner. →
I didn’t cook dinner.

3.3 Grammatical Number Change
Concrete quantities are expressed in DRSs with
the relation Quantity and a number. For the
first 100 examples that permitted this, we changed
the quantity from a number greater than one to
one, or vice versa. This set can be used to check
whether the model can recognize the number and
generate the correct plural form of nouns to get the
correct noun phrase (Sennrich, 2017). Example: It
currently employs 180 people. → It currently em-
ploys one person. As many languages (including
English) have a different surface realisation for sin-
gular and plural, an NLG system needs to handle
this correctly.

3.4 Names Change
The goal of this challenge set is to assess the be-
haviour of NLG systems that find unexpected (not
seen in training data) proper names in the meaning
representation input. We took the first 50 instances
of the test set with named entities (persons, lo-
cations, organisations, artifacts) and modified the
DRSs in such a way that the names entities are
replaced by alternative, but realistic names of the
same type of entity and gender (in case of persons),
that do not occur in the training data. Consider
a sentence with the name ”Howard Caine”, with
Name(x, howard∼caine) in its correspond-
ing DRS. We change this into a real name outside
the coverage of the training data, e.g., Name(x,
howard∼carpendale). This should generate
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Figure 3: Examples of how the challenge set DRSs are created. Modified DRSs correspond to Table 2.

“Howard Carpendale”, for which word-based sys-
tems would be expected to face more difficulties
than character-based systems.

3.5 Quantities Change
In addition to named entities in meaning representa-
tion, the numeral expressions can also be changed
to expressions that were never seen in the training
data. We took the first 50 instances of the test set
with numbers and then changed the numbers in the
DRS representation to unknown quantity expres-
sions, represented as a sequence of characters. For
example, we changed Quantity(x, 150) to
Quantity(x, 152). This way, we test if the
model can systematically generalize to generate the
right numeral expression, even though it has not
seen this particular sequence of characters before.

4 Assessment Methods

We consider two types of assessment for the gen-
erated English sentences. Our point of departure
are the well-known automatic metrics based on

word overlap. We complement these with manual
metrics carried out by human experts.

4.1 Standard Automatic Metrics

We use three standard metrics measuring word-
overlap between system output and references.
They are BLEU (Papineni et al., 2002) used as
standard in machine translation evaluation and very
common in NLG, METEOR (Lavie and Agarwal,
2007), and ROUGE-L (Lin, 2004), which were ap-
plied in the COCO caption generation challenge as
well as other NLG experiments (Novikova et al.,
2017b; Dušek et al., 2020). As is well known,
these standard metrics give a first, rough impres-
sion about the quality of the generated output, but
often reveal only part of the story. This is why we
also consider a further form of assessment.

4.2 Expert Assessment

Inspired by work of Jagfeld et al. (2018) and Belz
et al. (2020), we believe that the manual evaluation
method for our task should be simple in definition,
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BLEU METEOR ROUGE

Char-level (raw) 69.3 51.8 84.9
Word-level (tok) 64.7 47.8 81.8

Table 3: Performance of English DRS-to-text with two
output representations, averaged over three runs.

easy to reproduce and high in generalization abil-
ity. The output of our NLG system was manually
assessed by one expert. This was carried out by
assigning three binary dimensions (either 0 or 1) to
each generated text: (1) semantics; (2) grammat-
icality, and (3) phenomenon. As shown in Table
5: the first dimension, semantics, gets a score 1 if
the meaning of the output reflects that of the un-
derlying meaning representation, and 0 otherwise.
The second dimension, grammaticality, receives a
score 1 if the sentence is grammatical and free of
spelling mistakes (but possibly gibberish), and 0
otherwise. The third dimension, phenomenon, gets
a 1 if the phenomenon of control is generated at
all, and 0 otherwise. We summarise these three
dimensions into one score by taking the product
of these numbers, and refer to this score as ROSE
(Robust Overall Semantic Evaluation). Hence, a
ROSE-score of 1 is given to output that is perfect
(three ones); a ROSE-score of 0 is given if one of
the three scores yields zero. Note that, usually, if
the score for phenomenon is 0, then it follows that
the score for semantics is 0, too.

5 Results and Analysis

Table 3 shows the performance of the models based
on characters and words. The character-level model
clearly outperforms the model based on word-
tokenised text on all three automatic metric scores.
This is in line with work on DRS parsing (van No-
ord et al., 2018b, 2019; Liu et al., 2019a) and other
NLG tasks (Goyal et al., 2016; Agarwal and Dymet-
man, 2017; Jagfeld et al., 2018), where character-
based models outperform word-based models. We
will use the character-level model for the rest of the
experiments in this paper.

5.1 Challenge Sets
Table 4 shows the overall results on the challenge
sets for both the automatic evaluation results and
manual evaluation. We can see that performance is
hardly affected for the number, quantity and names
challenge sets on the automatic evaluation metrics.
It seems that our character-based model can in-

deed learn the shallow information contained in the
input data and copy it to generate, even if these sub-
sets (numbers, quantities and name entities) in the
DRSs do not appear in the training set. However,
for tense and polarity, all three automatic metrics
are significantly lower in the challenge sentences
than in the original sentences. Through the observa-
tion of the generated texts of the tense challenge set,
we find that it is difficult for the model to generate
future tense sentences, but past tense and present
tense can be generated well. The original test set
contained not so many DRSs in future tense, but
in the challenge set we added relatively many of
them, which likely caused the lower performance
on the challenge set.

With regards to the polarity challenge set, in-
spection of the output shows that a common error
is to confuse “never” with “not”. This difference
in meaning is reflected in a DRS by the relative
order of the reference time and the DRS negation
operator. Interestingly, recent work in machine
translation (Tang, 2020) and language modelling
(Ettinger, 2020) has also shown that state-of-the-art
neural models still struggle with handling negation.

Although the results of the automatic evaluation
metrics in the last three challenge sets have no ob-
vious changes compared with the original data sets,
our manual evaluation results show that the perfor-
mance of the model in all challenge sets is lower
than the original data sets. This further shows that
there is not always a positive correlation between
automatic evaluation and manual evaluation, and it
is still necessary to rely on manual evaluation.

5.2 Error Analysis

Table 5 shows a number of interesting outputs of
our DRS-to-text model. Sometimes, the model
outputs a combination of characters that is clearly
wrong, such as in (a), though it still captured
the phenomenon that the challenge set checks for
(tense). Sentence (b) is a common mistake for
the polarity challenge set: the model generates a
negation in a grammatical way, but it is not the
correct one. In (c) we show a mistake that occurs
for the tense challenge set, in which the model was
not able to capture the correct tense. Sentence (d)
shows that the model sometimes has trouble with
longer character-level sequences of numbers. Per-
haps the model learned that the sequence ”1 5” is
generated as “fifteen” as text, which in this case
resulted in the wrong output. In (e), the model
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BLEU METEOR ROUGE Sem. Gram. Phen. ROSE

# Orig Chal Orig Chal Orig Chal Orig Chal Orig Chal Orig Chal Orig Chal

Tense 200 68.4 55.8 50.9 44.8 85.0 76.1 80.0 71.0 92.0 87.5 99.5 86.5 78.0 64.0
Polarity 100 68.1 37.4 50.8 37.9 85.0 66.1 80.0 52.0 96.0 81.0 100.0 99.0 78.0 49.0
Number 100 72.5 69.2 53.7 53.4 85.7 86.4 80.0 79.0 95.0 84.0 100.0 95.0 77.0 69.0
Names 50 69.1 71.9 53.0 53.5 87.2 87.8 82.0 76.0 94.0 84.0 100.0 98.0 82.0 74.0
Quantity 50 69.7 68.0 56.4 50.6 86.0 83.4 88.0 72.0 98.0 90.0 92.0 84.0 86.0 70.0

Table 4: Performance of the character-level model for five different challenge sets. We report scores on both the
original input (Orig) of the challenge sets and the actual challenge sets (Chal). The first three scores are automatic
metrics, while the last four scores are accuracies based on human evaluation (see Section 4.2). Sem., Gram., and
Phen. stand for Semantics, Grammaticality and Phenomenon, respectively.

Reference text Generated text Sem. Gram. Phen. ROSE

(a) She liked short skirts. She liked short tomical. 0 0 1 0
(b) Tom does not have three thousand books. Tom never has three thousand books. 0 1 1 0
(c) The small skirt will be pink. The small skirt was pink. 0 1 0 0
(d) He left 157 minutes ago. He left fifteen minutes ago. 0 1 0 0
(e) I checked it nine times. I checked it nine. 0 0 1 0
(f) We are painting the house green. I paint the house green. 1 1 1 1
(g) That hat cost around fifty dollars. This hat cost about 50 dollars. 1 1 1 1
(h) When I painted this picture, I was I painted the picture when I was 1 1 1 1

23 years old. twenty-three years old.

Table 5: Examples of generated texts from the challenge set DRSs, compared with reference texts. Note that the
input for the model is a linearized DRS, not the reference text.

managed to capture the phenomenon (quantity),
but did this in an non-grammatical way not pre-
serving the meaning. Sentence (f) is interesting,
because the DRS representation does not differenti-
ate between “I” and “We”, meaning the model can
not be expected to (always) output the correct ver-
sion. Therefore, such differences are not counted
as a mistake during human evaluation. Finally, the
output of (g) and (h) shows the necessity of human
evaluation: the model produced sentences that cap-
tured the meaning perfectly, but used a different
surface realization than in the reference text.

6 Conclusion and Future Work

We presented an end-to-end neural approach to
generate natural language from Discourse Repre-
sentation Structures. Our model is based on a bi-
LSTM sequence-to-sequence architecture taking
linearized DRSs as input. Comparing character
level with word level for producing text, it achieves
higher BLEU, METEOR and ROUGE scores on
the former.

For a better understanding of our generator’s
robustness and its reliability, we designed several
challenge sets focusing on specific semantic phe-

nomena (tense, polarity, grammatical number) and
types of unseen input (quantity and named enti-
ties). Automatic and manual evaluations on these
challenge sets point out to negation as the most
challenging phenomenon for DRS generation, fol-
lowed by tense. By contrast, changes in grammati-
cal number and generalizations to unseen quantities
or names are well handled by the model.

Altogether, our results suggest that neural gener-
ation from DRSs is a very promising research direc-
tion, but more work is needed to ensure reliability
in real-world applications. We hope that our chal-
lenge sets will foster future research on this topic
and eventually lead to truly robust DRS generators.
The challenge sets, as we have presented them, can
be further refined, and other linguistic phenom-
ena can be added as well. Possibilities that spring
to mind are challenge sets for pronouns, definite
descriptions, comparatives, aspect, and discourse
particles. And obviously, we need to generate chal-
lenge sets for languages other than English, which
might trigger language-specific phenomena as well
that could be suitable for challenge sets for DRS
generation.
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Abstract
We survey human evaluation in papers present-
ing work on creative natural language genera-
tion that have been published in INLG 2020
and ICCC 2020. The most typical human eval-
uation method is a scaled survey, typically on
a 5 point scale, while many other less common
methods exist. The most commonly evalu-
ated parameters are meaning, syntactic correct-
ness, novelty, relevance and emotional value,
among many others. Our guidelines for future
evaluation include clearly defining the goal of
the generative system, asking questions as con-
crete as possible, testing the evaluation setup,
using multiple different evaluation setups, re-
porting the entire evaluation process and po-
tential biases clearly, and finally analyzing the
evaluation results in a more profound way than
merely reporting the most typical statistics.

1 Introduction

Human evaluation in natural language generation
(NLG) has become a hot topic lately, with the emer-
gence of several survey papers on the topic that
study how human evaluation has been conducted in
the past in the field of NLG in general (Howcroft
et al., 2020; Belz et al., 2020). This has led to
several recent evaluation frameworks for evaluat-
ing the output of NLG systems (Liu et al., 2020;
Gehrmann et al., 2021).

However, not all natural language generation
tasks are of the nature that they are designed to con-
vey factual information. Some of the NLG tasks
deal with producing text of aesthetic nature such
as poetry, stories, humor and so on. We call these
creative NLG tasks. These types of tasks are si-
multaneously researched in two distinct fields of
science: natural language processing (NLP) and
computational creativity (CC). Existing survey pa-
pers have only focused on NLP research and they
have not made a distinction between creative and
non-creative NLG.

NLP and CC fields conduct work from very dif-
ferent starting points (Purver et al., 2016). NLP is
often state-of-the-art driven whereas CC presents
more of exploratory research without pursuing
scores that outperform a baseline. In this paper,
we want to study how human evaluation of creative
NLG systems is conducted in the world of NLP and
in the world of CC, what similarities there are and
whether the two fields can learn something from
each other.

We base our research on a literature review on
the papers dealing with human evaluated creative
NLG published in the 2020 editions of the Inter-
national Conference on Computational Creativity
(ICCC) and of the International Conference on
Natural Language Generation (INLG). We picked
these conferences as ICCC is the most important
venue for CC research, and INLG the most impor-
tant NLP focused venue for NLG research.

Our results show that there is no consensus at the
moment on how evaluation should be conducted
despite the many different efforts of establishing
guidelines for evaluating computationally creative
output (Pease and Colton, 2011; Jordanous, 2012;
Lamb et al., 2018; Hämäläinen, 2020). We reflect
on the results of our survey and propose a road-map
for more sound future evaluation practices.

2 Surveying human evaluation methods

In this section, we go trough how human evaluation
was conducted in the papers we selected for the
survey. From the ICCC proceedings, we included
all papers that dealt with NLG and had a human
evaluation. We did not survey papers that presented
work on generating something else than language
such as music. From the INLG proceedings, we
picked all papers that presented work on an open-
ended NLG problem the output of which could
exhibit some creativity ruling out papers that dealt
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Paper NLG task Evaluated parameters Questions motivated Evaluation type

1. Mathewson et al. 2020 Collaborative dialogue engagement
Engagement measured the
notions of revealing and concealing.

Ranking models

2. Cheatley et al. 2020 Song writing tool
Support of self-expression, therapeutic value
and receptiveness to the tool and songs created

Not discussed User study (qualitative)

3. Mirowski et al. 2020
Auxiliary tool for
improv theater

Based on critics’ previews and reviews No questions public performance

4. Spendlove and Ventura 2020
Generating six
word stories

coherence, impactfulness Not discussed 5 point scale

5. Ammanabrolu et al. 2020
Quest generation in
text adventure games

coherence, originality (novelty), sense of
acomplishment (value), unpredictability (surprise)

By Boden’s theory on creativity 7 point scale

6. Mendes and Oliveira 2020b
Headline-proverb
pair generation

relatedness, funniness Not discussed 4 point scale

7. Tyler et al. 2020 Pun generation
funniness, surprise, cleverness, did the user laugh,
wit, ingenuity, timelessness, and accessibility

Not discussed 5 point scale

8. Mendes and Oliveira 2020c
Contextual headline
adaptation

syntax, relatedness, funniness Not discussed 3 point scale

9. Hämäläinen et al. 2020 evaluation 1 Dialectal adaptation
of generated poetry

poem (yes/no), typicality, understandability,
quality of language, evoked imagery,
evoked emotions, annotator’s liking

Previous research 5 point scale

Hämäläinen et al. 2020 evaluation 2
emotivity, originality, creativity,
poem-likeness, artificiality, fluency

Not discussed Association

10. Savery et al. 2020
Real time human-
machine rap battles

annotator’s perception, coherence, rhythm,
rhyme, quality, enjoyment, relation between
the hip hop and metal dataset,
and relationship between input and output

By research questions
open ended questions
+ automatic analysis,
preference

11. Oliveira 2020
Song lyric
transformation

familiarity, novelty, grammaticality,
semantics, singability, overall appreciation
and topicality

Not discussed
5 point scale and
picking the most suitable topic

12. Shihadeh and Ackerman 2020
Emily Dickinson style
poem generation

typicality, understandability,
quality of language, evoked imagery,
evoked emotions, annotator’s liking

Previous research 5 point scale

13. Gong et al. 2020 Text style transfer
content preservation, transfer strength
and fluency

Automated evaluation picking the best

14. Obeid and Hoque 2020
Text generation
from charts

informativeness, conciseness,
coherence, fluency, factuality

Not discussed
5 point scale and
yes/no/partially/can’t decide
for factuality

15. Lee 2020 Style transform content, fluency, and style Not discussed 5 point scale

16. Mendes and Oliveira 2020a
Enhancing headlines
with creative expressions

relatedness, funniness Not discussed 4 point scale

17. Langner 2020
Referring expression
generation in a
virtual environment

comprehension based on
identification time, error rate
and repetition counts

Not discussed
user study based on
quantitative values

18. Scialom et al. 2020
Question generation
from images

readability, caption relevance
and image relevance

Not discussed 5 point scale

19. Ilinykh and Dobnik 2020
Multi-sentence image
description generation

word choice, object salience,
sentence structure and paragraph coherence

Not discussed slider

20. Akermi et al. 2020 Question answering relevance, errors Not discussed
relevance (correct/not correct),
error type checkboxes,
open ended comment field

21. Nikolov et al. 2020 evaluation 1
Rap lyric generation

style, meaning, familiarity Not discussed 5 point scale

Nikolov et al. 2020 evaluation 2 Turing test Not discussed
picking which out of 2
is written by a human

Nikolov et al. 2020 evaluation 3 Turing test Not discussed human written (yes/no)
22. Wang et al. 2020 Paper review generation constructivenness and validity Not discussed not stated

23. Hedayatnia et al. 2020
Response generation
in a dialog system

appropriateness Previous research picking the best

Table 1: Evaluated parameters, their motivation and evaluation type in the surveyed papers

with purely factual data-to-text generation tasks.

In the ICCC 2020, there were 12 papers that pre-
sented human evaluated work on creative NLG, and
in the INLG 2020, there were 11 such papers. We
selected these papers for our survey. Fortunately,
both of the venues had relatively the same amount
of papers.

When surveying the papers, we only focused on
human evaluation and we wanted to know what
the NLG task was, what parameters were being
evaluated (usually reflected by the evaluation ques-
tions), how these parameters (questions) were moti-
vated and how the actual evaluation was conducted
methodologically. We also paid attention to the
evaluation setup: the number of evaluators and sam-
ples used and whether the evaluators were experts

or laymen. Finally, we looked into the discussions
and conclusions presented in the papers to see what
role the human evaluation had there, especially in
relation to concrete future directions in improving
the system based on the evaluation results.

2.1 What is evaluated?

Table 1 shows the results of our survey in terms
of what parameters were evaluated and how the
evaluation was conducted. Papers 1-12 were pub-
lished in ICCC and represent the CC field, whereas
papers 13-23 were published in INLG representing
the NLP side of the same coin.

When looking at the results, we can immediately
see that there is quite a range of different NLG
tasks. Even for papers that deal with very similar
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tasks such as papers 2, 10, 11 and 21, the framing
of the problem is very different ranging from lyric
transformation to full-blown human versus com-
puter rap battles. The evaluated parameters were
also very different.

Despite the parameters being very different from
each other, several papers evaluated meaning in
one way or another, for example, papers 4, 5, 10,
14 and 19 evaluated coherence, paper 11 semantics
and paper 21 meaning. Papers 9 and 12 evaluated
understandability, which is not directly the same as
meaning.

Syntactic correctness of the language was also
one of the commonly evaluated features. Papers 9,
13 and 14 measure fluency, paper 11 grammatical-
ity, papers 9 and 12 quality of language and paper
8 syntax. In addition paper 18 evaluated readabil-
ity, which is partially related to correctness and
partially to meaning.

One of the parameters that was evaluated
through multiple synonyms and even antonyms
was novelty. Papers 5 and 9 evaluated original-
ity, paper 11 novelty, paper 7 surprise and paper
5 unpredictability. Papers 9 and 12 evaluated the
opposite of novelty, which is typicality.

Relevance was also commonly evaluated in pa-
pers 18 and 20. The parameter was evaluated as
relatedness in papers 6, 8 an 16, although all of
them are by the same authors.

Many papers also evaluated emotional value.
Such as paper 9 through emotivity, paper 10
through enjoyment, paper 11 through engagement,
papers 9 and 12 through evoked emotions and pa-
pers 7, 6, 8 and 16 through funniness, although
three of these papers were by the same authors.

2.2 Why are the evaluation parameters
chosen?

The aforementioned parameters do not cover all
the parameters that were used in evaluation, how-
ever, they were the most typical ones. When we
look into how the evaluation parameters were se-
lected, we can notice that most of the papers do
not present any reasoning as to why these are the
relevant attributes to look at.

The few papers that did present a reasoning, had
many different reasons for the evaluated parame-
ters. Paper 1 motivates the evaluated parameter
by stating that it evaluates revealing and conceal-
ing parameters that were defined important for the
task. Paper 3 did not have any parameters at all

for evaluation. Paper 5 motivated the evaluated
parameters through an existing theory on compu-
tational creativity (Boden, 2007). Paper 10 had
formulated the evaluated parameters based on the
research questions established in the paper. Paper
13 formulated the evaluated parameters so that they
would measure the same things as their automated
evaluation.

Paper 9 and 12 used evaluation questions origi-
nally established by Toivanen et al. (2012). While
basing evaluation on existing research makes the
evaluation questions sound more well motivated,
the original paper where these evaluation questions
were first established did not present any reasoning
as to why these should be the evaluation questions
to be used with generated poetry. Also paper 23
stated they used ”a similar setup” as proposed by
Li et al. (2016). In practice this meant that whereas
the original paper proposed 3 different evaluation
setups, paper 23 only presented one of them. The
reasoning for this evaluation was not discussed in
the original paper.

2.3 How is the evaluation conducted?

Most of the papers present only one human eval-
uation method. The exceptions are paper 9 that
presents two distinct evaluation setups and paper
21 that presents 3 distinct evaluation setups.

The most common way of conducting a human
evaluation is to use a questionnaire that is rated on
a numerical scale. Papers 4, 7, 9 (evaluation 1)
11, 12, 14, 15, 18 and 21 (evaluation 1) used a 5
point scale. Papers 6 and 16, written by the same
authors, use a 4 point scale, and paper 8, also by
the same authors, uses a 3 point scale. Paper 7 uses
as big as a 7 point scale. The most deviant one of
the papers using a numeric scale is paper 19. This
paper presents a continuous slider the annotators
can move freely. Some of the papers use a different
scale for one of the questions.

The second most typical evaluation method is
based on preference. Here the outputs are pre-
ferred or ranked in relation to each other. Paper 1
presents a ranking method where different models
are ranked based on which one is the best. Paper
9 (evaluation 2) presents two poems side by side
and asks annotators to associate the presented pa-
rameters with either one of them. Paper 10 uses
preference of output as one of the evaluation cri-
teria. Papers 13 and 23 ask the annotators to pick
the best output candidate. Paper 21 (evaluation 2)
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asks the annotators to guess which output is human
written and which AI written. Paper 11 asks the
annotators to rank the most suitable topic. This
is slightly different as here the annotators are not
asked to rank the output per se. As we can see,
there are a great number of different variations in
how this type of an evaluation is conducted. As op-
posed to the most popular evaluation method, these
methods only give relative results. This means that
even if all of the output was bad, one of them is
still picked as the best.

Two papers, 2 and 17, present a user-study. Pa-
per 2 conducts this in a qualitative way with open
ended questions where the discussion is directed
towards the parameters that the authors wanted to
measure. The discussions with the participants are
not fully reported in the paper, instead the authors
present some quotes relating to the parameters in
study in a non-rigorous fashion. Paper 17 presents
a quantitative user-study where the results are ana-
lyzed based on different values such as execution
time that were gathered during the user-study.

Paper 3 presents something completely unique
in terms of evaluation. The authors organize live
improv theater sessions with the system and base
the results on the reviews and previews by critics.
However, these were not discussed in the paper in
detail, but rather some cherry picked quotations
were reported.

Paper 10 was another paper to conduct a qual-
itative evaluation. The annotators were asked to
answer to open-ended questions. The input from
the annotators was then automatically processed to
reach to conclusions. An open-ended comments
field was also provided in paper 20, however, the
paper focused on discussing the results of the two
other questions in the questionnaire. The annota-
tors were asked to give a binary rating on whether
the output was relevant or not, similarly, paper 9
(evaluation 1) presented one binary question about
poeticity and Paper 21 (evaluation 3) presented a
binary question whether the output was human au-
thored. In addition, paper 20 asked the annotators
to indicate which types of errors the output had
by providing a set of check-boxes with predefined
error types.

Unlike the rest of the papers, paper 22 did not
explain how the evaluation was conducted in any
detail. The results were percentages, which indi-
cates that the evaluation might have been based on
binary questions.

2.4 Sample sizes and annotators

Table 2 shows the number of annotators and sample
sizes used in the different papers. We have tried
to do our best in collecting the information from
the papers, however, these parameters were not
always expressed clearly. The worst example is
paper 3 that stated that they got multiple reviews,
previews and feedback from the audience and the
actors without specifying the exact number.

Most of the papers relied on non-expert anno-
tators for conducting the evaluation with the ex-
ception of paper 1, 21 and 22, and partially paper
3. The use of experts is understandable as not just
about anyone is competent enough to tell whether,
for example, generated reviews for scientific pa-
pers (as in paper 22) are good or bad. However,
this leads to a small number of evaluators as ex-
perts are difficult to recruit. Papers that did not use
experts to evaluate the output either did not report
any special requirements or mostly ensured that the
evaluators were proficient enough in the language
of the output.

In terms of the sample size, that is how many gen-
erated artefacts were evaluated, the amount varies
a lot from anything starting from 2 as in paper 5 up
to 250 as in papers 15 and 19. The samples were
mostly picked at random, however some papers
like paper 7 evaluated manually picked output.

There was also a lot of divergence in the num-
ber of annotators. Some papers had all annotators
go through all samples like paper 21 and 22 did,
while some other papers had several annotators
that annotated the outputs so that each individual
output was evaluated at least by 3 annotators like
paper 14 and 23. Usually, there wasn’t any clear
discussion on how many outputs a given annotator
annotated with the exception of paper 19, which
reported that a given annotator could only annotate
up to 30 outputs.

2.5 Evaluation results

An interesting point we wanted to pay attention to
was the use of the evaluation results. After conduct-
ing a costly and time consuming human evaluation,
one would hope that the results give a direction to
the future research. However, this was not the case.
All papers were limited to writing out the evalua-
tion results and stating which system was better if
the papers evaluated multiple systems. None of the
papers was able to identify any concrete future di-
rections for improving the generative system based
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Paper Experts Number of annotators Number of samples

1. Mathewson et al. 2020 yes 4
3 conversations
(5 utterance-response
pairs in each)

2. Cheatley et al. 2020 no 3
Free engagement
with the system

3. Mirowski et al. 2020
yes (reviews),
no (audience)

multiple Performance

4. Spendlove and Ventura 2020 no 14 per story 15 stories
5. Ammanabrolu et al. 2020 no 15 for each game 2 room layouts
6. Mendes and Oliveira 2020b no 4 per headline 60 headlines

7. Tyler et al. 2020 no 10 in total
10 best manually
selected puns

8. Mendes and Oliveira 2020c no 2 in total 30 headlines
9. Hämäläinen et al. 2020 evaluation 1 no 5 per poem variant 10 poems
Hämäläinen et al. 2020 evaluation 2 no 5 per dialectal-standard Finnish poem pair 10 parallel poems

10. Savery et al. 2020 no 33

1 video clip,
hand picked best output,
10 additional video clips
and 10 generated tasks

11. Oliveira 2020 no 3 per lyric 120 lyics

12. Shihadeh and Ackerman 2020 no 17 in total
10 generated +
2 Emily Dickinson’s poems

13. Gong et al. 2020 no 2 in total outputs for 100 inputs
14. Obeid and Hoque 2020 no 3 per statistic output for 40 charts
15. Lee 2020 no 6 people per sample 250 samples
16. Mendes and Oliveira 2020a no 4 per headline 60 headlines
17. Langner 2020 no 34 participants 10 fixed sessions
18. Scialom et al. 2020 no 3 in total 50 images
19. Ilinykh and Dobnik 2020 no 154 in total (a participant could rate at most 30 images) 250 images
20. Akermi et al. 2020 no 20 in total 150 questions
21. Nikolov et al. 2020 evaluation 1 yes 3 in total 100 verses
Nikolov et al. 2020 evaluation 2 yes 3 in total 100 verses
Nikolov et al. 2020 evaluation 3 yes 3 in total 100 verses
22. Wang et al. 2020 yes 2 in total 50 papers

23. Hedayatnia et al. 2020 no 3 per snippet
200 snippets
of 5 turn dialog

Table 2: Evaluators and samples in the surveyed papers

on the human evaluation results. Human evalua-
tion was merely there to provide some convincing
evidence on the quality of the systems.

The only exception to this was paper 9. The au-
thors conducted two different evaluations and they
reached to an insightful conclusion. The two evalu-
ation methods contradicted each other; according to
the first evaluation, standard Finnish was preferred
over dialectal one in all the parameters. However,
the second evaluation showed that a dialectal poem
was more often associated with originality, creativ-
ity and poem-likeness than its standard Finnish
variant. The authors note that the results are not
only dependent on how you conduct your human
evaluation, but also on familiarity bias. In the first
evaluation, where dialect was a controlled variable,
the further the dialect was from standard Finnish,
the lower it scored as the annotators were less fa-
miliar with it.

3 Discussion

There are currently many different creative NLG
tasks people work with, and it is understandable
that each task calls for slightly different evaluation
methods. However, even work on closely related
topics prefers to use their own evaluation meth-
ods that are not based on any existing research.
And most alarmingly, if the evaluation is based on
existing research, the evaluation questions are not
motivated in the earlier research either. This type of
evaluation has become to be known as a symptom
of the Great Misalignment Problem (Hämäläinen
and Alnajjar, 2021). When the evaluation is not
targeted towards evaluating exactly what has been
modelled, any type of evaluation that seems re-
motely related to the task becomes seemingly valid.

However, when the evaluated parameters have
only little to do with what was modelled, it is only
evident that none of the surveyed papers was able to
clearly identify the short-comings of their systems
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in such a way that they could propose some clear
paths to follow for any future research. In fact,
if you evaluate your system based on relatedness
and funniness while neither is explicitly modelled,
how can you know how to make your system more
funny or produce more related output? The scores
might have well been achieved by mere serendipity
(the annotators happened to like the humor that
happened to be in the small sample) (c.f. Gervás
2017) or by data the model was trained on.

Apart from the evaluation questions not align-
ing with the model, a much larger problem related
to evaluation questions can be identified. Firstly,
most of the papers were not clear about the ac-
tual evaluation questions used, instead they listed
the evaluated parameters as though human evalua-
tion was like an automated one where one can just
score abstract notions such as typicality or fluency
accurately on a 5 point scale. In other fields, it
is known that even small changes in survey ques-
tions can lead to different survey results (Kalton
and Schuman, 1982; de Bruin et al., 2011, 2012).
Not revealing the actual questions only makes the
situation worse. Another problem that rises from
abstract evaluation questions is that it becomes less
clear why the annotators gave certain answers.

Furthermore, people have a tendency on reading
more into computer generated output than what the
intention of the system was (Veale, 2016). If you
train a generative neural model on jokes, it will
surely learn to output jokes, while it does not nec-
essarily have any internal representation of humor.
In such a case, the humor is purely in the eyes of
the beholder and in the data the model was trained
on, not in the method itself1. For instance, Alnajjar
et al. (2019) has shown that generated headlines
were perceived more offensive by human annota-
tors, while offensiveness was never modelled in the
system.

While mostly every paper we surveyed opts for
coming up with their own evaluation metrics, it
is astonishing that these newly created evaluation
settings are used as such. There are other fields
dealing with human surveys that emphasize the
need for conducting tests on your survey before
conducting it in a larger scale to discover potential
issues in your questionnaire (Collins, 2003; Presser
et al., 2004; Thomas, 2004). None of the paper
we surveyed discusses evaluation of evaluation. In-

1See Colton (2008) for discussion on the roles of the pro-
grammer, program and perceiver in creative systems

stead, it is believed that any new evaluation metric
the authors came up with just for a given paper
will magically work as such and will yield scien-
tifically valid results that will pass a peer review.
All this while many of the papers ask questions us-
ing ambiguous terms such as fluency (is something
grammatical fluent? is something that seems to
make sense semantically fluent? is something that
is close to the annotator’s own idiolect more fluent
than something further away from it? is text gener-
ated in American English more fluent to Americans
than text generated in British English? and so on)
and coherence (is something that repeats the same
words coherent? can a complex figure of language
be coherent if the annotator does not have time to
think about it for more than a couple of seconds?
does coherence have something to do with gram-
maticality as well? is a story that follows the same
beliefs as the annotator seen as more coherent? and
so on) that are reduced into a compact 1-5 scale
that is later neatly averaged over all the annotators’
opinions on all the samples. What does the aver-
age of 3.5 on a question all annotators might have
interpreted differently even mean?

In other fields conducting online surveys, there
are a lot of worries about selection bias of the hu-
man subjects (Bethlehem, 2010; Greenacre, 2016).
This is hardly discussed in the fields of NLP and
CC. Many of the papers we surveyed conducted
their evaluation on a crowd-sourcing platform such
as Amazon Mechanical Turk. None of the papers
presented statistics on the demographics of the an-
notators. This might be a source of bias in the
results. What makes such a bias even more prob-
lematic is the relatively small number of annota-
tors that are usually recruited per individual out-
put. Fields with more established human survey
practices would not consider the typical 3-5 annota-
tors of NLP and CC enough even for a qualitative
survey, which requires 5-25 participants (Creswell,
1998) or at least 6 participants (Morse, 1994). How-
ever, human evaluation is usually conducted quan-
titatively, which means that the number of annota-
tors depends heavily on multiple parameters and
requires planning and justification on its own right
(Bell, 1991; Lenth, 2001; Lavrakas, 2008).

It is also very well known that people do not
perceive things in a vacuum but rather as a contin-
uum of stimuli where previously perceived stimuli
affect to the next one. This effect is called priming
(see Henson 2009). To reduce the effect of priming
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or to have it consistent one should either shuffle
the order in which the output is presented to the
annotators or keep it always the same. Priming is
especially in play in cases where annotators are to
evaluate outputs produced by different systems. In
such a case, output of a mediocre system might get
greatly boosted when presented together with out-
put by a bad systems. Nearly none of the papers we
surveyed discussed this aspect of their evaluation
setting.

Both CC and NLP have still a long way to go
in order to reach to more sound human evaluation
practices. However, INLG is still a step closer
to scientific rigor as automated evaluation metrics
were commonly used together with human evalu-
ation, and sometimes as the only evaluation met-
ric (such as Bień et al. 2020), whereas ICCC had
several papers presenting work on creative NLG
without any evaluation at all (such as Agafonova
et al. 2020; Petac et al. 2020; Wright and Purver
2020).

The use of experts in evaluation is something that
should be taken under rigorous inspection in the
future. Currently, there are contradicting studies on
the topic indicating that consulting expert does have
an effect in machine translation (Toral et al., 2018)
but not in poem generation (Lamb et al., 2017).
However, this is a question that is very likely to
depend on the output that is to be evaluated and
also on how the evaluation is conducted.

Human computer interaction research has some
more established methodologies for conducting hu-
man studies (see Jacko 2012; Lazar et al. 2017
such as cognitive walk-through (see Mahatody et al.
2010), human performance evaluation support sys-
tem (Ha et al., 2007) and user studies (see MacKen-
zie 2015). These established methodologies could
be taken into account when conducting evaluation
of such an NLG system that calls for user interac-
tion.

4 Advices for future evaluation

In this section, we outline how human evaluation
of creative NLG systems should be conducted. We
are not going to give an exact silver bullet frame-
work to solve the problem, as the two fields are
not at the state yet where enough would be known
about human evaluation to state exactly how the
evaluation needs to be conducted. Furthermore,
we do not believe that a single fixed framework is
enough to capture everything necessary in a topic

as broad as creative text generation.

4.1 Define the goals
From the very early on, it is important to define
what the goals of your system are (see Alnajjar and
Hämäläinen 2018; Jordanous 2012). Try to be as
concrete and precise as possible at this step. Once
you have your goals clearly stated, it is easy to see
the degree to which your implementation solution
tries to achieve those goals and how much can
be attributed to the method and how much to the
training data. After this, the evaluation parameters
will follow naturally from the goals you set for your
system. This way, the evaluation questions do not
appear seemingly from nowhere but are motivated
by your research goals and implementation.

4.2 Go concrete
People have an inbuilt need to understand anything
expressed in their language (see Veale 2016). This
can lead easily into a situation, where annotators
can read more into the evaluated output than what
your system was aware of. By using evaluation
questions that are as concrete as possible you can
reduce the room for subjective interpretation (see
Hämäläinen and Alnajjar 2019). For example, for
a pun like Becoming a vegetarian is a big missed
steak asking the annotators Is this humorous? and
Is this humorous because the pun ”missed steak”
sounds like ”mistake”? will result in different pos-
sible interpretations as the former question might
let the annotators consider the generated joke funny
for reasons other than those intended by the gener-
ative system.

4.3 Run some tests
As we have seen in this paper, the same concept
can be evaluated through multiple different word-
ings and it is not always clear that the annotators
understand the questions in the same way as the
researchers intended. By running tests on your sur-
vey in real life, you can get more direct feedback
than what you could get from annotators on Ama-
zon Mechanical Turk. It is better to adjust your
evaluation questions sooner than after running a
costly crowd-sourcing.

Furthermore, the final number of annotators you
need and how many samples you should evaluate
depends on the evaluation task and setting. If you
get high diversity in answers in the test run, you
will probably need to have a larger number of an-
notators conducting the actual evaluation.
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Testing is also a great way of seeing whether
you are asking non-experts to evaluate things they
consider too difficult or whether your questionnaire
is too lengthy. You do not want your annotators
to lose interest in the middle of the questionnaire
and start annotating fast without paying too much
attention.

4.4 Run multiple evaluations

Human evaluation does not need to be a one time
thing conducted in a massive survey. You can run
multiple different evaluations such as preference
based ones, 5 point scale ones and true and false
statements to better understand the limitations of
your system and your human evaluation. The more
evidence gathered by different evaluation methods
you can show, the more confident you and other
researchers can be of the quality of your method.

4.5 Report everything clearly

It is important to report the evaluation questions
exactly as they were used, how the survey form was
constructed including any instructions and wording
used for the 5 point scale, and how the output was
presented (always in the same order or shuffled).
All these have an effect on the results. In software
engineering, it is considered important to report
any threats to the validity of the research (Feldt
and Magazinius, 2010). The same should apply to
NLP and CC. One of the important threats to the
validity of human evaluation is bias in the results.
Therefore, it is important to report and discuss what
kind of people participated in the evaluation survey.

4.6 Analyze your results

It is also important to dig deeper into the human
evaluation results. If you as a researcher put a con-
siderable amount of money in getting your human
evaluation results, you should probably make the
most out of them too. Instead of merely reporting
the typical stats (mean, mode, median, standard
deviation), why not looking into the best and worst
performing output by the system as well and let
the human evaluation be a guide in a deeper error
analysis? This can open up insightful directions for
future research.

5 Conclusions

In this paper, we have surveyed papers presenting
work on creative natural language generation that
have been published in INLG 2020 and ICCC 2020.

There have been many different evaluation methods
including some unconventional ones such as critics’
reviews and user testing. The most typical human
evaluation method has been using a scaled survey,
typically on a 5 point scale.

While most of the papers surveyed had come
up with their own evaluation metrics, the most
common parameters that have been evaluated were
meaning, syntactic correctness, novelty, relevance
and emotional value. Although, the terms used to
refer to these notions have not been the same.

Most of the papers did not justify why they had
evaluated certain parameters. Instead, the param-
eters were usually just stated as though they were
an inarguable fact. It was more often than not the
case that the actual evaluation questions were not
revealed.

There was a lot of variation in the number of
samples taken from the system output and how
many annotators were used to conduct the evalu-
ation. Typically the numbers were rather small.
There was no discussion about the demographics
of the annotators nor about what type of a bias it
might have introduced.

Evaluation setups were never tested out before-
hand, even though other fields dealing with human
surveys recommend testing your questionnaires.
This means that it is impossible to tell what the an-
notators really understood by the evaluation ques-
tions.

We established some advices for future evalua-
tion, which include clearly defining the goal of the
generative system, asking questions as concrete as
possible, testing the evaluation setup, using multi-
ple different evaluation setups, reporting the entire
evaluation process and potential biases clearly, and
finally analyzing the evaluation results in a more
profound way than merely reporting the most typi-
cal statistics.

All in all, our fields, CC and NLP, have a lot
to learn from other fields with longer traditions
with human questionnaires in terms of conducting
human evaluation. At the current stage, none of the
papers we surveyed quite reached the same level
of scientific rigor in their human evaluation as it is
to be expected in other fields of science. However,
this is not to say that the work of the authors of
the papers we surveyed is inherently bad. This is
just to highlight the fact that more attention needs
to be paid in how human evaluation is conducted.
Quite often with creative text generation, human
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judgment is the only viable metric to measure the
performance of a system. Human evaluation of
generated text has been conducted in the field of
NLP already as early as in the 1960s (McDaniel
et al., 1967) it is a pity it has not caught up with the
rest of the development in the field.
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Rui Mendes and Hugo Gonçalo Oliveira. 2020b. Com-
paring different methods for assigning portuguese
proverbs to news headlines. In Eleventh Inter-
national Conference on Computational Creativity:
ICCC’20.
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Abstract

We introduce GEM, a living benchmark for
natural language Generation (NLG), its Eval-
uation, and Metrics. Measuring progress in
NLG relies on a constantly evolving ecosys-
tem of automated metrics, datasets, and hu-
man evaluation standards. Due to this mov-
ing target, new models often still evaluate
on divergent anglo-centric corpora with well-
established, but flawed, metrics. This discon-
nect makes it challenging to identify the lim-
itations of current models and opportunities
for progress. Addressing this limitation, GEM
provides an environment in which models can
easily be applied to a wide set of tasks and in
which evaluation strategies can be tested. Reg-
ular updates to the benchmark will help NLG
research become more multilingual and evolve
the challenge alongside models. This paper
serves as the description of the data for which
we are organizing a shared task at our ACL
2021 Workshop and to which we invite the en-
tire NLG community to participate.

* Correspondence to gehrmann@google.com

1 Introduction

Natural language generation is the task to automati-
cally generate understandable texts, typically using
a non-linguistic or textual representation of infor-
mation as input (Reiter and Dale, 2000). These
texts aim to fulfill an underlying communicative
goal (e.g., to produce a summary of an article)
while remaining faithful to the input information,
fluent, grammatical, and natural-looking. An NLG
system needs to be robust to shifts in the data distri-
bution and be able to produce text in many different
languages. Finally, it is often desired that repeated
interactions with the model produce diverse out-
puts, for example, to explain concepts in multiple
ways or to become a more interesting conversa-
tional agent. These optimization objectives can
often be conflicting (Hashimoto et al., 2019) and,
as a result, evaluations that focus only on a single
aspect may fail to recognize the drawbacks of a
particular method. To demonstrate this trade-off,
consider an improvement on the CNN-DM sum-
marization dataset (Hermann et al., 2015; Nallap-
ati et al., 2016) measured by the ROUGE-L met-
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ric (Lin, 2004). Since ROUGE only tests the extent
to which a generated summary has a lexical over-
lap with a reference summary, it can erroneously
produce high scores for fluent, yet meaningless
and unfaithful outputs as long as many of the same
words are used (Maynez et al., 2020; Gabriel et al.,
2020). Moreover, ROUGE tends to favor systems
that produce longer summaries (Sun et al., 2019).
It is thus crucial to carefully assess the progress
of NLG toward all of its goals at the same time
in ways that evolve alongside the models. This is
currently not the case; new models are evaluated
on different datasets, most of which focus only
on the English language (Bender, 2019), and us-
ing these flawed metrics. Moreover, while human
evaluations of generated texts can provide comple-
mentary insights to automatic evaluation (Manning
et al., 2020), it can also lead to contradicting results
since studies often omit crucial replication details
and assume different definitions of the measured
quantities (Howcroft et al., 2020).

We propose a living benchmark called GEM
(Generation, Evaluation, and Metrics) that aims
to enable research on a wide range of NLG chal-
lenges. To avoid the fallacy of encouraging hill
climbing on a leaderboard (Linzen, 2020), GEM
focuses on an in-depth evaluation of model out-
puts across human and automatic evaluation that
aims to uncover shortcomings and opportunities
for progress. As datasets, metrics, and models im-
prove, the benchmark environment will improve as
well, replacing “solved” tasks with more challeng-
ing ones, incorporating newly developed metrics,
and addressing discovered flaws in the experimen-
tal setup, as demonstrated in Figure 1. Making all
model outputs available under an open-source li-
cense will support evaluation research and integrat-
ing new metrics will, in turn, help their adoption
and increase the robustness of model evaluations.

The initial set of eleven included datasets is pre-
sented in Table 1. They measure specific generation
challenges, such as the content selection and plan-
ning (What to say?), and the surface realization
(How to say it?) (Reiter and Dale, 2000; Gatt and
Krahmer, 2018). Models need to be capable of
paraphrasing, simplification, and others. In addi-
tion to those challenges, GEM datasets also differ
in their communicative goals, languages, the noisi-
ness of data, and resource availability, to evaluate
the consistency of evaluation schemes. About half
of the datasets have multiple references and more

Improving 
Data

Improving
Metrics

Improving 
Models

Consistent
Human
Eval

Evaluation on 
“solved” data

Evaluation with
gameable metrics

Varying
experimental
setups 

Non-repeatable
human evaluation

Figure 1: The opportunities of living benchmarks and
pitfalls of evaluation. As models improve, we need con-
sistent evaluations such that models can be compared
to each other. This can only happen if we develop ro-
bust human evaluation standards and improve our au-
tomated metrics. Otherwise, results are challenging to
interpret and compare to each other. Finally, as models
improve and metrics saturate, we need to evaluate them
on more challenging datasets instead of continuing to
move sideways on old ones. GEM aims to provide this
environment for natural language generation.

than half were post-processed to improve data qual-
ity. The sizes range from 5k to 500k data points.
GEM features 18 languages across all tasks and
two of the datasets do not include English at all.
To be able to properly assess the performance of
models in a way robust to the shortcuts a model
can take, we additionally introduce ten types of
challenging test sets that probe for specific model-
ing aspects (Perez-Beltrachini and Gardent, 2017;
Ribeiro et al., 2020). To ensure that research with
GEM is conducted responsibly, all the datasets are
documented in an NLG-specific version of data
cards (Bender and Friedman, 2018; Gebru et al.,
2018) we developed and for which we release a
template and guide. Moreover, all submitted mod-
els will have an associated data card (Mitchell et al.,
2019).

This paper describes the selection and construc-
tion of the GEM datasets in support of the an-
nouncement of the shared task at ACL 2021. More
detailed information can be found on our website
https://gem-benchmark.com/.

2 Benchmarks in NLG

In this section, we summarize common criticisms
of benchmarks in NLP, discuss how they apply to
NLG, and how we plan to address them. Then, we
describe opportunities that GEM can provide. NLP
benchmarks such as GLUE (Wang et al., 2019b)
are common for natural language understanding
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Dataset Communicative Goal Language(s) Size Input Type
CommonGEN
(Lin et al., 2020)

Produce a likely sentence which mentions
all of the source concepts.

en 67k Concept Set

Czech Restaurant
(Dušek and Jurčíček, 2019)

Produce a text expressing the given intent
and covering the specified attributes.

cs 5k Meaning
Representation

DART
(Radev et al., 2020)

Describe cells in a table, covering all in-
formation provided in triples.

en 82k Triple Set

E2E clean
(Novikova et al., 2017)
(Dušek et al., 2019)

Describe a restaurant, given all and only
the attributes specified on the input.

en 42k Meaning
Representation

MLSum
(Scialom et al., 2020)

Summarize relevant points within a news
article *de/es *520k Articles

Schema-Guided Dialog
(Rastogi et al., 2020)

Provide the surface realization for a vir-
tual assistant

en *165k Dialog Act

ToTTo
(Parikh et al., 2020)

Produce an English sentence that de-
scribes the highlighted cells in the context
of the given table.

en 136k Highlighted
Table

XSum
(Narayan et al., 2018)

Highlight relevant points in a news article en *25k Articles

WebNLG
(Gardent et al., 2017)

Produce a text that verbalises the input
triples in a grammatical and natural way. en/ru 50k RDF triple

WikiAuto + Turk/ASSET
(Jiang et al., 2020)
(Xu et al., 2016)
(Alva-Manchego et al., 2020)

Communicate the same information as
the source sentence using simpler words
and grammar.

en 594k Sentence

WikiLingua
(Ladhak et al., 2020)

Produce high quality summaries of an
instructional article.

*ar/cs/de/en
es/fr/hi/id/it
ja/ko/nl/pt/ru

th/tr/vi/zh

*550k Article

Table 1: A description of all the datasets included in GEM. The tasks vary in communicative goal, data size, and
input type. * indicates changes from the originally published dataset made for GEM.

(NLU) tasks. They aggregate multiple tasks under
a unified evaluation framework, which enables re-
searchers to fairly compare their models to others.
Due to the improved model comparability, bench-
marks are critical in measuring modeling progress.

However, they also pose a risk that progress is
reduced to the single number shown in a bench-
mark’s leaderboard and thus may encourage blindly
optimizing it without regard to other considera-
tions like model size or fairness (Ethayarajh and
Jurafsky, 2020). This is especially challenging for
benchmarks in NLG since, as discussed above, the
performance cannot be described through a sin-
gle metric and it is often not clear what metric to
optimize for. This shortfall can be seen in bench-
marks like DecaNLP (McCann et al., 2018) and
GLGE (Liu et al., 2020a) which include NLG tasks
but focus only on a single metric and, as a result,
may mischaracterize a system’s performance.

Moreover, an easy-to-use data infrastructure also
disincentivizes researchers from interacting with

and conducting in-depth analyses of the data sets
that models are trained on. The limited analysis del-
egates the responsibility to ensure that all included
datasets have been collected fairly to the creators of
the benchmark (Denton et al., 2020). The dataset
and benchmark creators thus must provide in-depth
statements that describe the data characteristics and
surface potential issues and consider these issues
when selecting datasets for a benchmark (Gebru
et al., 2018; Bender and Friedman, 2018).

These dangers emphasize selecting datasets for
a benchmark needs to be carefully done, that the
setup has to remain flexible to be able to address
newly found limitations, and that the benchmark
should focus on climbing a leaderboard. Instead,
a living benchmark that can adjust its datasets and
specific evaluation metrics can be much more pow-
erful and long-lived. This can, for example, be
seen in Dynabench,1 (Potts et al., 2020) which has
a static evaluation, but interactively adds more test

1https://dynabench.org/
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data through a human-in-the-loop approach.

Increasing multilingualism of NLG research.
Another potentially harmful choice by benchmark
creators is the choice of the languages of the in-
cluded datasets. It is often assumed that work on
English transfers to other languages (Bender, 2011).
However, this assumption does not consider differ-
ences between the languages that lead to higher
modeling complexity, for example, a richer mor-
phology or a flexible word-order. Still, the majority
of work in NLP and almost all benchmarks exclu-
sively focus on English (e.g., Wang et al., 2019b;
Liu et al., 2020a; McCann et al., 2018). Even if
multiple languages are considered, the availability
of data in a language often does not represent the
number of speakers of a language. This means that
work on languages with little available data can
potentially impact many more people than work on
highly resourced languages (Joshi et al., 2020).

As a result, many recent benchmarking and
dataset creation efforts in NLU develop and fo-
cus on tasks that are inherently multilingual or
which explore cross-lingual transfer. For example,
XTREME (Hu et al., 2020) introduces a bench-
mark covering 40 languages across multiple NLU
and retrieval tasks, XCOPA (Ponti et al., 2020)
is a commonsense reasoning dataset for eleven
languages, and MLQA (Lewis et al., 2020b) is a
dataset for extractive question answering across
seven languages. We can observe a similar recent
trend in natural language generation, where ML-
Sum (Scialom et al., 2020) and WikiLingua (Lad-
hak et al., 2020) were created as multilingual sum-
marization datasets. There also have been first
steps toward including NLG tasks in multilingual
NLU benchmarks. For example, XGLUE includes
Question and News Title Generation (Liang et al.,
2020). Unfortunately, XGLUE reduces the genera-
tion evaluation to BLEU-4, a metric that is inade-
quate for NLG (Reiter, 2018).

There have also been multiple shared tasks in
NLG that focus on multilingualism, for instance,
the shared task on multilingual surface realization
which includes eleven languages (Mille et al., 2018,
2019, 2020). The shared task on document-level
generation and translation featured German and En-
glish generation challenges (Heafield et al., 2020).
The WebNLG+ shared task asked participants to
contribute models that can realize text in Russian
and English (Ferreira et al., 2020).

A benchmark that focuses only on NLG can en-

able much richer evaluation (as described in the
next sections), and promote non-English datasets.
In addition, it can ensure that the datasets created
for those shared tasks continue being evaluated.

Providing a testbed for automated evaluation.
Most traditional automated metrics, such as
ROUGE (Lin, 2004) and BLEU (Papineni et al.,
2002), measure the n-gram overlap between a ref-
erence and the generated text. However, in most
cases, there is more than one correct way to gener-
ate a text, especially in tasks with a latent content
planning or selection step (Reiter and Dale, 2000).
That means that a correct solution may score low
on a metric. While multiple references alleviate the
issue somewhat, these metrics still have a low corre-
lation with human judgments (Reiter, 2018; Fabbri
et al., 2020). To address the issue, the machine
translation community has been organizing yearly
metrics shared tasks which produce metrics that
achieve a high correlation (Stanojević et al., 2015;
Bojar et al., 2016, 2017; Ma et al., 2018, 2019;
Mathur et al., 2020b). The latest metrics focus on
semantic equivalence instead of lexical similarity,
which improves the correlations drastically. How-
ever, recent work by Fabbri et al. (2020) demon-
strates that this may not hold in summarization,
where the automated metric BERTScore (Zhang
et al., 2020b) does not improve upon the correla-
tion of ROUGE. Moreover, Mathur et al. (2020a)
and Freitag et al. (2020) find that when comparing
two high-quality systems, differences according to
a metric may also stem from how references are
written or flaws in the metric itself.2

Given that automated metrics perform differently
across tasks, setups, and languages, a multi-task
NLG benchmark has the opportunity to act as a
testbed to evaluate how the latest advances in au-
tomated metrics perform on these different tasks.
The benchmark can facilitate this research through
the release of system outputs and associated human
annotations, which is what we are planning to do
with GEM. Moreover, we allow the integration of
additional metrics into our living benchmark sys-
tem, which enables a much faster adoption.

Developing reproducible human evaluation
standards. In recent work, Howcroft et al.
(2020) investigated NLG papers from the last

2For a more complete description of recent developments
in NLG evaluation, we refer to the survey by Celikyilmaz et al.
(2020).
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twenty years and the evaluation methodologies dif-
fer drastically across papers. Moreover, in most
cases, it is not even mentioned what the human
evaluation aims to measure and that definitions
of measures like “accuracy” or “fluency” are in-
consistent. They thus suggest reporting standards
for criteria and methods, following a classification
system proposed by Belz et al. (2020). In addi-
tion, regularly scheduled shared tasks like WMT
have lead to standardization of human evaluation
setups and enabled controlled experimentation with
them. GEM has the opportunity to develop repro-
ducible standards for how human evaluation for
NLG tasks beyond translation should be conducted
while at the same time incorporating lessons from
related work. Acting on the same need, the recently
proposed GENIE (Khashabi et al., 2021) system
aims to automate and standardize the human evalu-
ation of different NLG systems, however with the
contrasting goal of reducing the evaluating to a
leaderboard-like score. To avoid further fragmenta-
tion of the field, GEM is developing its own human
evaluation approaches, but uses the infrastructure
provided by GENIE to run its human evaluation.

In addition to GENIE, multiple other related ef-
forts exist that work toward the goal of reproducible
and robust in-depth human and automatic evalua-
tion for NLG tasks, and which focus on specific
modeling- or task-aspects that are different from
those in GEM. Among those are KILT (Petroni
et al., 2020) which focuses on knowledge-intensive
tasks and retrieval-based models, Storium (Akoury
et al., 2020) which focuses on open-ended story
generation, and BIG bench3 which focuses on mea-
suring few-shot and zero-shot capabilities of lan-
guage models.

3 Dataset Selection

As highlighted in Figure 1, the selection of included
datasets is an integral part of a benchmark. They
should be challenging for models, but it should
still be possible to evaluate models trained on them.
Moreover, the datasets should cover a wide range
of relevant generation challenges that allow for
findings to be as general as possible. Finally, the
datasets should cover tasks that are interesting for
contributors to work on to facilitate the wide adop-
tion of the benchmark.

To collect datasets with those desired properties,
the selection methodology for GEM is composed

3https://github.com/google/BIG-bench

of three steps. First, we elicited a set of proposals
from everyone involved in the effort. Second, we
identified criteria for the selection. Third, all GEM
members voted on individual dataset and criteria
utilities. The final selection maximizes the utility
under constrained resources, similar to a knapsack
solver.4 This can be seen as an extension of the se-
lection process of SuperGLUE (Wang et al., 2019a)
that had similar first and second steps but made the
final decision based on which were harder for a
baseline model to solve after identifying a final set
of candidate datasets. Since we are going to intro-
duce challenge sets, the baseline performance of
models on a dataset matters less.

Dataset Elicitation. In the first step, all GEM
participants were asked to suggest datasets follow-
ing the schema provided in Appendix A. The cate-
gories included multiple brief categorizations, such
as a description of the challenge that this dataset
provides, its high-level task, and the communica-
tive goal of an agent trained on the data. Following
our goal to focus on non-English languages, we fur-
ther asked for the languages included in the dataset,
as well as the language locale. This step yielded 35
proposed datasets, listed in Appendix B.

Estimating Task+Criterion Utility. The second
step focused on the selection of criteria to inform
the selection. The initial set of criteria was se-
lected through open discussion involving all mem-
bers. We split criteria into “hard” and “soft” ones
– hard criteria would lead to the definite inclu-
sion/exclusion of a task if (not) satisfied. Soft
criteria inform the utility of the remaining tasks.
All GEM members filled out a survey asking them
to rate, on a 5-point Likert scale, how much they
wanted to see a task included in GEM. Addition-
ally, we posed yes/no questions for all considered
hard criteria and various questions about the soft
criteria (e.g., “what percentage of the tasks should
feature non-English language?”, or “do we prefer
noisy or clean datasets?”). Finally, the survey in-
cluded open text fields that asked for (1) comments
on any of the tasks, (2) comments or suggestions on
hard exclusion criteria, and (3) suggestions of addi-
tional criterion/criteria. The full list of questions is

4Consider the criterion “We need equal representation of
large and small datasets” under the constraint that only two
datasets can be selected. If we have two large datasets with
utility 10, and one small one with utility 5, we may want to
include the smaller dataset over the second large dataset to
satisfy the criterion.
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shown in Appendix C.
The survey received 28 responses, revealing that

the initial version of GEM should include a median
of 10 tasks or an average of 12. Of those tasks,
about a third should feature non-English language.

Selected Criteria. For the hard criteria, there
was an agreement to focus only on open-access
datasets and that concurrent or past shared tasks
for the same datasets are not an issue. Overall,
the sentiment determined the following selection
principles:

• We focus on diverse high-level tasks over
a single high-level task evaluated in-depth.
However, each high-level task should include
multiple datasets.

• We focus on clean datasets to avoid conflating
model mistakes and learned noise.

• We include a mix of high- and low-resource
datasets.

• We focus on data with interesting test sets.

• We should not focus on the quality of current
evaluation strategies for a given dataset.

• We prefer multi-reference datasets since those
have been shown to lead to more robust auto-
matic evaluation.

High-Level Tasks. Since these principles dic-
tate that we should focus on a small set of
high-level tasks, we used the free-text replies to
evaluate the interest in different high-level tasks.
Grouping the proposed tasks yielded the follow-
ing candidates: Summarization, Dialog, Simplifica-
tion/Compression, Question Answering, Creative
Writing, Data-to-Text, and Question Generation.5

There was a preference to exclude image inputs and
question answering because those tasks add com-
plexity to the evaluation beyond the generated text.
Moreover, since creative generation tasks like story
generation and poetry generation suffer even more
from inadequate evaluation approaches, there was
a consensus to not include them. There was, how-
ever, a strong preference for the high-level tasks
Summarization, Data-to-text, and Dialog.6

5For a full overview of potential future expansions and
challenges, we refer to the survey by Gatt and Krahmer (2018).

6One may question the absence of Translation from this list.
While it is a generation task, we excluded it since Translation
already has regular benchmarking efforts with WMT.

Specific Datasets. The final selection is shown
in Table 1. To arrive at the selection, we first
ranked all datasets by their average rating. For
this, we treated positive ratings as 1, negative rat-
ings as -1, and neutral ratings as 0. The highest-
ranked datasets were E2E with 0.577, XSum with
0.538, and ToTTo with 0.461. Unfortunately, non-
English datasets were ranked lower, with only
WebNLG and MLSum among the top 15 datasets.
We grouped all datasets by their high-level tasks
and selected a group that would not violate the se-
lection principles (e.g., only high-resource tasks).
If two datasets fit, we picked the one with a higher
interest rating. Among the 11 datasets, we have
18different languages, and the dataset sizes range
from 5,000 examples to 1.5M, with most datasets
between 50-150k examples. Two of them do not in-
clude English at all, which we hope reduces the de-
pendence of the modeling approaches on anglocen-
tric pretraining (Anastasopoulos and Neubig, 2020).
The high-level tasks include Dialog, Summariza-
tion, Data-to-Text, and Simplification. About half
of the datasets have multiple references and more
than half had post-processing steps applied to them
to ensure high data quality.

3.1 GEMifying the data
We produce data cards (Bender and Friedman,
2018; Gebru et al., 2018) for all data sets in GEM,
for which we developed an NLG-specific tem-
plate.7 In addition to describing the data itself,
the cards acknowledge potential limitations of a
dataset regarding its creation process and describe
its real-world use cases to ensure that the research
is conducted responsibly.

These datasets are the base selection, and as part
of GEM, we may change datasets and how they are
used. For example, we may improve the training
sets, make the test sets more challenging, or probe
for specific skills a model must exhibit with test-
only datasets (Perez-Beltrachini and Gardent, 2017;
Linzen, 2020; Ribeiro et al., 2020; Schlegel et al.,
2020). We may also ask to evaluate a single model
on multiple test sets, following the design by Dua
et al. (2019).

We are including modifications to several of the
datasets: (1) MLSum: We excluded all languages
besides Spanish and German since the sources for
other languages disallow scraping content. Addi-

7Our template extends and restructures that from Hugging
Face Datasets and along with a guide can be found at https:
//gem-benchmark.com/data_cards.

101



Challenge Set Type Example Tasks
Numerical Variation 53 ->79 WebNLG
Attribute Order English Cheap ->Cheap English All data-to-text tasks
Typographical Errors English Cheap ->Enlish Chesp Schema-Guided, WikiAuto, XSum
No Punctuation ... the dog. ->... the dog Schema-Guided, WikiAuto, XSum
Backtranslation fantastic ->toll ->great Schema-Guided, WikiAuto, XSum
Train & Validation Samples All tasks
Gender, Ethnicity, Nationality ToTTo
Input Shape WebNLG
Syntactic Complexity WikiAuto
Covid Summaries MLSUM (es+de), XSum

Table 2: An overview of the types of challenge sets for GEM. The first category are modifications to inputs of a
model, the second category identifies contrast sets which are subsets of the original test set, and the third describes
newly collected data.

tionally, we removed all duplicate items (i.e., items
with the same input text) and we used langdetect8

to filter out examples that were in the wrong lan-
guage. In total, 147 examples were removed from
the German portion (0.06%) and 7417 examples
were removed from the Spanish portion (2.5%). (2)
XSum: Summaries in this dataset often have diver-
gence issues between the source and target texts
since gold summaries are introductory sentences
prefacing each article. Models agnostic to such
noises are vulnerable to hallucinations (Wiseman
et al., 2017; Dhingra et al., 2019). To combat this,
we fine-tuned a BERT-based (Devlin et al., 2019)
classifier on 500 document and gold summary pairs,
manually annotated for faithfulness (Maynez et al.,
2020) and excluded all document-summary pairs
from the original XSum dataset where the classifier
was not confident (p(faithful) > 0.8) whether the
summary is faithful to the document or not. (3)
Schema-Guided Dialog: We are focusing on the
response-generation part of the dataset and thus
reformatted the dataset to treat the service agent
utterances as the targets to be generated and the
previous customer utterance and the agent’s dialog
act as the input. We additionally reformat the dia-
log acts to directly conform to the format described
in the paper (Kale and Rastogi, 2020). (4) Wik-
iLingua: We focus on the same five languages that
were benchmarked in its original release (en, es, ru,
tr, vi) in a cross-lingual setup in which the inputs
are in the respective language and the outputs are
in English. However, we re-split the original data
to avoid train-test overlaps between languages and
provide training data in 13 additional languages (as
shown in Table 1). For GEM, we allow submis-

8https://pypi.org/project/langdetect/

sions trained on any of the languages in isolation
or as part of a multilingual model.

3.2 Challenge Sets

In addition to applying consistent metrics to exist-
ing test sets, understanding specific model behavior,
such as model generalization capabilities or perfor-
mance under targeted cases, is also key for im-
provement. This is difficult to assess through evalu-
ations on i.i.d. test splits. We thus release challenge
sets to evaluate data-to-text and text-to-text models
(overview in Table 2). In addition to enabling a
more specific breakdown of how a model performs
in the presence of challenging inputs, the set of
system outputs on these test sets also constitutes a
rich corpus that enables further error analysis and
research. We apply multiple strategies to create the
special test sets, in particular (I) alteration of the
existing test sets (e.g., the introduction of distrac-
tors), (II) breaking down of the existing sets into
subsets with certain properties (e.g., subsets with
different complexity), and (III) the compilation of
new test sets (e.g., out-of-vocabulary inputs). We
restrict the size of each challenge set to about 500
examples to minimize computational overhead. On
the WebNLG challenge sets, all subset items are
selected proportionally from each category to en-
sure a similar distribution to the original set; on all
other datasets the subset items are selected from
the whole set. The results of the different systems
on these subsets will be compared to the results
obtained by the same systems on the same subsets
of the original test data.

For case (I), altering existing test sets, the
first challenge set adds numerical variation in
WebNLG. This variation attempts to respect the
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format of the current cardinal value (e.g. alpha,
integer, or floating-point) and replaces the exist-
ing value with a new random value as a means to
challenge existing trained models. The generated
number is lower-bounded between zero and upper
bounded to be within to the highest power of 10
unit for the given value (e.g. replacing a value of
54 would result in a random value between 0-100).
Floating values are also bounded to have the same
degree of precision as the input value. For structure-
to-text and dialog datasets, we produce a version
of the test sets in which the order of the compo-
nents of the input structures (triples, concepts, dia-
log acts, table rows, etc.) is randomly changed. For
text-to-text datasets and Schema-guided Dialog, we
introduce several types of perturbations: (a) typo-
graphical errors, using butter-fingers 9 with two
thresholds 0.02 and 0.05, which respectively cor-
respond to lower and higher error frequencies; (b)
removal of the final punctuation sign (if any); (c)
substitution of the input text by a backtranslated
version, using the backtranslation implementation
by Xie et al. (2020). We rejected backtranslation
outputs based on a character length to ensure that
the difference in character length between original
and backtranslation does not exceed 35% of the
original source character length. For XSum 99.8%
of the backtranslations were accepted, for Wiki-
Auto 94.42% (ASSET) and 87.18% (TURK), and
for Schema-Guided Dialog 78%.

In case (II), the breaking down existing sets, we
first provide for each dataset random samples of
training and validation data, in order to assess
to what extent the scores of the different systems
drop when run on the test data. Then, specific
splits are created for particular datasets, in order
to assess possible biases of the models, and their
robustness across inputs with different specifica-
tions. For ToTTo, test set splits are built according
to several aspects that can be identified using Wiki-
Data: gender, ethnicity and nationality grouped
by continent. For gender, we compare the per-
formance between male and female people, but
cannot compare other genders due to a lack of orig-
inal data - only seven people in the original test
set are marked as having a different gender. We
compare across the continent of the underlying
nationality to address the issue that data for each
country can be very sparse – i.e., only 19 coun-

9https://github.com/alexyorke/
butter-fingers

tries are represented by more than ten people and
only one of these is located in Africa (Kenya). In
case a person has citizenships across multiple con-
tinents, we may include the person in any of the
included continents. Finally, we compare African
Americans vs. all Americans. Ethnicity is very
sparsely annotated in WikiData with fewer than
150 annotated test examples in total and 128 of
these are African Americans. We thus are unable
to compare the performance on, e.g., Yoruba or
Punjabi people, both of which have fewer than five
instances. Another caveat here is that only 21 of
the 128 people are female. Our contrast subset that
can include any US citizens matches these counts.
Across all three challenge subsets, we additionally
match the fraction of the existing non-overlap and
overlap properties. For WebNLG, we propose sub-
sets based on the shape of the inputs (number of
triples, number of common subjects and/or objects,
depth, etc.) For Turk/ASSET, splits are created
in terms of the syntactic complexity of the sen-
tences to be simplified. To characterise sentence
complexity we use the developmental level scale
proposed by Covington et al. (2006).10 Although
Turk and ASSET contain similar input sentences,
the human references in Turk were created without
allowing sentence splits and ASSET was created
by encouraging annotators to split long sentences.
For all datasets, we propose splits based on the
frequency of the parts that compose the input in
the training data; the resulting test sets range from
being made of very common components to being
made only from components unseen in the training
data. For case (III), we collect time-shifted test
data for news summarization in the form of articles
with Covid19-related keywords. Since MLSum and
XSum were collected before the pandemic, we can
measure how a model responds to context not seen
in the training data (outside of potential pretrain-
ing). The new set of articles covers existing article
topics (economy, sports, etc.) but all in relation
to the Covid19 pandemic. In addition, some new
topics appear in the collected data derived from
outlet sections that were not part of the original
data collection.11

10We use the implementation provided by Lu (2010).
11To collect this data we use the scripts provided for the

re-creation of MLSum and XSum datasets.
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4 Experimental Setup

Since the GEM test sets and final metrics selec-
tion have not been released yet, we describe an
experimental setup that will ensure that participat-
ing models are trained correctly and evaluated on
publicly available data with available metrics that
will give a sufficient indication of a model’s perfor-
mance. To do this, we are reporting the results of
the baseline models on the validation sets.

4.1 Modeling Baselines

Much of the recent modeling progress in NLP can
be attributed to the rise of the pretrain-then-finetune
paradigm which has led to consistently better re-
sults. This finding is consistent with human judg-
ments for summarization, as shown by Fabbri et al.
(2020), among others. However, many of the tasks
included in GEM may not benefit from a language
model encoder since their input is not natural lan-
guage. We thus apply a variety of different archi-
tectures that vary in size, complexity, and train-
ing schema. Our main baselines are T5 with 60M
parameters (Raffel et al., 2020) and BART with
139M parameters (Lewis et al., 2020a). For non-
English datasets, we use their multilingual counter-
parts mT5 in various sizes (Xue et al., 2020) and
mBART (Liu et al., 2020b). We additionally train
the following baselines on a subset of tasks: TGen
(with added language model and lemma tags de-
noted as TGen+/++) (Dušek and Jurčíček, 2016b),
an architecture for generation from dialog acts, an
LSTM-based Sequence-to-sequence model with at-
tention (Bahdanau et al., 2015), DialoGPT (Zhang
et al., 2020c), a pretraining approach for conver-
sational models, and PEGASUS (Zhang et al.,
2020a), which uses a summarization-specific pre-
training schema that masks and predicts entire sen-
tences.For WikiLingua, we additionally report re-
sults on a setup proposed by Ladhak et al. (2020)
which includes first training a monolingual model
followed by finetuning with the correct source
language, coupled with synthetic data generated
through translation (mBART+).
Almost all baselines can be reproduced on a GPU-
based colaboratory notebook within 2-3 hours.

4.2 Automated Evaluation

As mentioned above, GEM provides a testbed for
automated metrics and can be used to popularize
newly developed ones. Thus, models are evaluated
via a constantly expanding list of metrics and, to

avoid overfitting to known metrics, we will use met-
rics on the test submissions that are not included in
this initial writeup. Consequentially, the baseline
results are an incomplete list which will be ex-
panded upon the announcement of the test metrics.
The set of metrics can be computed via the frame-
work described at https://gem-benchmark.
com/shared_task which comprises metrics in
the following categories:

Lexical Similarity. We include multiple “tra-
ditional” metrics as baseline metrics, notably
BLEU (Papineni et al., 2002), ROUGE-1/2/L (Lin,
2004), and METEOR (Banerjee and Lavie, 2005).
These metrics can often be gamed, for example,
ROUGE can be improved by increased the out-
put length of the model (Sun et al., 2019). More-
over, the reliability of these metrics depends on
the quality and number of the references (Mathur
et al., 2020a; Freitag et al., 2020). However, on a
system-level, they still correlate well with human
judgments for some tasks (Reiter, 2018).

Semantic Equivalence. More recently, metrics
that rely on pretrained language models have
shown improved correlations with human judg-
ments on the segment-level. We thus include
BERTScore (Zhang et al., 2020b), a metric based
on the similarity of sentence embeddings, and
BLEURT (Sellam et al., 2020), a metric that is
fine-tuned on human ratings. The reported baseline
results use RoBERTa-large (Liu et al., 2019) and
mBERT (Devlin et al., 2019) for BERTScore and
the English-only BLEURT-base-128 for BLEURT.

Probing for Faithfulness. Another approach
that has shown promise in summarization. The
approach relies on the insight that a reader of a
reference and generated summary should be able
to answer the same question, regardless of how the
summary is phrased. There has been much devel-
opment toward these QA-based approaches (Eyal
et al., 2019; Scialom et al., 2019; Durmus et al.,
2020; Wang et al., 2020, among others) and they
can provide an alternative angle to model evalua-
tion that does not highly correlate with other eval-
uation approaches (Fabbri et al., 2020). While
most related work on these metrics is limited to
summarization, we are evaluating systems using a
QA-based method called QuestEval (Scialom et al.,
2021) that supports all of our tasks.

In addition to QA-based evaluation, there have
also been related efforts to develop more fine-
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Dataset Model Metrics (Lexical Similarity and Semantic Equivalence)
METEOR ROUGE-1 ROUGE-2 ROUGE-L BLEU BERTScore BLEURT

CommonGen BART 0.301 63.5 32.5 55.1 27.5 0.943 -0.400
T5 0.291 64.0 29.4 54.5 26.4 0.942 -0.412

Czech Restaurant
mT5-small 0.229 47.3 28.6 43.0 17.9 0.895 –
mT5-base 0.23 48.1 28.8 44.2 17.1 0.898 –
mT5-large 0.233 51.3 30.0 46.4 17.5 0.902 –
mT5-XL 0.229 52.1 31.3 47.3 17.0 0.905 –
TGen 0.152 13.6 0.0 13.6 0.03 0.650 –
TGen+ 0.151 13.8 0.0 13.8 0.03 0.651 –
TGen++ 0.167 9.7 0.0 9.7 0.03 0.648 –

DART BART 0.107 7.1 0.0 7.1 0.02 0.862 -0.261
T5 0.115 8.4 0.0 8.4 0.02 0.901 -0.091

E2E clean
BART 0.373 73.6 48.5 57.8 43.5 0.948 0.190
LSTM 0.394 75.0 50.3 58.9 46.9 0.950 0.252
T5 0.369 72.6 47.5 56.4 43.0 0.945 0.384
TGen 0.391 74.7 49.6 58.4 46.0 0.949 0.412

MLSum (de) mBART 0.437 43.8 33.1 39.8 28.2 0.888 –
mT5-small 0.098 11.8 3.4 10.0 5.0 0.826 –
mT5-base 0.099 12.2 3.5 10.2 5.1 0.830 –
mT5-large 0.101 12.4 3.6 10.4 5.2 0.832 –
mT5-XL 0.102 12.6 3.7 10.5 5.3 0.832 –

MLSum (es) mBART 0.210 28.4 10.9 22.4 7.4 0.836 –
mT5-small 0.198 28.1 10.5 22.8 8.2 0.834 –
mT5-base 0.214 29.5 11.7 23.9 9.6 0.839 –
mT5-large 0.235 31.8 13.8 26.0 11.0 0.845 –
mT5-XL 0.247 33.1 15.0 27.2 11.9 0.849 –

Schema-Guided BART 0.089 13.6 4.4 11.3 2.7 0.691 -1.355
T5 0.331 58.2 36.8 52.6 33.4 0.874 0.009

ToTTo T5 0.363 70.1 48.3 60.1 42.2 0.914 0.179

XSum PEGASUS 0.216 46.5 23.2 38.1 17.0 0.918 -0.186

WebNLG (en) mBART 0.462 83.4 63.1 70.3 66.1 0.967 0.458
mT5-small 0.442 78.8 59.2 67.2 60.2 0.948 0.416
mT5-base 0.461 82.3 62.1 69.7 65.2 0.955 0.451
mT5-large 0.473 83.8 64.4 71.6 68.0 0.959 0.479
mT5-XL 0.472 83.5 63.6 71.0 67.6 0.958 0.47

WebNLG (ru) mBART 0.613 34.8 13.4 33.0 47.0 0.888 –
mT5-small 0.553 29.7 10.5 28.4 41.1 0.942 –
mT5-base 0.602 33.0 12.7 31.3 44.3 0.949 –
mT5-large 0.614 33.4 13.4 32.1 46.4 0.952 –
mT5-XL 0.624 34.3 13.7 32.8 47.2 0.952 –

Turk BART 0.556 90.3 86.1 89.9 88.3 0.967 0.358
T5 0.649 95.7 92.9 95.5 95.1 0.974 0.495

ASSET BART 0.560 90.1 82.3 89.6 92.4 0.982 0.407
T5 0.581 92.1 92.3 92.6 93.4 0.984 0.468

WikiLingua (es→en) mBART 0.178 38.3 15.4 32.4 12.2 0.853 -0.290
mBART+ 0.196 40.7 16.9 34.1 14.3 0.858 -0.248
mT5-small 0.135 29.8 9.8 25.5 7.4 0.832 -0.437
mT5-base 0.162 36.3 13.7 30.6 10.1 0.85 -0.324
mT5-large 0.183 39.3 15.7 33.0 12.5 0.857 -0.27
mT5-XL 0.203 41.8 17.4 34.7 15.2 0.862 -0.218

WikiLingua (ru→en) mBART 0.153 33.1 11.9 27.8 9.3 0.839 -0.369
mBART+ 0.174 37.3 14.9 31.9 12.0 0.851 -0.303
mT5-small 0.128 27.2 8.5 23.2 6.9 0.825 -0.471
mT5-base 0.149 32.5 11.1 26.9 8.8 0.839 -0.377
mT5-large 0.167 35.0 12.7 28.8 11.0 0.846 -0.337
mT5-XL 0.185 38.6 15.4 32.3 13.6 0.855 -0.268

WikiLingua (tr→en) mBART 0.164 34.4 13.0 28.1 11.7 0.837 -0.414
mBART+ 0.204 43.7 20.8 37.9 17.5 0.866 -0.252
mT5-small 0.154 29.4 10.9 23.4 13.0 0.823 -0.595
mT5-base 0.168 32.5 13.6 26.0 15.5 0.834 -0.507
mT5-large 0.185 36.2 15.0 29.1 16.9 0.846 -0.405
mT5-XL 0.208 41.5 19.6 34.7 19.9 0.86 -0.291

WikiLingua (vi→en) mBART 0.150 32.0 11.1 26.4 9.2 0.836 -0.394
mBART+ 0.183 38.1 15.4 32.5 13.3 0.853 -0.284
mT5-small 0.12 23.5 6.0 19.0 6.1 0.812 -0.56
mT5-base 0.129 26.0 7.5 20.5 7.4 0.82 -0.513
mT5-large 0.146 29.9 9.6 23.8 9.2 0.833 -0.421
mT5-XL 0.173 35.5 13.0 29.2 12.4 0.847 -0.308

Table 3: The set of baseline results we release alongside GEM with a focus on reference-based evaluation.
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Dataset Model Metrics (Diversity and System Characterization)
MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2 |V| Output Len.

CommonGen BART 0.57 0.12 0.41 7.1 10.7 583 2.7k 1.2k 10.5
T5 0.51 0.11 0.36 6.5 10.1 465 2.0k 1.0k 9.6

Czech Restaurant
mT5-small 0.51 0.04 0.1 6.2 7.8 86 278 287 10.2
mT5-base 0.49 0.03 0.09 6.1 7.6 80 249 273 10.5
mT5-large 0.57 0.05 0.13 6.6 8.4 103 387 361 10.1
mT5-XL 0.6 0.06 0.19 6.8 9.0 146 614 438 9.5
TGen 0.57 0.03 0.11 6.4 8.0 58 239 245 9.1
TGen+ 0.61 0.04 0.12 6.5 8.1 84 290 305 9.2
TGen++ 0.56 0.04 0.11 6.5 8.1 85 280 297 9.5

DART BART 0.55 0.19 0.45 8.4 11.3 1.3k 3.6k 2.4k 12.0
T5 0.51 0.19 0.42 8.0 10.7 1.2k 3.1k 2.1k 10.8

E2E clean
BART 0.32 0.005 0.02 5.7 7.2 16 104 149 22.0
LSTM 0.31 0.004 0.02 5.6 7.1 19 106 139 23.1
T5 0.30 0.004 0.01 5.6 6.9 7 60 125 23.0
TGen 0.31 0.004 0.02 5.6 7.2 19 116 140 23.2

MLSum (de) mBART 0.78 0.11 0.52 10.6 16.3 27k 166k 46k 35.7
mT5-small 0.75 0.12 0.52 10.4 15.8 20.1k 113.8k 33.6k 24.7
mT5-base 0.76 0.12 0.53 10.4 15.8 20.2k 113.0k 33.3k 24.2
mT5-large 0.76 0.12 0.53 10.4 15.8 20.0k 114.0k 33.3k 24.4
mT5-XL 0.77 0.12 0.53 10.4 15.8 20.0k 114.6k 33.3k 24.5

MLSum (es) mBART 0.71 0.10 0.47 10.1 15.7 19k 120k 35k 32.3
mT5-small 0.69 0.12 0.48 10.0 15.1 14.0k 77.6k 25.5k 21.7
mT5-base 0.71 0.12 0.5 10.1 15.3 15.1k 85.2k 27.2k 23.0
mT5-large 0.71 0.12 0.5 10.1 15.3 14.9k 82.0k 26.6k 22.1
mT5-XL 0.72 0.12 0.5 10.1 15.3 14.8k 80.5k 26.1k 21.4

Schema-Guided BART 0.56 0.02 0.06 7.0 9.2 1.8k 6.2k 3.9k 22.0
T5 0.67 0.03 0.10 7.9 10.6 1.6k 5.8k 3.8k 11.8

ToTTo T5 0.73 0.18 0.54 10.1 14.4 15k 60k 21k 15.3

XSum PEGASUS 0.73 0.20 0.64 9.3 13.1 3.0k 13k 5k 22.9

WebNLG (en) mBART 0.53 0.09 0.27 8.6 11.8 969 4.0k 3.2k 20.7
mT5-small 0.5 0.09 0.25 8.6 11.8 864 3.9k 3.2k 22.7
mT5-base 0.53 0.09 0.27 8.7 11.9 983 4.4k 3.3k 21.7
mT5-large 0.54 0.09 0.29 8.7 12.0 1.1k 4.8k 3.4k 21.7
mT5-XL 0.54 0.09 0.29 8.7 12.0 1.1k 4.8k 3.4k 21.6

WebNLG (ru) mBART 0.46 0.08 0.20 8.1 10.3 334 1.1k 1.2k 18.9
mT5-small 0.43 0.08 0.20 7.9 10.2 349 1.2k 1.2k 19.2
mT5-base 0.47 0.09 0.23 8.2 10.7 482 1.6k 1.4k 19.9
mT5-large 0.48 0.09 0.24 8.2 10.7 474 1.6k 1.4k 19.4
mT5-XL 0.46 0.09 0.22 8.2 10.5 418 1.4k 1.3k 19.5

Turk BART 0.73 0.23 0.74 9.8 14.1 5.5k 23k 8.6k 18.4
T5 0.73 0.22 0.72 9.9 14.2 5.9k 25k 9.3k 20.1

ASSET BART 0.73 0.23 0.73 9.8 14.1 5.9k 24k 9.1k 20.1
T5 0.73 0.22 0.72 9.9 14.2 5.9k 26k 9.4k 21.3

WikiLingua (es→en) mBART 0.55 0.03 0.19 8.8 14.0 4.7k 63k 15k 29.4
mBART+ 0.58 0.03 0.21 9.1 14.5 5.9k 83k 18k 32.5
mT5-small 0.39 0.03 0.15 8.3 12.8 2.3k 20.9k 8.2k 31.8
mT5-base 0.52 0.04 0.23 8.7 13.7 3.5k 34.4k 10.3k 28.7
mT5-large 0.57 0.04 0.26 8.9 14.0 4.2k 44.4k 11.7k 30.8
mT5-XL 0.6 0.04 0.29 9.1 14.4 5.0k 57.7k 13.5k 34.7

WikiLingua (ru→en) mBART 0.54 0.04 0.20 8.5 13.3 2.8k 28k 8.7k 27.3
mBART+ 0.55 0.04 0.23 8.8 13.7 3.5k 35k 10k 28.4
mT5-small 0.4 0.04 0.19 8.2 12.6 1.5k 11.6k 5.5k 31.8
mT5-base 0.55 0.06 0.3 8.6 13.4 2.5k 21.0k 7.1k 28.7
mT5-large 0.59 0.06 0.32 8.7 13.6 3.0k 26.1k 7.9k 31.1
mT5-XL 0.6 0.07 0.35 8.8 13.8 3.4k 29.0k 8.5k 31.4

WikiLingua (tr→en) mBART 0.45 0.08 0.28 7.7 11.2 743 4.1k 2.1k 34.2
mBART+ 0.52 0.12 0.38 8.0 11.9 1.2k 6.1k 2.8k 30.7
mT5-small 0.55 0.14 0.46 8.1 11.6 935 4.4k 2.1k 40.2
mT5-base 0.59 0.16 0.51 8.2 11.9 1.0k 4.8k 2.2k 38.7
mT5-large 0.58 0.16 0.5 8.1 11.8 1.0k 4.7k 2.2k 38.0
mT5-XL 0.58 0.16 0.51 8.2 11.8 1.0k 4.7k 2.1k 36.8

WikiLingua (vi→en) mBART 0.54 0.07 0.28 8.2 12.3 1.5k 9.3k 4.0k 26.9
mBART+ 0.54 0.08 0.33 8.6 12.9 2.1k 13k 5.3k 29.8
mT5-small 0.5 0.09 0.33 8.2 12.1 1.2k 6.4k 3.1k 32.9
mT5-base 0.58 0.12 0.43 8.4 12.6 1.6k 8.9k 3.7k 31.1
mT5-large 0.6 0.12 0.45 8.5 12.7 1.7k 9.3k 3.8k 30.7
mT5-XL 0.61 0.12 0.47 8.6 12.9 1.8k 10.2k 4.0k 31.5

Table 4: Results of the baseline results we release with GEM, focusing on diversity of the outputs and neutral
system characterizations.
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Figure 2: A screenshot of the interactive result exploration tool. [Top Left] The selection of tasks, task-groups, or
individual submissions. [Top Right] The selection of metric-groups or metrics [Bottom] The parallel coordinates
visualization of the selection. The selection here can be filtered by brushing over a section of an individual metric,
as is shown here for BLEURT. Hovering over a line presents detailed information of the particular submission.

grained and interpretable evaluation metrics, for ex-
ample to measure consistency in data-to-text prob-
lems (Opitz and Frank, 2020; Dhingra et al., 2019).
We are using one such metric called NUBIA (Kane
et al., 2020), the NeUral Based Interchangeability
Assessor, which combines multiple measures such
as entailment and similarity into a decomposable
and interpretable score.

Diversity. As argued by Hashimoto et al. (2019)
among many others, NLG models intrinsically
trade off diversity and quality. A model can pro-
duce more diverse outputs through sampling but at
the cost of output quality. To account for this as-
pect, we compute multiple diversity metrics, start-
ing with those proposed for the analysis of the re-
sults of the E2E NLG challenge (Dusek et al., 2020)
and by van Miltenburg et al. (2018). These include
the Shannon Entropy (Shannon and Weaver, 1963)
over unigrams and bigrams (H1, H2), the mean
segmented type token ratio over segment lengths
of 100 (MSTTR, Johnson, 1944), the ratio of dis-
tinct n-grams over the total number of n-grams
(Distinct1,2), and the count of n-grams that only ap-
pear once across the entire test output (Unique1,2,
Li et al., 2016).

System Characterization. The final section of
metrics will characterize the systems. While the

focus of this section will be on qualitative descrip-
tions through model cards, we also gather quantita-
tive information that is not necessarily associated
with a judgment. As part of this, we collect the
number of parameters of a system, as suggested
by Ethayarajh and Jurafsky (2020). For each task,
we additionally report the vocabulary size over the
output (|V|) and the mean output length of a sys-
tem (Sun et al., 2019).

5 Results

One of the central aims of GEM is to measure
the progress in NLG without misrepresenting the
complex interactions between the sometimes con-
tradicting measures. We thus will not distill the
complex interplay of the data, metrics, and model
outputs into a single number or statement, and
we do not present results in a traditional leader-
board. Instead, we developed an interactive result
exploration system that allows analyses of model
results, and which we describe in this section. To
further motivate this change, consider the follow-
ing conclusion someone may draw from looking at
a leaderboard:

System Foo performs the best.

Our interactive system aims to enable more nu-
anced statements such as:
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System Foo leads to consistent perfor-
mance increases in Bar-type metrics on
challenges that measure Baz while main-
taining equal performance on most met-
rics of type Qux.

A screenshot of our system is presented in Fig-
ure 2.12 In addition, our baseline results are pre-
sented in a tabular view in Tables 3 and 4. Our
interactive system is centered around a parallel co-
ordinates plot (Inselberg, 1985) which shows all
results as lines through parallel axes. Every line
intersects the axes at the corresponding mapped
value. For instance, see the red line representing
the results for task “ToTTo” of baseline “t5-small”.
Filters can be applied along axes (see BLEURT
axis in Figure 2) and the filtered selection is high-
lighted through bold lines. A selection can be a set
of metrics, systems, or tasks. This style of presenta-
tion has not been used before for a benchmark. The
closest prior work is by Fu et al. (2020) for named-
entity recognition which allows similar filtering
and sorting, but presents the results in a table.

However, the parallel coordinates approach can
scale to a much greater number of metrics than a
table. Moreover, by using a parallel coordinates
plot instead of a table, it is easy to spot patterns that
span multiple metrics, systems, or tasks. For exam-
ple, the highlighted line in Figure 2 uncovers that,
for the T5 baseline on ToTTo, the diversity metrics
score higher than other systems while scoring lower
on reference-based metrics. Since we only have
a single baseline for ToTTo, it is unclear whether
this difference can be attributed to the dataset or
the system but this relationship will be uncovered
once we receive submissions.

The final system will additionally be able to
display the model cards and other related meta-
information associated with submissions. It will
also be able to show (and compare) exemplary out-
puts for each test set. Those two features will im-
prove the transparency of the results and systems
to those who are not familiar with a task and pro-
vide necessary information to those who consider
using a particular system. The combination of all
components will enable analysis on quantitative,
individual, and qualitative level which can support
formulating new research hypotheses and gather
in-depth insights about system performance. For
example, the functionality to compare human anno-

12An initial version showcasing our baseline results is de-
ployed on our website.

tation and automatic measures could lead to a better
understanding how fluency affect BERTScore.

In addition to the interactive self-directed result
exploration, our shared task features an evaluation
and analysis part. Instead of dictating the interpre-
tation of the modeling shared task results, we will
release all system outputs and metrics in this sec-
ond part and participants of this part may run their
own evaluation and conduct interesting analyses.

6 Submitting to the benchmark

While we ask submitters to try to cover as many
tasks as possible, we acknowledge potential restric-
tions on computation resources. We thus do not
require that a submissions to GEM has to include
predictions on every included test and challenge
sets. All predictions from a model should be for-
matted and added into a single file as outlined on
our website.

In addition, we require every submitter to answer
a series of questions that we will use to construct a
model card (Mitchell et al., 2019) and externalize
potential concerns regarding the social impact of
a model and its use, or its training data. The card
will additionally display information to replicate
the experiments. While we require responses to
these questions at submission time, we allow the
information about a model to remain anonymous
during required anonymization periods should a
paper describing the model be under submission
elsewhere. All submitted model outputs will be
made publicly available for download.

After a submission, we will run the evaluation
suite on the submitted outputs and additionally col-
lect human annotations.

Human Evaluation GEM will be used to de-
velop reproducible and consistent human evalua-
tion strategies for generated text. This task involves
selecting and defining which quantities of the gen-
erated text should be measured, developing annota-
tion schemes and rater guidelines to capture these
quantities accurately, and infrastructure to annotate
system outputs.

We aim to develop these setups for all task setups
such as summarization, dialogue, simplification,
and data-to-text. To approach this task, we will fol-
low the recently proposed taxonomy of human eval-
uation measures by Belz et al. (2020) and follow
the reporting strategies proposed by Howcroft et al.
(2020). The detailed setups will be described in a
evaluation datasheet (Shimorina and Belz, 2021).
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All shared task participants will be asked to pro-
vide gold annotations on system outputs, which we
will then use to evaluate the consistency of crowd-
sourced annotations.13

7 Next Steps

This section lists the currently active developments
and the long-term steps we will take to ensure that
GEM will continue to evolve and improve.

7.1 Collecting more multilingual data

Many of the initial datasets in GEM are focused on
(American or British) English; we see this release
as a starting point for the collection of new datasets
to improve the inclusiveness of other languages and
cultures. From the task point of view, to ensure the
longevity of the dataset, we want it to be practical
and socially beneficial. Through GEM, we have
developed a set of desired criteria for NLG datasets
and we aim to apply this knowledge to data col-
lection and actively work toward reducing the dis-
parity in data availability between languages (Joshi
et al., 2020). To this end, we are focusing on a
task that requires content selection, planning, and
surface realization along in a grounded scenario.
The idea is in the prototyping stage with prospects
broadly towards dialog response generation and
topic summarization in multiple languages. We
plan to do so by collaborating with speakers of
low-resourced languages through a participatory
research approach, as suggested by (∀ et al., 2020).
Toward this goal, GEM welcomes anyone inter-
ested in collaborating on this effort.

7.2 Personalizing and Controlling NLG

GEM currently focuses on tasks that deterministi-
cally transform an input into an output. With the
increasing use of NLG models in real-world appli-
cations, how to enable and evaluate personalized
NLG systems (e.g., in dialect or formality) remains
challenging. Several related tasks have been pro-
posed, for example, the transfer of writing style
from informal to formal (Rao and Tetreault, 2018),
personalization of machine translation systems to
align with particular personal traits (Mirkin and
Meunier, 2015), or persona-guided response gen-
eration of dialogue systems (Zhang et al., 2018).
We envision our framework to be extended (e.g.,

13This approach has been successfully used by WMT
for many years. See, e.g., http://www.statmt.org/
wmt20/translation-task.html.

dataset, evaluation) to incorporate this line of user-
focused NLG.

7.3 Regular updates to the living benchmark

To activate the benefits of a living benchmark that
is focused on evaluation, we commit to regular up-
dates for GEM. We invite contributions in the form
of model outputs, analyses, and metrics at any time
and will automatically update the results presented
on our website to incorporate them. For the updates
to the dataset selection, we want to consider the
input of the wider NLG research community. To do
so, we will set up a yearly selection process similar
to the one described in Section 3. The first update
process will be run after the GEM workshop at
ACL 2021. To be able to have a robust comparison
between different versions of GEM, we will only
replace a small subset of datasets at a time.

8 Conclusion

In this paper, we have introduced GEM, a living
natural language generation benchmark with a fo-
cus on evaluation. While GEM does not claim to
instantly solve all issues of benchmarks in NLG,
we aim to provide an environment in which systems
can be tested in a principled manner and which can
elevate the prominence of interesting evaluation ap-
proaches. By providing a testbed to easily conduct
experiments across many datasets and evaluate in a
repeatable, consistent, and more interpretable way,
we will be able to track progress toward the goals
in NLG research much more clearly. Moreover, we
will be able to extend and shape GEM in the future
to include more multilingual datasets, which will
assist in their adoption across the wider research
community.

9 Contribution Statements

GEM is a large effort with a decentralized organi-
zation that is split into different task-specific sub-
groups. To acknowledge everyone’s contribution,
we list the contribution statements below for all
groups.

Steering Committee. Antoine Bosselut, Esin
Durmus, Varun Prashant Gangal, Sebastian
Gehrmann, Laura Perez-Beltrachini, Samira
Shaikh, and Wei Xu make up the steering com-
mittee. Sebastian Gehrmann coordinates and leads
the GEM effort. All others provide feedback and
discuss larger decisions regarding the direction of
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GEM and act as conference organizers for the ACL
2021 workshop.

Summarization. The summarization group
members are Chris Emezue, Esin Durmus, Faisal
Ladhak, Jiawei Zhou, Juan Diego Rodriguez,
Kaustubh Dhole, Khyathi Chandu, Laura Perez,
Pawan Sasanka Ammanamanchi, Pedro Henrique
Martins, Rubungo Andre Niyongabo, Shashi
Narayan, Vikas Raunak, and Yufang Hou. Pedro
Henrique Martins organized the group and wrote
the data statement for the MLSum dataset. Pawan
Sasanka Ammanamanchi was responsible for
the XSum data statement, while Vikas Raunak
worked on the Wikilingua statement. Shashi
Narayan prepared the GEM version of the XSum
dataset and trained its baseline models. Juan
Diego Rodriguez was responsible for cleaning the
MLSum dataset and trained its baseline models.
Faisal Ladhak was responsible for the Wikilingua
baseline models. Rubungo Andre Niyongabo
participated in the discussions and added related
papers to the planning document.

Dialog. Sashank Santhanam, Samira Shaikh,
Bodhisattwa Prasad Majumder, Harsh Jhamtani,
Yangfeng Ji, Tosin Adewumi, and Wanyu Du are
part of this group. Tosin Adewumi contributed
code for DialoGPT, and Wanyu Du trained base-
lines for Schema-Guided Dialog. Harsh Jhamtani
wrote the data card for Wizards of Wikipedia.

Data2Text. Ondrej Dusek wrote the data cards
for E2E NLG and Czech Restaurants data and a
TF loader for Czech Restaurants. He also sup-
plied baseline outputs for E2E, Czech Restaurants,
and WebNLG. Sebastian Gehrmann supplied base-
line outputs for E2E, WebNLG, and CommonGen.
Yacine Jernite wrote the data card for CommonGen
and the Hugging Face loaders for Czech Restau-
rants and WebNLG. Teven Le Scao wrote the Hug-
ging Face loader for E2E. Simon Mille and Anasta-
sia Shimorina wrote the data card for WebNLG.

Table2Text. Varun Gangal and Miruna Clinciu
are part of this group. Miruna Clinciu was respon-
sible primarily for DART and Varun Gangal for
ToTTo while maintaining a close correspondence
and understanding between them to ensure all steps,
such as code structure, preprocessing primitives,
baselines were as uniform as possible.

Simplification. Dhruv Kumar, Mounica Mad-
dela, and Wei Xu contributed to the GEM Simpli-

fication task. Dhruv Kumar created the data cards
for the datasets, added Wiki-Auto and Turk/ASSET
datasets to TFDS, and integrated the SARI metric
(Xu et al., 2016) into the GEM evaluation frame-
work. Mounica Maddela created baselines for the
task and added the Turk benchmark corpus to Hug-
ging Face and TFDS. Wei Xu helped in the organi-
zation and planning of the task setup.

Automated Evaluation. Ondrej Dusek wrote
the base code and included BLEU, Meteor,
ROUGE, and referenceless metrics (the latter based
on code supplied by Emiel van Miltenburg). He
also prepared reference sets for E2E, Czech Restau-
rants and WebNLG. Sebastian Gehrman included
BLEURT and BERTScore and prepared the ref-
erence sets. Dhruv Kumar included SARI and
adapted the code for source-based metrics. Nishant
Subramani helped with code refactoring. Miruna
Clinciu , Emiel van Miltenburg and Thibault Sel-
lam provided feedback and participated in discus-
sions.

Human Evaluation. Samira Shaikh was the
point of contact for this working group. She led the
discussions to make progress on the group goals.
She also worked with the group to select the gen-
eral evaluation criteria as well as the criteria for
dialogue and simplification tasks. Khyathi Chandu
and Miruna Clinciu worked on selecting evaluation
criteria for the summarization task and participated
in the group discussions. Simon Mille provided
support on using the criteria taxonomy and the an-
notated evaluation sheets for selecting and defining
the criteria to use; worked on selecting the D2T
criteria. Vitaly Nikolaev and Sashank Santhanam
worked on selecting evaluation criteria for dialog
and simplification tasks. João Sedoc worked with
the group to select the evaluation criteria in general
as well as the specific ones for dialog and simplifi-
cation. He also helped to select among annotation
interfaces. Anastasia Shimorina worked with the
group to select the evaluation criteria and partici-
pated in the discussions. Chris Emezue, Sebastian
Gehrmann, Khyati Mahajan, and Yufang Hou par-
ticipated in discussions.

Website and Submission System. Aman
Madaan, Moin Nadeem, Hendrik Strobelt, and Se-
bastian Gehrmann are part of this group. Sebastian
Gehrmann developed the website. Aman Madaan
wrote the initial version of the result presentation.
Hendrik Strobelt leads the visualization effort for
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interactive exploration of results.

Model Infrastructure. Yacine Jernite wrote the
initial script template for evaluating and fine-tuning
Hugging Face models with the CommonGen exam-
ple. Sebastian Gehrmann generalized the script to
work with other datasets. Tosin Adewumi wrote a
script for fine-tuning the DialoGPT model for dia-
logue datasets. Juan Diego Rodriguez worked on
the infrastructure to fine-tune mBART on MLSum.
Mihir Kale trained all mT5 baselines.

Data and Model Sheets and Statements. Sa-
lomey Osei, Pawan Sasanka Ammanamanchi, Juan
Diego Rodriguez, Sebastian Gehrmann, Yacine Jer-
nite, and Angelina McMillan-Major are part of this
group. The Data Sheet structure was adapted from
a combination of designs created for the Hugging
Face Datasets library by Angelina McMillan-Major
and Yacine Jernite and one written by Sebastian
Gehrmann. Juan Diego Rodriguez and Yacine Jer-
nite wrote initial statements for ASSET and Com-
monGen respectively. The feedback on those was
used to improve the structure of the final template.
Everyone contributed to the model card template.

Challenge Sets. Simon Mille, Emiel van Mil-
tenburg, Kaustubh Dhole, Varun Prashant Gan-
gal, Saad Mahamood, and Laura Perez-Beltrachini
proposed and discussed ideas of interest for the
data-to-text and the text-to-text tasks. Simon Mille
coordinated the group. Emiel van Miltenburg,
Saad Mahamood, and Simon Mille worked on the
creation of the data-to-text datasets, while Varun
Prashant Gangal, Kaustubh Dhole and Laura Perez-
Beltrachini worked on the text-to-text datasets. Se-
bastian Gehrmann contributed the ToTTo challenge
set.

Crowdsourcing New Data. Chris Emezue,
Rubungo Andre Niyongabo, Aremu Anuoluwapo,
Khyathi Chandu, Yufang Hou, Samira Shaikh,
Varun Prashant Gangal, and Dimitra Gkatzia are
members of this group. Khyathi Chandu worked on
identifying where the current datasets fall short to
motivate the crowdsourcing of data for a new task.
Based on the suggestions from collaborators, she
wrote two task proposals in the domains of long-
form text, conversations, and data-to-text that ad-
dress an array of challenges in generation and easily
scale to multiple languages. Samira Shaikh partici-
pated in the discussions and gave feedback on the
task proposals in the pilot study phase. Dimitra

Gkatzia looked into potential resources for crowd-
sourcing. Chris Emezue and Rubungo Andre Niy-
ongabo explored potential low-resource African
languages for crowdsourcing. We are in the pro-
cess of piloting the tasks internally.

The authors of this paper not named in the groups
participated in initial discussions, participated in
the surveys, and provided regular feedback and
guidance. Many participants commented on and
helped write this paper. We additionally thank all
participants of INLG 2019, the Generation Birds-
of-a-Feather meeting at ACL 2020, the EvalNL-
GEval Workshop at INLG 2020, and members of
the generation challenge mailing list of SIGGEN
for their participation in the discussions that in-
spired and influenced the creation of GEM.
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Participants were required to provide information
for the following categories when suggesting a
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1. Dataset Name
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The following datasets were proposed to be in-
cluded in GEM.

1. Alex Context NLG (Dušek and Jurcıcek,
2016; Dušek and Jurčíček, 2016a)
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14. Mimic and Rephrase (Dieter et al., 2019)

15. MLSUM (Scialom et al., 2020)

16. MSR Abstractive Text Compres-
sion (Toutanova et al., 2016)

17. MultiWOZ 2.2 (Zang et al., 2020)

18. NarrativeQA (Kočiskỳ et al., 2018)

19. PersonaChat (Zhang et al., 2018)

20. PubMed, Arxiv (Kedzie et al., 2018; Cohan
et al., 2018)

21. ROTOWIRE/MLB (Wiseman et al., 2017;
Puduppully et al., 2019)

14https://www.kaggle.com/shishu1421/hindi-poetry-
dataset
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22. Schema-Guided Dialogue (Rastogi et al.,
2020)

23. SQUAD Question Generation (Du et al.,
2017)

24. SR’11, SR’18, SR’19 (Belz et al., 2011; Mille
et al., 2018, 2019)

25. ToTTo (Parikh et al., 2020)

26. Ubuntu Dialogue Generation (Lowe et al.,
2015)

27. Visual Question Generation (Shukla et al.,
2019; Li et al., 2018)

28. WebNLG (Gardent et al., 2017)

29. WikiAuto + Turk/ASSET (Jiang et al., 2020;
Xu et al., 2016; Alva-Manchego et al., 2020)

30. WikiBio (Lebret et al., 2016)

31. WikiSum (Liu et al., 2018)

32. Wizard of Wikipedia (Dinan et al., 2019)

33. Writing Prompts (Fan et al., 2018)

34. XSum (Narayan et al., 2018)

35. WikiLingua (Ladhak et al., 2020)

C Task and Criteria Selection Survey

As part of our selection process, we queried all
GEM members about the utility of tasks and selec-
tion criteria. The questions below were included in
the survey.

• For each suggested task, “Should this task be
included in GEM?” on a 5-point Likert scale
(1 being strongly against, and 5 strongly in
favor).

• We should exclude tasks that are the focus of
a shared task in 2021. [yes/no]

• We should exclude tasks that were the focus
of a shared task since 2020. [yes/no]

• We should exclude tasks that were ever part
of a shared task. [yes/no]

• We should exclude datasets that require paid-
for licenses (e.g., LDC or ELRA). [yes/no]

• We should exclude datasets that are not freely
available for download. [yes/no]

• We should exclude tasks that require encod-
ing anything but text (e.g., images or graphs).
[yes/no]

• We should include # tasks in GEM. [10 points
ranging from 2 to 20]

• X% of the tasks should feature non-English
language(s). [10 points ranging from 10 to
100%]

• Diversity of tasks is more important than fo-
cus on an NLG task (by including multiple
datasets for the same task). [10 points from
Diversity is more important to Focus is more
important]

• We should include noisy and clean datasets.
[10 points from only noisy to only clean]

• We should include low- and high-resource
datasets. [10 points from only low-resource to
only high-resource]

• We should prefer tasks with non-iid test sets
or specific challenge sets. [5-Likert scale from
not important to very important]

• We should prefer tasks with test sets with mul-
tiple references. [5-Likert scale from not im-
portant to very important]

• If we include an NLG task (e.g., simplification
or data2text), we need multiple datasets for
that task. [5-Likert scale from not important
to very important]

• We should include a set of tasks with no clear
evaluation strategy. [5-Likert scale from not
important to very important]

• We should focus on tasks with reliable auto-
matic metrics. [5-Likert scale from not impor-
tant to very important]
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Abstract

Developing documentation guidelines and
easy-to-use templates for datasets and models
is a challenging task, especially given the vari-
ety of backgrounds, skills, and incentives of
the people involved in the building of natu-
ral language processing (NLP) tools. Never-
theless, the adoption of standard documenta-
tion practices across the field of NLP promotes
more accessible and detailed descriptions of
NLP datasets and models, while supporting re-
searchers and developers in reflecting on their
work. To help with the standardization of doc-
umentation, we present two case studies of ef-
forts that aim to develop reusable documenta-
tion templates – the HuggingFace data card,
a general purpose card for datasets in NLP,
and the GEM benchmark data and model cards
with a focus on natural language generation.
We describe our process for developing these
templates, including the identification of rel-
evant stakeholder groups, the definition of a
set of guiding principles, the use of existing
templates as our foundation, and iterative revi-
sions based on feedback.

1 Introduction

Dataset and model documentation is a necessary
step in identifying potential issues with machine
learning (ML) systems and addressing their broader
impacts (Gebru et al., 2018, 2020; Bender and
Friedman, 2018, among others). In their overview
of data collection and use in ML, Paullada et al.
(2020) identify issues that have frequently arisen
such as considerations for how subjects are repre-
sented in datasets, spurious cues that may be ex-
ploited by ML model, and concerns about the con-
tent in datasets collected through crawling method-
ologies. They advocate for careful documentation

of datasets and their collection processes in order to
surface these problems. However, best practices for
documentation have seen no widespread adoption
even for the most popular datasets and models. In-
deed, writing such detailed documentation requires
additional effort from researchers who may lack
the required resources or familiarity with the pro-
cess. Providing dataset and model creators with
guidelines and several examples in a single place to
inspire and inform prospective writers could thus
drive widespread adoption of documentation.

Research efforts that involve a large number
of models or datasets are particularly well posi-
tioned to develop and maintain specific guidelines
and best practices by making documentation a re-
quired component for submitting contributions. By
bringing together the domain expertise of partici-
pants and the experience of researchers who have
a greater familiarity with documenting data and
models, these efforts provide an opportunity to de-
velop and refine templates that balance generality
and informativeness. In addition, by requiring ap-
propriate documentation for any involved model
or dataset, these efforts can set a precedent that in-
forms future endeavours. We encourage organiza-
tions to consider their role in the successful uptake
of documentation practices, such as providing their
members with adequate resources to understand
the goals and motivations of documentation and
measured steps towards integrating documentation
into current research norms.

In this paper, we present two case studies of
creating documentation templates and guides in
natural language processing (NLP): the Hugging
Face (HF) dataset hub1 and the benchmark for Gen-

1https://hf.co/datasets/card-guide
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eration and its Evaluation and Metrics (GEM).2 We
use the term data card to refer to documentation
for datasets in both cases and the term model card
to refer to documentation for models in the GEM
workshop, following Mitchell et al. (2019). Fo-
cusing on these settings allows us to ground what
constitutes ‘good’ documentation in these contexts,
namely technical user-oriented information, scien-
tific reproducibility, and social contextualization of
data and data-driven systems.

2 Related Work

In the U.S., research involving direct interventions
on human subjects is subject to the Federal Policy
for the Protection of Human Subjects (or Com-
mon Rule).3 This policy tasks institutional review
boards (IRBs) with certifying that such research fol-
lows established ethical standards and regulations.
While this review is sometimes decried as cum-
bersome (Grady, 2015), the process ensures that
researchers both reflect and communicate ahead of
time how the data will be collected and used, why
it is necessary to answer the question at hand, and
how protected information will be handled to pre-
vent harm to the human subjects. Whereas much of
the data that supports current methods in ML and
especially NLP is created by, gives information
about, and is used to train models that will likely
affect these same human subjects, this relationship
does not constitute a direct intervention as defined
in the Common Rule. However, Metcalf and Craw-
ford argue that the definition is too narrow when
one considers the similarity in potential harms and
advise that data-driven methods should be subject
to a similar from of ethical review, which includes
clear communication about the goals and mecha-
nisms for collecting and safeguarding the data.

Despite existing literature on database documen-
tation in HCI and related fields (Cheney et al.,
2009; Bhardwaj et al., 2014), documentation in
ML has only recently gained traction. In a sur-
vey of ML projects across India, East and West
African countries, and the USA, Sambasivan et al.
(2021) analyze compounding events causing nega-
tive, downstream effects from data issues, resulting
in technical debt4 over time, and identify insuffi-

2https://gem-benchmark.com/data_cards/
3https://www.nidcr.nih.gov/research/

human-subjects-research
4Cunningham (1992) employs this term to describe the

accumulation of flaws in technical systems over time, using
an analogy to financial debt.

cient documentation to be a trigger of these events
in 20% of the 53 cases. They report impacts such
as time and effort lost in using incorrect data, barri-
ers to completing models, and data that had to be
abandoned due to it no longer being usable.

In response to issues like the ones found by Sam-
basivan et al., many research groups have proposed
documentation schemata for different parts of the
ML pipeline. Arnold et al. (2019) introduce Fact-
Sheets to document the use, performance and se-
curity aspects of an AI product. Mitchell et al.
(2019) put forward Model Cards focusing on docu-
menting the evaluation and use of a specific model,
while Gebru et al. (2018), Holland et al. (2018),
and Pushkarna et al. (2021) propose Datasheets for
Datasets, Dataset Nutrition Labels, and the Data
Cards Playbook, respectively, as documentation
schemata and processes for documenting the data
used in ML and AI systems. Hutchinson et al.
(2021) frame datasets as technical infrastructure
and propose documentation for several stages of
the development process, including the design, cre-
ation, and maintenance of the dataset.

To address the distinct challenges of working
with language data, such as those summarized by
Bender et al. (2021), other researchers have pro-
posed specialized documentation for work in NLP.
The first such example is by Bender and Friedman
(2018) who propose a version of Data Statements
for documenting aspects of the data from a linguis-
tic perspective. In addition to documenting the data
that a model sees during training, there is also the
need to document experiments, especially those in-
volving humans. Thus, Shimorina and Belz (2021)
develop a Human Evaluation Datasheet, with the
goal of describing human evaluation experiments
rather than naturally occurring language data. Start-
ing from the templates by Bender and Friedman
(2018) and Mitchell et al. (2019), we iteratively ex-
tend and adapt our templates for the HF and GEM
contexts.

3 Methods

To guide the development of our templates, we
draw from the methods of value sensitive design
(eg., Friedman and Hendry, 2019) by identify-
ing stakeholders and assessing their values, which
Friedman and Hendry define as “what is impor-
tant to people in their lives, with a focus on ethics
and morality” (pg. 24). The values of the vari-
ous stakeholders, including developers themselves,
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may influence the development of a technology in
a number of ways (Friedman and Kahn, 2003). In
this section, we conduct a stakeholder analysis and
describe the principles we follow in the develop-
ment of our templates. In Section 7, we explore
the potential social impact of the templates and our
positionality in the design process.

3.1 Documentation Stakeholders
This work presents a documentation strategy
adopted by two organizations (the HF dataset hub
and the GEM benchmark) for two categories of re-
sources (language datasets and NLG models). We
identify three groups of direct stakeholders as well
as indirect stakeholders whose needs we consider
in designing this documentation strategy.

The organizations. The managing organizations
play a central role in gathering, presenting, and
enabling the use of the resources. The organiza-
tions are responsible for establishing documenta-
tion standards that need to be met for any resource.

The resource creators. When submitting their
resources to an organization, dataset curators and
model developers are required to write documenta-
tion to meet the organization’s stated standards.

The resource users. The resources distributed
by the organizations may further be utilized by
downstream users. These users read the provided
documentation to determine whether the resources
may or may not be appropriate for their needs.

The indirect stakeholders. Indirect stakehold-
ers include any person impacted by the dissemi-
nation of a resource, such as dataset publication,
model deployment, and deployment of a model
trained on a dataset. While indirect stakeholders
might not have direct control over the way the re-
sources are used, they may refer to the documenta-
tion to analyze these impacts.

3.2 General Approach
As discussed by Waseem et al. (2021), datasets are
the result of subjective choices made by the dataset
creators. We therefore approach documentation as
a way for authors to communicate this subjectivity
by explicitly stating the decisions that led to the
resource creation and the contexts in which those
decisions were made. In addition to providing de-
velopers with the opportunity to reflect on their
choices in creating a resource, the documentation
gives users insight as to how and why the resource

was developed, which may help the user assess
how appropriate the resource is for their use case,
and may even surface previously unconsidered is-
sues. In addition to the documentation formats
surveyed in Section 2, the practice of reflecting on
the impact of one’s work is being standardized by
academic conferences such as NeurIPS’s broader
impacts statement5 and NAACL’s ethics review.6

We aim to encourage this practice in our local con-
texts through our free text templates that emphasize
reflection on the topics we see as important in un-
derstanding the development and potential uses of
datasets and models in NLP.

While guidance around these processes is still be-
ing standardized, we recognize that there are risks
that may result from the proliferation of documen-
tation formats and the suggestion of documentation
as a way to mitigate the harms caused by ML sys-
tems. For example, documentation that is not up-
dated to reflect changes to the documented resource
may result in harms due to decisions made on inac-
curate information. In other cases, the standardiza-
tion of documentation may add to the difficulties
experienced by inexperienced or underfunded re-
searchers in publishing their work. Finally, authors
may try to justify work that causes known harms
by documenting the potential for harm without at-
tempting to address the harms themselves. Organi-
zations that institute documentation standards need
to consider these risks when integrating documen-
tation into their local contexts and be attentive to
the varied impacts to researchers, developers, and
community members.

3.3 Data Cards Principles

Language conveys information about not only the
individual producing the language, but also about
the social groups that individual is a member of
and social context that the individual is producing
the language in (Eckert and Rickford, 2001). For
example, an accent may indicate the geographical
region that a person grew up in and that person’s
use of a local phrase may indicate that they be-
lieve the person that they’re talking to is also from
that region. As such, the values of our indirect
stakeholders, the people whose sociolinguistic in-
formation are embodied in the resources, are of
high priority in designing the data card templates.
In order for documentation to be accessible to in-

5https://neurips.cc/Conferences/2020/CallForPapers
6https://2021.naacl.org/ethics/faq/
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direct stakeholders, who may not be familiar with
ML terminology or academic writing, the infor-
mation needs to be clearly presented and easy to
find within the document. This consideration led
to several revisions in our template content and
presentation.

3.4 Model Cards Principles

The recent push by academic conferences for so-
cial impact statements in publications provides a
clear way for resource creators to consider the im-
pact to their own direct and indirect stakeholders.
Furthermore, academic ML conferences such as
NeurIPS have instituted reproducibility checklists
for paper submissions (Pineau et al., 2020). Build-
ing off this checklist, Dodge et al. (2019) argue
for greater reproducibility in ML publications by
proposing their own reproducibility checklist as
well as a metric for reporting performance on the
validation set as a function of the model training
time. Mitchell et al. (2019) focus on evaluation in
their own schema for models, arguing for disaggre-
gated results to be reported over different popula-
tion subgroups in data used to evaluate the model.
These three considerations - social impact, repro-
ducibility, and evaluation - form the main aspects
of our template.

4 Case Study I: HuggingFace Data Cards

As a first case study of data card development, we
present the template developed for the Hugging-
Face open source NLP libraries. The full template
is available in Table 1. The completed data card for
the ELI5 dataset (Fan et al., 2019) is available in
Appendix A.

HF Libraries The HuggingFace Transformers
library (Wolf et al., 2020) has evolved as a central-
ized platform providing a common API for easily
loading the weights of nearly 10,000 (at the time
of writing) transformer-based models with differ-
ent frameworks (PyTorch, TensorFlow, JAX) and
original code bases. The Datasets library7 takes
a similar approach to providing a hub that allows
users to easily discover and reuse the datasets that
were used to trained those models. To that end, the
library focuses on the following three features:

• A unified API for downloading and iterating
through a wide variety of datasets

7https://hf.co/datasets

• A backend supported by memory-mapped
Arrow arrays8 to enable use of even large
datasets in resource-constrained settings

• A documentation structure that gives users a
clear overview of the available datasets and
the information required to use them

To meet the latter need, we designed a data card
template that provides a unified way to present this
information for all of the proposed NLP datasets.

HF data cards stakeholders The direct stake-
holders of the HF card templates include: the orga-
nization, whose goals for the library and its docu-
mentation standards are stated above; the team and
HF community members, who add new datasets to
the library and are encouraged to fill out as much
of the cards as they can; and the library users,
who may examine or train models on the provided
datasets. We note that, in our case, the people who
add the datasets to the library may not be the orig-
inal dataset curators, and so may not have direct
access to all the required information.

Initial version The first version of the data card
consisted of 8 sections. The first three aimed to
answer the question “What is this dataset used for?”
and asked the writers to fill out information about
the tasks supported, the original purpose for cre-
ating the dataset, and the languages represented
within. The template then asked about the peo-
ple involved in making the dataset, including the
dataset creators, the language creators, and the an-
notators, if relevant. This was followed by a section
titled “Data Characteristics,” which covered all of
the data selection and processing steps. In particu-
lar, considering that users might want to use several
datasets developed to address similar tasks together
to train a model, we wanted to surface any domain
shifts or differences in text normalization in either
of these last two sections.

The template then continued to a dataset struc-
ture section covering information about the default
train/test split if provided, size of the dataset, de-
scription of the features, examples of data points,
and suggested metrics to use. Broadly, the purpose
of this section was to give a user any technical in-
formation they might need to train a model, such
as how the dataset size might influence what size
of model or regularization technique to use. Seeing

8https://arrow.apache.org/
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the features and an explicit example of a data in-
stance can also clarify the input and output features
and texts.

The second to last section covered known limi-
tations of the dataset, and prompted the writer to
consider specifically social biases in a first sub-
section and any other limitations, such as common
surface correlations a model might take advantage
of, in another. The reasoning behind this choice is
that a user might do as much harm by deploying
a model exhibiting harmful biases as by deploy-
ing a model that had a high score for the chosen
metric but did not actually perform the described
high-level task. Finally, for the benefit of users who
might want to share derivatives of the dataset or
use them for commercial purposes, the last section
contained the licensing information for the dataset.
Using this schema, we wrote an initial draft card
for the SNLI dataset (Bowman et al., 2015) and
shared it with the HF team and the SNLI curators
for comments.

Revised version We then expanded and re-
ordered the template based on the initial comments.
The first section became the dataset description
consisting of: a list of links to relevant information
about the dataset available elsewhere including the
dataset paper, leaderboards, and the contact infor-
mation of at least one person in case of further
questions; a free text summary; a description of
supported tasks, suggested metrics (moved here for
this updated version), and leaderboards; and the
languages represented. The dataset structure was
moved just after the languages, with examples of
data instances and information about the fields and
splits.

The largest change was in the people and dataset
characteristics sections. We restructured these into
a single dataset creation section which now starts
with a curation rationale to properly contextual-
ize all of the choices described in the rest of the
card. The template then requests information about
the people involved in producing the source lan-
guage and annotations and the normalization and
processing steps for that data. A section was then
added to specifically describe the status of Personal
Identifying (PI) data in the dataset in order to both
help protect the data subjects’ privacy and to help
the dataset users comply with existing regulations.
Dataset creators were renamed dataset curators to
emphasize the difference between the people mak-
ing the curation choices and the people producing

the source language data, and their description was
moved to the very end of the data card. Finally we
expanded the limitations section to a broader sec-
tion on considerations for using the data, adding a
prompt for prospective social impacts of using the
dataset, both positive and negative.

Supporting documentation writers We made
these changes to improve card readers’ ability to
navigate the document and find necessary informa-
tion about the dataset and to assist card authors
when writing their cards by clarifying the desired
information for each section. To further aid authors,
we developed a guide formatted with desired con-
tent and instructions for each section.9 We intend
for the template and guide to support authors of
datasets both with and without existing documen-
tation. Authors of datasets without publications
can use the card as a starting point for building
documentation and visibility for the dataset in the
HF library, but also as an overview of what infor-
mation should be included in a publication. For
datasets with publications, the HF card provides
authors with a more widely accessible format for
documenting their dataset that does not have the
length limitations of paper submissions and can
be revised as needed to reflect any updates to the
dataset.

Publications also have the property of being
static and cannot be updated to reflect changes in
the dataset. To address this, we designed the HF
data cards to function as living documents. First,
hosting them on GitHub allows community mem-
bers at large to easily add new information or mod-
ify existing sections to reflect new findings. We see
this as particularly important for the section on us-
ing the dataset as new considerations are reported
as a result of novel use cases and research. We
also made the decision to publish the template with
the sections pre-populated with placeholder text
(specifically, “More Information Needed”) in order
to encourage authors and community members to
fill in the section when the information is available.
The ability to update information helps to address
the harms caused by out-of-date documentation.
By integrating the data cards into the HF library,
we are able to see a more complete characteriza-
tion of the available datasets that is similarly up
to date. This allows us to point out where fewer
datasets are available for tasks and languages and
make progress towards a more diverse library.

9https://hf.co/datasets/card-guide

125



5 Case Study II: GEM Data and Model
Cards

Our second case study of data card development
is the template we developed for the datasets and
model submissions of the Generation, its Evalua-
tion, and Metrics (GEM) workshop. We present
the full template in Table 1. The completed data
card for the ASSET dataset (Alva-Manchego et al.,
2020) is available in Appendix B.

5.1 GEM Benchmark

The benchmark for GEM aims to standardize how
research in natural language generation (NLG) is
conducted with a particular focus on in-depth eval-
uations (Gehrmann et al., 2021). To this end, newly
developed NLG models should be documented and
evaluated on a set of established tasks over a range
of reproducible and robust metrics. This goal can
only be achieved if the infrastructure provided by
the benchmark supports the creation of such docu-
mentation.

Since a benchmark may comprise multiple
datasets and provide a centralized way to interact
with them, we can focus on two groups of stake-
holders following the descriptions in Section 3.1.

Benchmark curators. The curators need to en-
sure that all datasets are documented according to
the requirements.

Benchmark participants. The participants need
to write model documentation according to the re-
quirements, but may be novice ML practitioners or
inexperienced in writing documentation.

5.2 Data Cards

None of the datasets included in GEM had existing
data cards. To address this issue, we develop a
data card template and use it to document all the
datasets involved in the benchmark. Moreover, to
be able to quickly add new datasets and to help the
broader NLG community construct their own data
cards, we release the template and associated guide.
The data card closely follows the HF data card
template introduced in Section 4, with changes to
target NLG-specific issues. We made these changes
to address feedback after testing an initial version
of the data card on the CommonGen (Lin et al.,
2020) and ASSET (Alva-Manchego et al., 2020)
datasets. An overview of the differences between
the two templates is presented in Table 1.

The major difference between the general HF
template and the NLG-specific template is that
NLG datasets may contain natural language both
in the input and the output. Inputs and outputs may
have different sources and thus require documen-
tation for both. In addition, the input-output pairs
may be constructed in ways that are challenging to
describe in the HF template. For example, output
text may be crawled and undergo revisions while
the input text remains the same. This difference
did not lead to different sections in the data card
itself, but it did lead to changes in the guidelines
on how to write them.

Moreover, NLG tasks have an underlying com-
municative goal which differentiates them from
classification and other structured tasks. It is im-
perative to surface the communicative goal, since it
heavily influences how generated text for a partic-
ular task should be evaluated. Another category
of changes concerns the context of GEM com-
pared to general purpose data cards. For example,
since GEM itself is a benchmark, information about
leaderboards does not have to be prominently fea-
tured, whereas it should give credit to the original
data creators early on.

We also added three GEM-specific sections: (1)
Why is this dataset part of GEM, (2) Changes to the
original dataset for GEM, and (3) Getting started
with in-depth research on the task. The first aims to
tie the collections of data cards together by situat-
ing a dataset and task within the larger goal of the
benchmark. The second section is of crucial impor-
tance for any data card for a benchmark, since the
benchmark may change the purpose of a dataset
and the organizers could modify the underlying
data by cleaning it, adding more data, or releasing
a reformatted version. The final question encour-
ages participants to engage with the data in order to
develop a deeper understanding of the task formu-
lation. Therefore, to help participants gain insights
into the data, we included a section with helpful
pointers to relevant papers and tutorials.

Finally, GEM is designed to be a multilingual
benchmark. Since we expect to include languages
with fewer resources than may be found for lan-
guages like English, we aim to consider the commu-
nities that speak those languages and the impacts
that technology built with these datasets could have
on them. For example, a dataset for a language
with few other resources may only capture the lan-
guage of a few speakers in a certain context, like
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HuggingFace data card GEM data card

Dataset Description Dataset and Task Description
• Dataset Summary • Dataset and Task Summary
• Supported Tasks and Leaderboards See below
– • Why is this dataset part of GEM?
• Languages • Languages

– Meta Information
See below • Dataset Curators
See below • Licensing Information
See below • Citation Information
See above • Leaderboard

Dataset Structure Dataset Structure
• Data Instances • Data Instances
• Data Fields • Data Fields
• Data Splits • Data Statistics

Dataset Creation Dataset Creation
• Curation Rationale • Curation Rationale
– • Communicative Goal
• Source Data • Source Data
•• Initial Data Collection and Normalization •• Initial Data Collection and Normalization
•• Who are the source language producers? •• Who are the source language producers?
• Annotations • Annotations
•• Annotation process •• Annotation process
•• Who are the annotators? •• Who are the annotators?
• Personal and Sensitive Information • Personal and Sensitive Information

– Changes to the Original Dataset for GEM

Considerations for Using the Data Considerations for Using the Data
• Social Impact of the Dataset • Social Impact of the Dataset
– • Impact on Underserved Communities
• Discussion of Biases • Discussion of Biases
• Other Known Limitations • Other Known Limitations

– Getting started with in-depth research on the task

Additional Information –
• Dataset Curators See above
• Licensing Information See above
• Citation Information See above
• Contributions –
– Credits for Data Cards and this Template

Table 1: Side by side comparison of the HF and GEM data card templates. Each section is denoted by horizontal
lines, subsections are denoted with •, subsubsections with ••.
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GEM Model Card

Social Impact
• Additional Data
• Training Process
• Real-World Use
• Measuring Impact

Reproducibility
• Model Description
• Model Details
• Model Hyperparameters
• Hyperparameter Specification
• Number of Training and Evaluation Runs
• Dataset Details
• Dependencies and External Libraries
• Link to Downloadable Source Code
• Computing Infrastructure Used

Evaluation details

Table 2: An overview of the GEM model card template.

university students in the context of an experiment.
Models trained on this dataset would not have ac-
cess to the variation in the language that comes
from speakers of other ages and in other contexts,
but because there may not be other available tools,
that model may become widely used and misrepre-
sented as a general model of the language. We thus
added a specific section to address potential con-
cerns involving communities that speak those lan-
guage varieties, such as the implications for model
generality and privacy when speakers from small
communities are easily identifiable.

5.3 Model Cards

Following the guiding principles outlined in Sec-
tion 3.4, the model cards have three sections: social
impact, reproducibility, and evaluation. A detailed
overview is shown in Table 2.

Social impact In the first section, we invite sub-
mission authors to consider the impacts their mod-
els may have on users if they were deployed. We
recognize that without further guidance, the open-
ended nature of this request may make it pro-
hibitively difficult to address. Indeed, trying to
foresee all the ways in which data or modeling
choices may affect all direct and indirect stakehold-
ers is overwhelming, if not impossible. Instead, we
narrow the scope to help users practice reflecting
on causal relationships between design and deploy-

ment effects. We do this by providing guiding
examples of models and their potential impacts. In
one scenario, we consider a summarization model
trained on a English Wikipedia, which is known to
have various dimensions of gender bias (Wagner
et al., 2015). We present two possible impacts on
the output summaries based on this gender bias
and suggest tests to measure the effect. We then
encourage model creators to follow a similar line
of thought. We ask about additional data used (and
to a link to documentation if it exists), about the
training process, and about a possible real-world
use. We then request that the documentation author
choose one aspect of one of the steps outlined, con-
template a way in which this aspect may negatively
impact direct or indirect users, and propose a way
to measure this impact. In particular, we believe
that the latter requirement may help steer authors
toward considering more plausible impacts.

Reproducibility The reproducibility section of
the card combines elements of Mitchell et al.
(2019)’s model cards and Dodge et al. (2019)’s
reproducibility checklist. The sections ask the min-
imal number of questions which are key to repro-
ducing the model submission. We request a model
description, which includes the model type, ver-
sion, the environment (i.e., versions of required
software), and training algorithm used, with avail-
able space for further details. We also request a
specification of dependencies and external libraries
used to build the model. Authors have the option to
link to their source code. Finally, authors are asked
to describe the compute infrastructure used (e.g.,
the number of GPUs, the GPU type, and vRAM)
and the training time for the final model.

Several questions concern the model hyperpa-
rameters, including the optimizer, training steps,
learning rate. In addition, we elicit information
about potential hyperparameter searches conducted
as part of the model development. The hyperpa-
rameter search section requests information on the
bounds for the hyperparameters, the number of
search trials, and the method for choosing the hy-
perparameter values. The hyperparameter speci-
fications for the best performing models are also
requested but not required. Finally, the section ends
with an optional space to list the number of train-
ing and evaluation runs and a required subsection
detailing the utilized training dataset(s), including
any processing on the data.
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Evaluation The final section consists of the eval-
uation description. We suggest summarizing the
evaluation process by including the metric details,
the splits for the training, validation, and test data,
and by providing the model performance on the
test and validation data.

6 Conclusion

We detail the processes and principles we followed
to produce the documentation templates used in the
HF library and the GEM benchmark. We ground
this work in the current discussion of documenta-
tion as a way to communicate the impacts of ML
systems. As touched on in Section 3.2, extensive
documentation is only a tool to support the com-
munication of decisions that led to the creation of
datasets and models and the positionality of their
creators; it is not a direct solution to the harms
caused by ML systems. We present our templates
to encourage others to consider important ques-
tions that may be asked of their own work. The
templates from both case studies are open source
and we welcome contributions and feedback from
authors and users to continually revise and improve
them. Moreover, while the templates described in
this work are designed for specific contexts and
may not be fully applicable to others, they can be
used as starting points for adaption to other set-
tings.

7 Social Impact and Positionality
Statement

Social impact statement Our goal is to promote
the standardization of specialized documentation
for NLP datasets and models. Institutional adop-
tion and promotion may see its greatest effect in the
widening of community engagement. The infras-
tructure used to host and maintain the documenta-
tion also facilitates revisions and smaller contribu-
tions from the involved communities. However, we
are also aware of the risks that requiring this level
of documentation for participation in either of our
organizations may produce, such as raising the bar-
rier to entry for those without experience in writing
such documentation for language data as well as
for people with fewer mentoring resources or plat-
forms for engaging the community. Finally, while
documenting the limitations of a resource is an im-
portant first step towards incrementally addressing
issues, there is a risk that the act of documenting
may allow creators to abdicate responsibility for

these limitations in some cases, without taking any
further steps to minimize negative social impacts
of the systems they develop.

Positionality statement We are researchers at
academic and industrial institutions with back-
grounds in linguistics, NLP, ML, and HCI. Our
guiding principles are discussed in Section 3. We
aim to adapt available schemata to our special-
ized contexts, namely the HF library and the GEM
benchmark and to present our development process
as part of the general progress towards accountable
and practical documentation for language datasets
in ML systems. As NLP practitioners, we devel-
oped these card templates to directly support other
members of the HF and NLG communities in writ-
ing documentation that answers questions that we
ourselves would ask about the data and models.
The completed templates will support users, re-
searchers, and members of the public who may be
impacted by these resources in understanding their
contents and context.
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A Example of a Hugging Face Data Card: ELI5

A.1 Dataset Description

ELI5 homepage; ELI5 repository; paper: ELI5: Long Form Question Answering; contact: Yacine Jernite

Dataset Summary The ELI5 dataset is an English-language dataset of questions and answers gathered
from three subreddits where users ask factual questions requiring paragraph-length or longer answers.
The dataset was created to support the task of open-domain long form abstractive question answering
(QA), and covers questions about general topics in its r/explainlikeimfive subset, science in it r/askscience
subset, and history in its r/AskHistorians subset.

Supported Tasks and Leaderboards The dataset can be used to train a model for Open Domain Long
Form QA. An LFQA model is presented with a non-factoid and asked to retrieve relevant information
from a knowledge source (such as Wikipedia), then use it to generate a multi-sentence answer. The model
performance is measured by how high its ROUGE score to the reference is. A BART-based model with a
dense retriever trained to draw information from Wikipedia passages achieves a ROUGE-L of 0.149.

Languages The dataset is in English (BCP-47 code: en), as spoken by users of the target subreddits.

A.2 Dataset Structure

Data Instances A typical data point comprises a question, with a title containing the main question
and a selftext which sometimes elaborates on it, and a list of answers from the forum sorted by the
number of upvotes they obtained. The URLs in each of the text fields have been extracted to respective
lists and replaced by generic tokens in the text. Examples are available here.

Data Fields q_id: a unique string question ID, corresponding to its ID in the source submission dumps;
subreddit: the source subreddit- ‘explainlikeimfive’, ‘askscience’, or ‘AskHistorians’; title: title of
the question, with URLs extracted and replaced by tokens in the form URL_n; title_urls: list of the
extracted URLs, the nth element of the list was replaced by URL_n; selftext: either an empty string
or an elaboration of the question; selftext_urls: similar to title_urls, but for self_text;
answers: a list of answers, each answer has: a_id (a unique string answer ID, corresponding to its
ID in the source comments dumps), text (the answer text with the URLs normalized), and score (the
number of upvotes the answer had received when the dumps were created); answers_urls: a list of
the extracted URLs (All answers use the same list, the numbering of the token continues across answer
texts).

Data Splits The data is split into a training, validation and test set for each of the three subreddits. In
order to avoid having duplicate questions in across sets, the title field of each of the questions were
ranked by their tf-idf match to their nearest neighbor and the ones with the smallest value were used in
the test and validation sets. The number of training, validation, and test examples for each subreddit
are: 272,634, 9,812, and 24,512 for r/explainlikeimfive; 131,778, 2,281, and 4,462 for r/askscience; and
98,525, 4,901, and 9,764 for r/AskHistorians.

A.3 Dataset Creation

Curation Rationale ELI5 was built to provide a testbed for machines to learn how to answer more
complex questions, which requires them to find and combine information in a coherent manner. The
dataset consists of questions that were asked by community members of three subreddits, including
r/explainlikeimfive, and the answers provided by other users. The rules of the subreddit make this data
well-suited for abstractive QA: the questions need to seek an objective explanation about well established
facts, and the answers provided need to be understandable without any particular domain knowledge.

Source Data: Initial Data Collection and Normalization The data was obtained by filtering submis-
sions and comments from the subreddits of interest from the XML dumps of the Reddit forum hosted on
Pushshift.io. In order to further improve the quality of the selected examples, only questions with a score
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of at least 2 and at least one answer with a score of at least 2 were selected for the dataset. The dataset
questions and answers span a period form August 2012 to August 2019.

Source Data: Who are the source language producers? The language producers are users of the
r/explainlikeimfive, r/askscience, and r/AskHistorians subreddits between 2012 and 2019. No further
demographic information was available from the data source.

Annotations The dataset does not contain any additional annotations.

Personal and Sensitive Information The authors removed the speaker IDs from the Pushshift.io dumps
but did not otherwise anonymize the data. Some of the questions and answers are about contemporary
public figures or individuals who appeared in the news.

A.4 Considerations for Using the Data

Social Impact of Dataset The purpose of this dataset is to help develop better question answering
systems. A system that succeeds at the supported task would be able to provide a coherent answer to
even complex questions requiring a multi-step explanation, which is beyond the ability of even the larger
existing models. The task is also thought as a test-bed for retrieval model which can show the users which
source text was used in generating the answer and allow them to confirm the information provided to
them. It should be noted however that the provided answers were written by Reddit users, an information
which may be lost if models trained on it are deployed in down-stream applications and presented to users
without context. The specific biases this may introduce are discussed in the next section.

Discussion of Biases While Reddit hosts a number of thriving communities with high quality discus-
sions, it is also widely known to have corners where sexism, hate, and harassment are significant issues.
See for example the recent post from Reddit founder u/spez outlining some of the ways he thinks the
website’s historical policies have been responsible for this problem, Adrienne Massanari’s 2015 article on
GamerGate and follow-up works, or a 2019 Wired article on misogyny on Reddit. While there has been
some recent work in the NLP community on de-biasing models (e.g. Black is to Criminal as Caucasian is
to Police: Detecting and Removing Multiclass Bias in Word Embeddings for word embeddings trained
specifically on Reddit data), this problem is far from solved, and the likelihood that a trained model might
learn the biases present in the data remains a significant concern. We still note some encouraging signs for
all of these communities: r/explainlikeimfive and r/askscience have similar structures and purposes, and
r/askscience was found in 2015 to show medium supportiveness and very low toxicity when compared
to other subreddits (see a hackerfall post, thecut.com write-up and supporting data). Meanwhile, the
r/AskHistorians rules mention that the admins will not tolerate “racism, sexism, or any other forms of
bigotry”. However, further analysis of whether and to what extent these rules reduce toxicity is still
needed. We also note that given the audience of the Reddit website which is more broadly used in the US
and Europe, the answers will likely present a Western perspectives, which is particularly important to note
when dealing with historical topics.

Other Known Limitations The answers provided in the dataset represent the opinions of Reddit users.
While these communities strive to be helpful, they should not be considered to represent a ground truth.

A.5 Additional Information

Dataset Curators The dataset was initially created by Angela Fan, Ethan Perez, Yacine Jernite, Jason
Weston, Michael Auli, and David Grangier, during work done at Facebook AI Research (FAIR).

Licensing Information The license hinges on the legal status of the Pushshift.io data which is unclear.

Citation Information The citation can be found in the ACL Anthology.

Contributions Thanks to @lewtun, @lhoestq, @mariamabarham, @thomwolf, and @yjernite.
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B Example of a GEM Data Card: ASSET

B.1 Dataset Description
ASSET repository; paper: ASSET: A Dataset for Tuning and Evaluation of Sentence Simplification
Models with Multiple Rewriting Transformations; contact: Fernando Alva-Manchego, Louis Martin

Dataset and Task Summary ASSET (Alva-Manchego et al., 2020) is multi-reference dataset for
the evaluation of sentence simplification in English. The dataset uses the same 2,359 sentences from
TurkCorpus (Xu et al., 2016) and each sentence is associated with 10 crowdsourced simplifications.
Unlike previous simplification datasets, which contain a single transformation (e.g., lexical paraphrasing
in TurkCorpus or sentence splitting in HSplit), the simplifications in ASSET encompass a variety of
rewriting transformations.

Why is this dataset part of GEM? ASSET is a high quality simplification dataset where each source
(not simple) sentence is associated with 10 human-written simplifications. It is one of the two datasets for
the text simplification task in GEM. It acts as the validation and test set.

Languages ASSET contains English text only (BCP-47: en).

B.2 Meta Information
Dataset Curators ASSET was developed by researchers at the University of Sheffield, Inria, Facebook
AI Research, and Imperial College London. The work was partly supported by Benoı̂t Sagot’s chair in the
PRAIRIE institute, funded by the French National Research Agency (ANR) as part of the “Investissements
d’avenir” program (reference ANR-19-P3IA-0001).

Licensing Information Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

Citation Information The citation can be found in the ACL Anthology.

Leaderboard There is no official leaderboard associated with ASSET.

B.3 Dataset Structure
Data Instances simplification configuration: an instance consists of an original sentence and 10
possible reference simplifications; ratings configuration: an instance consists in an original sentence,
an automatically generated simplification, and a human judgment of quality along one of three axes.

Data Fields original: an original sentence from the source datasets; simplifications: in the
simplification config, a set of crowdsourced reference simplifications; simplification: in the ratings
config, an automatically generated simplification of the original; aspect: in the ratings config, how the
simplification is evaluated (meaning, fluency, or simplicity); rating: a quality rating between 0 and 100

Data Statistics ASSET does not contain a training set; many models use WikiLarge (Zhang and Lapata,
2017) for training. For GEM, Wiki-Auto will be used for training the model. Each input sentence has
10 associated reference simplified sentences. The statistics of ASSET are given below. For the input
sentences, the validation set has 2000 instances and the test set has 359, for a total of 2359 sentences.
Therefore, for the validation set there are 20000 simplifications and for the test set there are 3590
simplifications for a total of 23,590 simplified sentences. The test and validation sets are the same as
those of TurkCorpus. The split was random. There are 19.04 tokens per reference on average (lower than
21.29 and 25.49 for TurkCorpus and HSplit, respectively). Most (17,245) of the referece sentences do not
involve sentence splitting.

B.4 Dataset Creation
Curation Rationale ASSET was created in order to improve the evaluation of sentence simplification.
It uses the same input sentences as the TurkCorpus dataset from (Xu et al., 2016). The 2,359 input
sentences of TurkCorpus are a sample of “standard” (not simple) sentences from the Parallel Wikipedia
Simplification (PWKP) dataset (Zhu et al., 2010), which come from the August 22, 2009 version of
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Wikipedia. The sentences of TurkCorpus were chosen to be of similar length (Xu et al., 2016). No further
information is provided on the sampling strategy. The TurkCorpus dataset was developed in order to
overcome some of the problems with sentence pairs from Standard and Simple Wikipedia: a large fraction
of sentences were misaligned, or not actually simpler (Xu et al., 2016). However, TurkCorpus mainly
focused on lexical paraphrasing, and so cannot be used to evaluate simplifications involving compression
(deletion) or sentence splitting. HSplit (Sulem et al., 2018), on the other hand, can only be used to evaluate
sentence splitting. The reference sentences in ASSET include a wider variety of sentence rewriting
strategies, combining splitting, compression and paraphrasing. Annotators were given examples of each
kind of transformation individually, as well as all three transformations used at once, but were allowed
to decide which transformations to use for any given sentence. An example illustrating the differences
between TurkCorpus, HSplit and ASSET is given below:
Original: He settled in London, devoting himself chiefly to practical teaching.
TurkCorpus: He rooted in London, devoting himself mainly to practical teaching.
HSplit: He settled in London. He devoted himself chiefly to practical teaching.
ASSET: He lived in London. He was a teacher.

Communicative Goal The goal is to communicate the main ideas of source sentence in a way that is
easier to understand by non-native speakers of English. This could be done by replacing complex words
with simpler synonyms (i.e. paraphrasing), deleting unimportant information (i.e. compression), and/or
splitting a long complex sentence into several simpler ones.

Source Data: Initial Data Collection and Normalization Data from TurkCorpus (Xu et al., 2016)

Source Data: Who are the source language producers? The dataset uses language from English
Wikipedia (August 22, 2009 version): some demographic information is provided here.

Annotations: Annotation process The instructions given to the annotators are available here.

Annotations: Who are the annotators? Reference sentences were written by 42 workers on Amazon
Mechanical Turk (AMT). The requirements for being an annotator were: (1) passing a qualification test
(appropriately simplifying sentences), (2) being a resident of the US, UK or Canada, (3) having a HIT
approval rate over 95%, and over 1000 HITs approved. Out of 100 workers, 42 passed the qualification
test. No other demographic or compensation information is provided in the ASSET paper.

Personal and Sensitive Information Since the dataset is created from English Wikipedia (August 22,
2009 version), all the information contained in the dataset is already in the public domain.

B.5 Changes to the Original Dataset for GEM No change.

B.6 Considerations for Using the Data
Social Impact of the Dataset The dataset helps move forward the research towards text simplification
by creating a higher quality validation and test dataset. Progress in text simplification in turn has the
potential to increase the accessibility of written documents to wider audiences.

Impact on Underserved Communities The dataset is in English, a language with many resources.

Discussion of Biases The dataset may contain some social biases, as the input sentences are based on
Wikipedia. Studies have shown that the English Wikipedia contains both gender biases (Schmahl et al.,
2020) and racial biases (Adams et al., 2019).

Other Known Limitations The dataset is limited to a small subset of topics present on Wikipedia.

B.7 Getting started with in-depth research on the task
The dataset can be downloaded from the original repository (here) or be used via HuggingFace and TFDS.
Recent supervised (Martin et al., 2019, Kriz et al., 2019, Dong et al., 2019, Zhang and Lapata, 2017) and
unsupervised (Martin et al., 2020, Kumar et al., 2020, Surya et al., 2019) text simplification models can
be used as baselines. A common metric for automatic evaluation is SARI (Xu et al., 2016).
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Abstract
We explore the use of self-training and ac-
ceptability classifiers with pre-trained models
for natural language generation in structure-to-
text settings using three GEM datasets (E2E,
WebNLG-en, Schema-Guided Dialog). With
the Schema-Guided Dialog dataset, we also ex-
periment with including multiple turns of con-
text in the input. We find that self-training with
reconstruction matching along with acceptabil-
ity classifier filtering can improve semantic
correctness, though gains are limited in the
full-data setting. With context-conditioning,
we find that including multiple turns in the con-
text encourages the model to align with the
user’s word and phrasing choices as well as
to generate more self-consistent responses. In
future versions of the GEM challenge, we en-
courage the inclusion of few-shot tracks to en-
courage research on data efficiency.

1 Introduction

Natural Language Generation (NLG) plays a cru-
cial role in task-oriented dialog systems, which
have become increasingly commonplace in voice-
controlled assistants, customer service agents, and
similar systems. In the research community, gener-
ative models (Wen et al., 2015; Dušek and Jurcıcek,
2016; Rao et al., 2019) have become popular for
their data-driven scaling story and superior natural-
ness over typical template-based systems (Gatt and
Krahmer, 2018; Dale, 2020). However, training re-
liable and low-latency generative models has typi-
cally required tens of thousands of training samples
(Balakrishnan et al., 2019; Novikova et al., 2017).
From a practical perspective, model maintenance
with such a large dataset has proven to be chal-
lenging, as it is resource-intensive to debug and fix
responses, make stylistic changes, and add new ca-
pabilities. As such, it is of paramount importance

∗Equal Contribution
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to investigate ways of bringing up new domains
and languages with as few examples as possible
while maintaining quality.

Pre-trained models like GPT2 (Radford et al.,
2019) have shown great potential to address this
challenge (Peng et al., 2020; Chen et al., 2020), and
combining pre-trained models with self-training
has been shown to improve data efficiency even
further (Arun et al., 2020). Additionally, seman-
tic fidelity classifiers (Harkous et al., 2020) can
be helpful in addressing issues with semantic cor-
rectness that are exacerbated in low-data settings
(Anonymous, 2021). Indeed, Heidari et al. (2021)
have recently shown that using pre-trained models
together with self-training and acceptability classi-
fiers — i.e., classifiers to predict semantic correct-
ness and grammaticality — can play a crucial role
in developing a production-quality model with just
a few hundred training samples.

In this paper, we apply these techniques to 3 of
the datasets from the GEM Shared Task (Gehrmann
et al., 2021): the Schema-Guided Dialog (SGD)
dataset (Rastogi et al., 2019), the End-to-End (E2E)
dataset (Novikova et al., 2017) and the WebNLG-
en dataset (Gardent et al., 2017). We focus on these
3 datasets specifically because they mostly closely
resemble natural language generation (NLG) in a
task-oriented dialog setting, as in Heidari et al.’s
work. Although we did not expect substantial
gains using these methods in high-data settings,
we wanted to try them out on additional datasets in
order to better understand their behavior, as well
as to encourage research in low-data settings for
future editions of the GEM shared task.

With the SGD dataset, we were also particularly
interested in the effect of including multiple turns
of dialog context in the input, and how this effects
the behavior of our NLG system. In early work,
Brockmann et al. (2005) showed that cache-based
language models can be used to adapt NLG systems
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to align with user’s language, while subsequent
work investigated structural priming more specifi-
cally (Reitter et al., 2006) and the impact of such
adaptation in deployed dialog systems (Stoyanchev
and Stent, 2009). Dušek and Jurčı́ček (2016) in-
vestigated ways of adapting to the user’s way of
speaking with neural models using the previous
user turn; more recently, Kale and Rastogi (2020)
demonstrated with the SGD dataset that including
multiple turns of context in the input to a pretrained
model yields large gains in BLEU scores. How-
ever, Kale & Rastogi did not analyze the reasons
underlying these gains; here we show that context-
conditioning does indeed enable the model to better
align with the user’s word and phrasing choices,
though self-consistency with previous system turns
is an even stronger factor.

2 Methods

2.1 Context-Conditioning and Templatizing
Inputs

For the Schema-Guided Dialog Dataset, we in-
cluded the service in the input (Table 1) after our
initial experiments indicated that the service was
crucial to generating accurate responses for some
dialog acts (e.g., Notify Failure). We noti-
fied the organizers of this issue, and they released
an enhanced version of the dataset including this
information. We also experimented with sorting
the inputs and conditioning on 1–5 turns of context.

Following Kale and Rastogi (2020), we also tried
converting the inputs into semi-natural text (Ta-
ble 2) using their templates. These templates aim
to provide minimal coverage of the input dialog
acts rather than actually producing natural outputs,
as that task is left to the pre-trained model to learn
(for that reason, we call them templatized inputs
rather than template-based inputs).

To use the Kale & Rastogi templates, we found
that it was additionally necessary to augment the
dialog acts with the service call method in some
cases. Consequently, we retrieved this information
from the original Schema-Guided Dialog dataset,
sharing a script for doing so with the organizers.

2.2 Tree-Structured Ordering

For the WebNLG dataset, we followed Yang et al.
(2020) in ordering the input triples using their im-
plicit tree structure. Yang et al. found that travers-
ing the tree in depth-first search order yielded sub-
stantial improvements in their experiments that

were competitive with using a learned input order-
ing. Given the tendency to put heavier constituents
towards the end of a sentence in English (Hawkins,
1994; Gibson, 2000; Temperley, 2007; Rajkumar
et al., 2016), we additionally sorted siblings by
increasing subtree depth, breaking ties by sorting
alphabetically on predicate names.

To format the input data, we followed Li
et al. (2020) in separating subjects, predicates
and objects with separators while replacing un-
derscores with spaces and removing quotes; we
also prepended the category with a separator. An
example input appears in Table 3.

Algorithm 1: Self-Training via Recon-
struction

1 Start with labeled data L and unlabeled data
U , with inputs X and outputs/labels Y;

2

3 Set current pseudo-labeled data L′ := L;
4

5 repeat
6

7 Train 2 models on L′ (in parallel):
8 Generation model G from X → Y;
9 Recon. model R from Y → X ;

10

11 Run G on U to get pseudo-labels Y ′;
12 Run R on Y ′ to get recon. inputs X ′;
13

14 L′ := L ∪ {rows where X = X ′};
15

16 until convergence or maximum iteration;

2.3 Self-Training

Annotating large quantities of high-quality data
is time and resource consuming. However, it is
often possible to automatically generate a lot of
unlabeled data using a synthetic framework. Semi-
supervised techniques can then be applied based on
this mix of labeled and unlabeled data, to improve
model performance.

Since the datasets do not come with unpaired
inputs, we create such inputs for self-training via
automatic deletion of all combinations of parts of
the (structured) input query, to generate larger sets
of unlabeled data for self-training. For each origi-
nal input, we randomly select up to 20 unpaired in-
puts created via deletion. Note that with WebNLG,
deletion is constrained to yield connected subtrees.
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Unsorted Buses 2 sep OFFER departure time 8:30 am, OFFER price $23, OFFER fare type Economy

Sorted Buses 2 sep OFFER departure time 8:30 am, OFFER fare type Economy, OFFER price $23

Prompt Sorted Buses 2 sep OFFER departure time 8:30 am, OFFER fare type Economy, OFFER price $23
sep user: Do you have any other buses available?

Context 5 Sorted

Buses 2 sep OFFER departure time 8:30 am, OFFER fare type Economy, OFFER price $23
sep

user: I am traveling from Sacramento, CA to SFO on March 7th.
sys: I have found a bus that departs at 7:40 am. The economy ticket is priced at $22
user: What are the stations of arrival and departure?
sys: It starts from Sacramento Valley Station and arrives at Salesforce Transit Center.
user: Do you have any other buses available?

Table 1: Context-Conditioned and Sorted Inputs for the SGD Dataset (with the service name)

Template Buses 2 sep How about a bus leaving at 8:30 am and the price of the ticket is $23.
It is Economy ticket.

Template Prompt Buses 2 sep How about a bus leaving at 8:30 am and the price of the ticket is $23.
It is Economy ticket. sep user: Do you have any other buses available?

Template Context 5

Buses 2 sep How about a bus leaving at 8:30 am and the price of the ticket is $23.
It is Economy ticket. sep
user: I am traveling from Sacramento, CA to SFO on March 7th.
sys: I have found a bus that departs at 7:40 am. The economy ticket is priced at $22
user: What are the stations of arrival and departure?
sys: It starts from Sacramento Valley Station and arrives at Salesforce Transit Center.
user: Do you have any other buses available?

Table 2: Templatized and Context-Conditioned Inputs for the SGD Dataset

Original

Politician, [
Poland | language | Polish language,
Adam Koc | nationality | Poland,
Poland | ethnicGroup | Kashubians

]

Tree-Structured (DFS)

Politician sep
subj Adam Koc pred nationality obj Poland
subj Poland pred ethnic group obj Kashubians
subj Poland pred language obj Polish language

Table 3: Tree-Structured Ordering Inputs for the WebNLG Dataset
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Most approaches to self-training for NLG—
including earlier work on automatic data cleaning—
make use of cycle consistency between parsing and
generation models (Chisholm et al., 2017; Nie et al.,
2019; Kedzie and McKeown, 2019; Qader et al.,
2019). More recently, Chang et al. (2021) have
developed a method for randomly generating new
text samples with GPT-2 then automatically pairing
them with data samples. Our approach, following
Heidari et al. (2021), likewise takes advantage of
pre-trained models; by comparison though, we take
a much more direct approach to generating new text
samples from unpaired inputs in self-training. As
described formally in Algorithm 1, self-training
here consists of multiple cycles of generation and
reconstruction. Note that unlike work in MT that
employs back-translation, including unsupervised
MT (Lample et al., 2018), we do not assume ac-
cess to large amounts of target text. Additionally,
unlike He et al.’s (2020) self-training approach to
MT, we make use of reconstruction matching to
filter the pseudo-annotated data (line 14) in each
self-training iteration.1

We fine-tune BART (Lewis et al., 2020), a pre-
trained seq2seq language model, for both steps.
For generation, we train a BART large model to
produce the responses given the scenario. In par-
allel, the same generation data is used to fine-tune
a reconstruction BART large model to obtain the
generation input, given the responses. After gen-
eration in each cycle, we use the reconstruction
model to select samples with exact reconstruction
match. Finally, the selected samples are added to
the training pool for the next self-training cycle.

We noted that for the case of SGD, the self-
trained model was susceptible to stuttering, i.e.,
repeating the same phrase over and over again (this
occurred in < 1% of the validation samples). This
was not observed in the BART-Large generation
model. Hence, to control for stuttering, for each
response generated by the self-trained model, we
used the heuristic that if any word (excluding stop
words such as articles, conjunctions, etc.) was re-
peated in the generated response more than 5 times,
we substituted the response generated by the BART-
Large model instead.

1He et al. find it useful to fine-tune the model on just the la-
beled data at the end of each iteration; we leave experimenting
with this additional step in our setting to future work.

2.4 Filtering via Acceptability Classifiers

Based on work by (Anonymous, 2021), we trained
acceptability classifiers for each dataset using the
training data available for its generation model. A
response is considered (minimally) acceptable if it
is both semantically accurate and grammatical.

As per Anonymous (2021)’s recommendation,
since we don’t have any representative validation
set of labelled acceptable/unacceptable samples,
we took a BART-Large model and finetuned it on
the training set. Next, we used MaskFilling strat-
egy to generate synthetic acceptable/unacceptable
samples wherein we inserted 3 to 7 random masks
to the seed data (i.e. training data for generation
model) and used the fine-tuned BART model to fill
in the masks. This helped capture similar patterns
in the seed data and masked words in the response
are replaced by tokens most similar to that in seed
data, thereby generating more realistic unaccept-
able samples.

We then passed each of the generated synthetic
samples to a RoBERTa-based entailment model
and partitioned samples that had a 2-way entail-
ment with respect to the original seed sample as
acceptable and the rest unacceptable. In addition,
we ensured that that the BLEU score between syn-
thetic sample and original seed sample was be-
tween 0.5-0.9 for unacceptable class and above
0.9 for acceptable class. Since the BART mask-
ing method will only generate paraphrases with
similar sentence structure due to masks insertion
in the original seed responses thereby maintaining
the original sub-sequences order, these paraphrases
tend to differ only slightly compared to the original
responses. Hence, a BLEU score >0.9 allows us
to capture most of them while a BLEU score >0.5
ensures that we are only selecting unacceptable
samples with nuanced errors.

Finally, we trained a RoBERTa-base classifier
over the acceptable and unacceptable classes. At
inference time, we passed the n-best responses ob-
tained by the self-trained generation model through
the trained acceptability classifier. We filtered out
the responses that had a high unacceptability score
(threshold determined over validation set for each
dataset). Of the remaining responses, we selected
the top response. In case all responses were filtered
out, we selected the top response from the original
n-best list.
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BART Base BART Large
Unsorted Sorted Template Unsorted Sorted Template

No Context 34.39 34.78 35.99 35.01 35.09 36.48
Prompt 37.72 37.90 39.03 38.96 39.01 39.99

Context 5 43.37 43.55 44.18 44.75 43.79 45.21

Table 4: BLEU scores for Schema-Guided Dialog validation set

E2E Self-Train WebNLG-en Self-Train SGD Self-Train
Initial Round 1 Round 2 Initial Round 1 Round 2 Initial Round 1 Round 2

500 Rows 67.85 81.58 83.83 54.41 65.87 52.55 53.87 61.68 62.91
10% Data 86.04 85.72 86.51 76.90 80.44 82.78 63.25 64.14 63.98
Full Data 89.18 90.46 91.77 85.24 85.78 85.90 63.95 63.78 64.23

Table 5: Exact Reconstruction Match % on full validation set for End-to-End, WebNLG-en and Schema-Guided
Dialog datasets when self-trained starting with varying amounts of seed data

3 Results

3.1 Context-Conditioning and Templatizing
Inputs

The BLEU (Papineni et al., 2002) scores for various
BART models on the Schema-Guided Dialog vali-
dation set appear in Table 4.2 As the Table shows,
sorting the standard inputs appears to yield a small
improvement. Templatizing the inputs yields a
larger gain, over 1 BLEU point in some cases. Us-
ing BART Large yields a somewhat smaller gain
over using BART Base, but the gains are around
another BLEU point when used with templatized
inputs and context. By comparison, using the dia-
log context yields very large gains, with including
the prompt in the input adding over 3 BLEU points,
and adding another four turns of context to the in-
put improving another 5 BLEU points or so. These
gains corroborate the ones reported by Kale and
Rastogi (2020) using T5 (Raffel et al., 2020), while
also putting them in the context of improvements
based on model size and type of input. We plan to
make our additional baseline results above publicly
available in the near future.

3.2 Self-Training
We ran self-training as described in Algorithm 1
on all 3 datasets, with multiple variations for each
including few-shot, low data and full data settings.
The BLEU scores with self-training do not improve
significantly over the regular training paradigm.
However, we observe sharp increase in the exact re-
construction match rate on the validation set when

2These BLEU scores are calculated with a different version
of BLEU than used by the GEM metrics; the BLEU score for
the best model according to the GEM metrics is 43.35.

using self-training, especially in the lower data
regimes, as shown in Table 5. This metric is cal-
culated by training a reconstruction model on the
full labeled data once in the beginning, and then
using this model to perform reconstructions at dif-
ferent stages during self-training – observing its
performance on 100% of the validation set each
time, for automatic evaluation purposes. Note that
with the SGD dataset, we used reconstruction ac-
curacy on the sorted input for this evaluation, as
we observed some issues with reconstructing the
textualized input; these are discussed further in the
next section.

3.3 Filtering via Acceptability Classifiers

We ran n-best response filtering using Acceptabil-
ity Classifiers on the outputs of the BART-Large
generation model as described in 2.4. The BLEU
scores and reconstruction exact match rate only
slightly changed (increased or decreased) at differ-
ent unacceptability confidence thresholds.

We also ran a RoBERTa-based entailment model
on the small number of responses that were
changed by the acceptability classifier with respect
to the target reference, as well as on the correspond-
ing 1-best response from the generation model. We
estimated number of paraphrases by checking for
2-way entailment between the pairs. We observed
a slight increase in the total number of paraphrases
identified using this model when filtering via Ac-
ceptability Classifier, as shown in Table 6. Exam-
ples of positive changes appear in Table 7.
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Total number of paraphrases wrt target reference
Total Changed Response chosen by acc 1-best Response

WebNLG 112 105 104
E2E 100 68 64

SGD 22 12 15

Table 6: Number of paraphrases identified by RoBERTa-base entailment model when response chosen by
Acceptability Classifier (acc) filtering method (at best threshold) compared to the 1-best response from vanilla

BART-Large generation method on validation sets.

Dataset Input Response chosen by acc 1-best Response

WebNLG Food sep subj Arem-arem
pred country obj Indonesia
subj Indonesia pred leader
obj Joko Widodo subj In-

donesia pred leader obj Jusuf
Kalla

Arem arem originates from Indone-
sia where Joko Widodo and Jusuf
Kalla are leaders.

Joko Widodo and Jusuf Kalla are
leaders in Indonesia where Arem-
arem is a traditional dish.

E2E name[The Wrestlers], customer rat-
ing[5 out of 5], familyFriendly[yes]

The Wrestlers is a 5 out of 5 rated
family friendly venue.

The Wrestlers is a five star, family
friendly sushi bar.

SGD
Services 4 sep REQUEST type
Psychologist Psychiatrist

Do you need a Psychiatrist or a Psy-
chologist?

Do you need a Psychiatrist or a Psy-
chiatrist?

Table 7: Sample Responses chosen by Acceptability Classifier (acc) filtering over 1-best response

3.4 Combined Methods

Results from the GEM metrics on the validation
set when using the Acceptability Classifier with
the self-trained BART-Large models appear in Ta-
ble 8.3

4 Analysis

4.1 Context-Conditioning and Templatizing
Inputs

Here we analyze the effects of including multiple
turns of context in the input. Table 9 shows exam-
ples of how the model that takes five previous turns
of context as input (Context 5) aligns with aspects
of the context more strongly than the model that
takes just one turn of context as input (Prompt).
Examples (a) and (b) show how the Context 5 mod-
els generates wordier or more concise outputs de-
pending on the user’s previous word and phrase
choices, while Example (c) shows how the Con-
text 5 model instead picks up on its own previous
phrasings to yield a more consistent way presenting
similar weather information across responses.

These effects can be verified quantitatively as
well. Table 10 shows how the Context 5 model’s
responses correlate more strongly in length with
both previous user and system turns, and Table 11
similarly shows that BLEU-2 scores against the
context are more similar for the Context 5 model

3Note that METEOR scores here are computed via NLTK

than the Prompt model. Finally, Table 12 shows
that these contextual BLEU-2 scores are positively
correlated with BLEU scores against the reference.
(All correlations are statistically significant, albeit
weak.)

4.2 Self-Training

Since we did not observe an increase in BLEU
scores with self-training in the full-data setting,
we manually examined a sample of validation set
outputs for the initial, supervised BART-Large
model in comparison to the self-trained BART-
Large model where these outputs differed in re-
construction accuracy. Across all 3 datasets, we
found that both outputs were usually good, reflect-
ing issues with the reconstruction model or our
way of determining a reconstruction match, rather
than real differences in the semantic correctness
of the outputs. However, in the cases where real
semantic differences were found, we observed that
the changes were generally in the direction of im-
proved semantic correctness with the self-trained
model.

In calculating reconstruction accuracy, we no-
ticed many issues that can be considered cases of
inadequate normalization. For example, with the
E2E dataset, the customer rating and price range
slots use mostly interchangeable values in the in-
put such as “5 out of 5” and “high” as values for
top-rated venues; this means that the reconstruction
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BLEU METEOR ROUGE-L BERTScore BLEURT
E2E 34.54 0.578 54.5 0.916 0.292

WebNLG-en 68.74 0.777 72.1 0.959 0.478
SGD 43.38 0.560 60.8 0.898 0.177

Table 8: Validation set automatic metrics for self-trained models with Acceptability Classifier filtering

Content Context Reference Prompt Context 5
(a) How many tickets

would you like?
user: Okay. Can you find me a
hotel in that area, so that I will
have a place to stay in?
sys: . . .
user: Can you give me their
phone number? How much will
it cost me per nigh?
sys: . . .
user: That is nice. Now I want
to buy tickets for the event you
found earlier.

Can you tell
me the number
of tickets you
want to buy?

How many tick-
ets do you want
to buy?

Can you tell
me the number
of tickets you
want to buy?

(b) Your reservation is
successful. They
do not have outdoor
seating.

user: Sounds good to me.
sys: . . .
user: Sure, book it for 11:00
sys: . . .
user: Perfect. do they have
outdoor seating?

Booking con-
firmed. They
don’t have
outdoor seating.

Your reserva-
tion has been
made. They
do not have
outdoor seating.

Booking con-
firmed. They
don’t have
outdoor seating.

(c) The average tem-
perature for the
day should be 87
degrees Fahrenheit.
There is a 3 percent
chance of rain.

user: Duncans Mills
sys: It will be 93 degrees with
a 20 percent chance of rain.
user: How about on the 5th of
this month?
sys: It will be about 90 de-
grees with a 1 percent chance
of rain.
user: How about in Mexico
city?

It will be 87
degrees with
a 3 percent
chance of rain.

Average tem-
perature: 87
degrees Fahren-
heit. Chance of
rain: 3 percent.

It will be
about 87 de-
grees with
a 3 percent
chance of rain.

Table 9: Examples illustrating model adaptation to the dialog context when using 5 previous turns of context
(Context 5) vs. just one previous turn (Prompt). Example (a) shows how the Context 5 model picks up on the
user’s wordier phrasing, leading to an exact match with the reference. Example (b) indicates how the Context
5 model instead uses a more concise phrasing, picking up on the user’s terseness. Example (c) shows how the
Context 5 model instead picks up on its own previous phrasings to yield a self-consistent way of presenting similar
weather information for different locales and dates.

User System
Reference 0.337 0.095

Prompt 0.275 0.025
Context 5 0.320 0.085

Table 10: Correlations in model turn length using 5 pre-
vious turns of context (Context 5) vs. just one previous
turn (Prompt) with user and system turns in the preced-
ing context (5 turns), in comparison to reference.

model essentially has to guess which one actually
appeared in the input. In future work, we intend to
add compare the set of slots with normalized values
rather than just using exact string match. Similar is-
sues arose with WebNLG, where the reconstruction
model had difficulty getting the order of the triples

User System
Reference 15.24 15.68

Prompt 8.80 13.11
Context 5 15.88 17.29

Table 11: Mean model BLEU-2 scores (with no length
penalty) using 5 previous turns of context (Context 5)
vs. just one previous turn (Prompt) against user and sys-
tem turns in the preceding context (5 turns), in compar-
ison to reference.

correct, and with SGD, where we discovered that
similar but non-identical templates across related
services caused confusion for the reconstruction
model. Additionally, with SGD we observed that
making the dialog context available as input to the
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User System
Prompt 0.088 0.131

Context 5 0.083 0.204

Table 12: Correlations between contextual BLEU-2
scores (with no length penalty) for model using 5 pre-
vious turns of context (Context 5) vs. just one previous
turn (Prompt) against user and system turns with BLEU
scores (against reference).

reconstruction model would be helpful in many
cases, since many responses employing elliptical
constructions were difficult for the reconstruction
model (despite being clear and natural in context).

4.3 Acceptability Classifier Filtering
Looking more closely at a random sample of the
responses that were changed by the acceptability
classifier, we noted that the acceptability classifier
filtering indeed usually chooses a better response
than the default in high confidence unacceptability
regions. This also makes intuitive sense as we
expect the generation model to be correct and fluent
most of the time and acceptability classifier filtering
helping in a small number of cases. We expect
this impact to be higher on cases which are not
represented in the training distribution.

5 Discussion

It is fascinating that simply including multiple turns
of preceding dialog in the input to a pre-trained
model has such a large impact on generated re-
sponses, and in particular that doing so increases
alignment with the user’s language as well as con-
sistency with the system’s own previous responses.
Both factors can be expected to enhance natural-
ness, though this will need verification via hu-
man evaluation. More compellingly, it is likely
that these effects will enhance user perceptions
of the system in an extrinsic evaluation of how
NLG affects perceived dialog quality. To verify
such effects, it will be important to study context-
enhanced NLG in the context of actual dialogs with
users, rather than in a simpler overhearer paradigm.

Turning to self-training, it is clear from our ex-
periments that gains in semantic correctness can
be quite large in low-data settings. Moreover, the
pay-off from acceptability classifier filtering can
be expected to be larger there. Nevertheless, gains
in low-data settings have generally not brought
systems fully in line with those trained in high-
data settings. As such, there remains considerable

room for improvement in such low-data settings,
even when using pre-trained models. To promote
work along these lines, future editions of the GEM
shared task could have few-shot tracks where the
number of samples for supervised training is quite
limited. Moreover, it would be extremely helpful
to make unpaired inputs available for these tracks.
While creating unpaired inputs via deletion is some-
what helpful, this technique cannot help with un-
seen or few-shot test items in the final test set. As
such, providing unpaired inputs corresponding to
these few-shot test items would provide a way to
experiment in a standardized fashion with meth-
ods for generalizing in these cases. Note that in
the case of datasets created via simulation, as with
the SGD dataset and its dialog simulator, creating
new unpaired inputs would only require running
the simulator for the few-shot domains. Doing so
for a shared task should be much easier than re-
leasing all the code used during dataset creation,
so we urge the organizers to consider this option in
future.
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A Appendix

A.1 Model Hyperparameters
Model hyperparameters appear in Tables 13–15. In
addition, the best performing model on the valida-
tion set had the unacceptability confidence thresh-
olds for filtering listed in Table 16. The bounds
used to calculate the thresholds were [0.1–0.9] with
0.1 step size.

A.2 Computing Infrastructure
For training each generation BART-Large model, 8
GPUs were used, which took about 3.5 hours for
larger datasets like SGD.

For training the accuracy classifier RoBERTa-
base model, 8 GPUs were also used, taking up to
2 days on larger datasets like SGD including data
preparation and model training time.

All experiments were conducted on 32GB
Quadro GV100 GPUs. The GPUs are part of a
shared distributed cluster, which adds its own time
overheads.

Tokenizer BPE
Tokenizer Max Length 256
Dropout 0.3
Encoder/Decoder Embedding Dim 1024
Optimizer Adam
LR 0.000005
Weight Decay 0.00001
# Model Params 514484225

Table 13: BART-Large Generation/Reconstruction Hy-
perparameters

Tokenizer BPE
Tokenizer Max Length 1024
Encoder output dropout 0.1
Encoder embedding dim 768
# encoder layers 12
# encoder attention heads 12
Decoder dropout 0
Decoder activation relu
Optimizer Adam
LR 0.000001
Adam betas 0.9, 0.999
Weight Decay 0
# Model Params 124055810

Table 14: Acceptability Classifier RoBERTa-Base Hy-
perparameters

Beam Size 5
topk 3
Mask normal 0.5
Mask insert 0.3

Table 15: Acceptability Classifier Data Generation Hy-
perparameters

Dataset Unacceptability Threshold
hline E2E 0.6

WebNLG-en 0.7
SGD 0.6

Table 16: Acceptability Classifier Thresholds
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Abstract
This paper describes the submission by NUIG-
DSI to the GEM benchmark 2021. We par-
ticipate in the modeling shared task where
we submit outputs on four datasets for data-
to-text generation, namely, DART, WebNLG
(en), E2E and CommonGen. We follow an
approach similar to the one described in the
GEM benchmark paper where we use the pre-
trained T5-base model for our submission. We
train this model on additional monolingual
data where we experiment with different mask-
ing strategies specifically focused on masking
entities, predicates and concepts as well as a
random masking strategy for pre-training. In
our results we find that random masking per-
forms the best in terms of automatic evaluation
metrics, though the results are not statistically
significantly different compared to other mask-
ing strategies.

1 Introduction

The GEM Benchmark (Gehrmann et al., 2021) is a
living benchmark focusing on generation, evalua-
tion and metrics for a variety of natural language
generation tasks including summarization, simpli-
fication, dialog and data-to-text generation. In
general, the field of natural language generation
(NLG) is concerned with automatic generation of
human understandable texts, typically from a non-
linguistic or textual representation of information
as input (Reiter and Dale, 2000). Traditionally,
most applications for NLG have relied on rule-
based systems designed using a modular pipeline
approach (Gatt and Krahmer, 2018). However, re-
cently approaches based on neutral networks with
an encoder-decoder architecture trained in an end-
to-end fashion have gained popularity. These typi-
cally follow the paradigm of pre-training on a large
corpus followed by fine-tuning on a task specific
dataset and have been shown to achieve state-of-the-
art results on many natural language tasks (Raffel

et al., 2020; Lewis et al., 2020). When evaluated by
human annotators, neural models for data-to-text
generation have been found to produce fluent text
though such models might struggle in terms of data
coverage, relevance and correctness where rule-
based systems score high (Castro Ferreira et al.,
2020).

In our participation in the GEM benchmark, we
submit outputs for four datasets including DART
(Nan et al., 2021), WebNLG (Gardent et al., 2017;
Castro Ferreira et al., 2020), E2E (Novikova et al.,
2017; Dušek et al., 2019) and CommonGen (Lin
et al., 2020). We use the pre-trained T5-base model
architecture (Raffel et al., 2020) for our submis-
sion implemented using the transformers library
from Hugging Face (Wolf et al., 2020). We first
train on monolingual data before fine-tuning on the
task-specific dataset. For DART and WebNLG, we
use abstracts from DBpedia (Auer et al., 2007) for
training while for the other two datasets, we use
monolingual target-side references for pre-training
with a masked language modeling objective. We
experiment with different masking strategies where
we mask entities and predicates (for DART), mean-
ing representation fields (for E2E) and concepts
(for CommonGen) and compare the results with
commonly used approach of random masking. Our
results suggest that random masking achieves the
best scores for automatic evaluation metrics for
DART, WebNLG and E2E while additional pre-
training appears to hurt the performance for Com-
monGen.

2 Methodology

In this section we define our methodology on the
four datasets where we make a submission and
subsequently discuss the results based on automatic
evaluation metrics defined in the GEM benchmark.
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Tripleset Antioquia Department country Colombia
Bandeja paisa ingredient Chorizo
Bandeja paisa region Antioquia Department

linearisation Antioquia Department country Colombia Bandeja paisa ingredient Chorizo Bandeja paisa region Antioquia
Department

tags <SUB> Antioquia Department <PRED> country <OBJ> Colombia <SUB> Bandeja paisa <PRED> ingredient
<OBJ> Chorizo <SUB> Bandeja paisa <PRED> region <OBJ> Antioquia Department

entity types <LOCATION> Antioquia Department <PRED> country <LOCATION> Colombia <FOOD> Bandeja paisa
<PRED> ingredient <SAUSAGE> Chorizo <FOOD> Bandeja paisa <PRED> region <LOCATION> Antioquia
Department

NER tags <ORG> Antioquia Department <PRED> country <GPE> Colombia <PERSON> Bandeja paisa <PRED> ingre-
dient <UNKNOWN> Chorizo <PERSON> Bandeja paisa <PRED> region <ORG> Antioquia Department

(a) Additional tags added to the linearised tripleset.

Lexicalisation Chorizo is an ingredient in Bandeja paisa, a dish from the Antioquia Department region, in Colombia.

Random Masking Chorizo is an ingredient in Bandeja paisa, a dish [MASK] Antioquia Department [MASK], in Colombia.

Entity Masking [MASK] is an ingredient in [MASK], a dish from the [MASK] region, in [MASK].

Predicate Masking Chorizo is an [MASK] in Bandeja paisa, a dish from the Antioquia Department [MASK], in Colombia.
(b) Masking strategies for pre-training on monolingual data.

Figure 1: Example of a tripleset from the DART dataset with additional information tags included after linearisa-
tion for fine-tuning (top) and different masking strategies applied to a sentence for pre-training (bottom).

2.1 DART

DART (Nan et al., 2021) consists of open domain
data records structured in the form of triples paired
with crowd-sourced textual annotations in English
describing those triples. The data is collected from
multiple different sources including tables from
Wikipedia, questions from WikiSQL and merged
with two existing data-to-text datasets, namely,
WebNLG (en) (Gardent et al., 2017) and cleaned
E2E (Dušek et al., 2019).

Since both DART and WebNLG are concerned
with the task of triple-to-text generation and have
the same input data structure, we follow the same
approach as defined in Pasricha et al. (2020) for the
WebNLG+ challenge. We use the pre-trained T5
model architecture and first train it on a corpus of
abstracts from DBpedia with a masked language
modeling objective. For masking, we adopt the
commonly used approach of randomly masking
15% of the tokens in texts. We further compare this
with an approach where we specifically mask only
the entities or only the predicates or a combination
of both as shown in Figure 1(b). The abstracts are
downloaded from DBpedia for the entities which
are present in the triples contained in the training
set of the DART dataset. Since we did not find
an abstract for each unique entity in the training

BLEU METEOR ROUGE-L

baseline 46.10 37.24 59.61

masked pre-training

random masking 47.16 37.51 59.99
entity masking 45.92 37.14 59.56
predicate masking 46.73 37.36 59.79
entity + predicate 46.37 37.23 59.51

Table 1: Results from automatic evaluation on the
DART validation set with different masking strategies
on DBpedia abstracts for pre-training using the T5-
small model.

set, we ended up with 9,218 abstracts consisting on
1,654,239 tokens and 83,583 types in total with an
average of 179.45 tokens per abstract. After pre-
training, we fine-tune on the DART training set to
predict the target text conditioned on the linearised
tripleset.

For fine-tuning we linearise the input tripleset
into a sequence without modifying the order of the
triples in the input. We incorporate additional infor-
mation to mark the subject, predicate and object in
each triple in the input by using <SUB>, <PRED>

and <OBJ> tags respectively. Additionally, we also
include tags for the type of an entity using DBpedia
as shown in Figure 1(a). In the instances where we
do not find the type of an entity on DBpedia, we
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check whether it refers to a time period or a date
and assign it the type <TIMEPERIOD>. Otherwise,
we assign the type <MEASUREMENT> to an entity
containing a numeric value followed by some text.
The type <NUMERIC> is assigned to entities which
only consist of numeric values and <UNKNOWN> to
everything else. Furthermore, as a comparison, we
add tags for entities using the named entity recogni-
tion pipeline from the spaCy library1. All of these
tags are included as additional special tokens to the
model vocabulary.

For our experiments with masking during pre-
training on DBpedia abstracts, we use the small
variant of the T5 model architecture. This model
has approximately 60 million parameters and is
much faster to train compared to other larger vari-
ants. We use the pre-trained model implementation
from Hugging Face’s transformers library (Wolf
et al., 2020) which consists of 6 layers each in
the encoder and decoder with a multi-head atten-
tion sub-layer consisting of 8 attention heads. The
word embeddings have a dimension of 512 and the
fully-connected feed-forward sublayers are 2048-
dimensional. Pre-training on DBpedia abstracts
is done on a single Nvidia GeForce GTX 1080 Ti
GPU for 10 epochs with a batch size of 8 using
the Adam optimizer with a learning rate of 0.001.
All the other hyperparameter values are set to their
default values. Table 1 shows scores for the output
generations on the validation set for BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005) and ROUGE-L (Lin, 2004). We find random
masking to perform the best in terms of automatic
evaluation metrics compared to specifically mask-
ing entities or predicates, though the results are not
statistically significantly different.

Furthermore, in our experiments we compare
the results when additional tags are added to the
input either as entity types from DBpedia or NER
tags from spaCy or just the <SUB>, <PRED> and
<OBJ> tags. For this, we use the T5-base model
with approximately 220 million parameters. This
model consists of 12 layers each in the encoder
and decoder with 12 attention heads in each multi-
head attention sublayer. The word embeddings are
768-dimensional for this model and feed-forward
sublayer is 3072-dimensional. This model is first
pre-trained on DBpedia abstracts with a masked
language modeling objective where 15% of the
tokens are corrupted randomly. For fine-tuning,

1https://spacy.io

BLEU METEOR ROUGE-L

baseline 51.06 40.23 60.86

tags 51.71 40.68 61.10
DBpedia types 50.75 40.33 60.45
spaCy NER 51.05 40.42 61.30

Table 2: Results from automatic evaluation on the
DART validation set with different tags for fine-tuning.
The results are shown here using the T5-base model
which is first pre-trained with the random masking on
a corpus of DBpedia abstracts.

we train on the DART training set for 10 epochs
on a single Nvidia GeForce GTX 1080 Ti GPU
with a batch size of 16 and select the checkpoint
with the highest BLEU score on the validation set.
We set the maximum output sequence length to
50 words and apply beam search during inference
with a beam of size equal to 5. Here we find that
adding the three <SUB>, <PRED> and <OBJ> tags
achieves the best results compared to tags from
DBpedia or spaCy though the differences in the
automatic evaluation results are again not statisti-
cally significant. For our final submission to the
GEM benchmark, we submit the outputs from this
model which is fine-tuned with the added <SUB>,
<PRED> and <OBJ> tags.

2.2 WebNLG

WebNLG (Gardent et al., 2017) introduced the task
of RDF-to-Text generation focused on generating
a verbalisation in a human language in the output
based on a set of RDF-triples in the input. The
WebNLG corpus consists of data units made up of
RDF-triples extracted from DBpedia (Auer et al.,
2007) and paired with reference text lexicalisations.
These texts were collected using crowd-sourcing
and contain sequences of one or more short sen-
tences in English, verbalising the data units in the
input. The first version of the corpus contained
triplesets from 15 DBpedia categories and is di-
vided into two subsets, seen and unseen for evalua-
tion. The ten seen categories are Airport, Astronaut,
Building, City, ComicsCharacter, Food, Monument,
SportsTeam, University and WrittenWork and the
five unseen categories are Artist, Athlete, Celestial-
Body, Company, MeanOfTransportation and Politi-
cian. WebNLG+ (Castro Ferreira et al., 2020) was
further introduced to include Russian as another
output language and added the category Company
to the training set as well as three categories Film,
MusicalWork and Scientist to the test set.
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BLEU METEOR ROUGE-L

baseline 33.73 36.52 53.72

masked pre-training

MR masking 34.09 36.62 53.64
random masking 34.21 36.50 53.85

Table 3: Results from automatic evaluation on the
E2E validation set with different masking strategies on
monolingual data for pre-training using the T5-base
model.

Since the entire WebNLG (en) corpus is already
included the DART dataset without any modifica-
tions, we use the same model as defined in §2.1
without any further fine-tuning to generate outputs
on the WebNLG (en) dataset. Our overall approach
is same as Pasricha et al. (2020) for the WebNLG+
challenge 2020 except here we use additional 6,678
DBpedia abstracts for pre-training and the larger
DART dataset for fine-tuning which results in a
higher scores for automatic evaluation metrics.

2.3 E2E

E2E (Novikova et al., 2017) is concerned with gen-
erating texts for a dialogue system from meaning
representations (MR) in the restaurant domain. It
was introduced with the aim of motivating research
in domain-specific end-to-end data-driven natural
language generation systems. The input for E2E
comprises of meaning representations with up to
8 different fields including name, near, area, food,
eatType, priceRange, rating and familyFriendly
while the output comprises of sentences typically
made of up 20 – 30 words in English verbalising
the input.

We follow the same approach as described in
§2.1 and experiment with masking strategies for
pre-training on monolingual data. Instead of us-
ing additional out-of-domain data, we use the tar-
get side references from the E2E dataset for pre-
training with a masked language modeling objec-
tive. Here we compare the results on two masking
strategies, one where we mask 15% of the token
spans randomly and another where we mask spe-
cific values based on meaning representation fields
such as restaurant names, area, price, etc. This
approach is similar to the one described in §2.1
where we masked specifically masked entities and
predicates. Table 3 shows scores for the output
generations on the validation set for BLEU, ME-
TEOR and ROUGE-L. We again find that random

BLEU METEOR ROUGE-L

baseline 28.94 31.03 55.78

masked pre-training

concept masking 27.81 29.61 54.87
random masking 26.87 29.83 54.17

Table 4: Results from automatic evaluation on the Com-
monGen validation set with different masking strate-
gies on monolingual data for pre-training using the T5-
base model.

masking appears to perform better though the dif-
ferences in terms of automatic evaluation metrics
are not significantly different.

For our submission to the GEM benchmark, we
use the same model architecture and hyperparam-
eter values as described previously for DART to
generate the output submissions on the E2E test set
and challenge sets. This model is first pre-trained
on the monolingual target side with a masked lan-
guage objective where the spans of text are masked
randomly and the fine-tuned on the E2E training
set containing pairs of meaning representations and
target texts.

2.4 CommonGen

CommonGen (Lin et al., 2020) was introduced with
the goal of testing state-of-the-art text generation
systems for the ability of commonsense reasoning.
The task for CommonGen is to generate a coherent
sentence in English describing an everyday sce-
nario using a set of concepts such as man, woman,
dog, throw and catch. Lin et al. (2020) have shown
that large pre-trained language models are prone
to hallucinations and can generate incoherent sen-
tences such as “hands washing soap on the sink”
for the concept set {hand, sink, wash, soap}. Two
key challenges identified by the creators of this
dataset are relational reasoning with underlying
commonsense knowledge for given concepts and
compositional generalization for unseen combina-
tions of concepts.

We again start with the T5-base model and exper-
iment with masked pre-training on the monolingual
target side of CommonGen. As described in §2.3
we compare two strategies of masking where we
mask spans of text randomly or specifically mask
tokens which correspond to concepts in the training
set. Table 4 shows scores for the output generations
on the validation set for BLEU, METEOR and
ROUGE-L. For fine-tuning we shuffle the concepts
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Dataset subset Metrics (Lexical Similarity and Semantic Equivalence)
METEOR ROUGE-1 ROUGE-2 ROUGE-L BLEU BERTScore BLEURT

CommonGen val 0.310 64.37 33.08 55.78 28.77 0.893 -0.380
sample 0.304 63.72 32.52 54.82 28.24 0.890 -0.391

DART val 0.396 72.44 48.75 58.77 49.42 0.916 0.192

E2E clean

val 0.366 72.12 45.70 53.87 34.21 0.909 0.228
test 0.354 73.23 45.71 53.45 31.74 0.913 0.205
sample 0.365 71.72 45.39 53.81 34.20 0.910 0.221
scramble 0.349 72.06 44.32 51.69 30.52 0.910 0.176

WebNLG (en)

val 0.391 76.08 53.59 62.51 52.10 0.931 0.282
test 0.341 71.41 46.66 57.13 41.43 0.910 0.138
sample 0.389 75.48 53.00 62.38 51.35 0.929 0.260
scramble 0.343 71.54 47.02 57.07 41.74 0.909 0.140
numbers 0.338 70.36 45.98 56.78 41.33 0.909 0.101

Dataset subset Metrics (Diversity and System Characterization)
MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2 |V| Output Len.

CommonGen val 0.54 0.11 0.37 6.9 10.3 532 2.4k 1.2k 10.9
sample 0.55 0.16 0.46 6.8 10.0 455 1.6k 862 11.0

DART val 0.42 0.05 0.15 7.4 9.9 1.3k 5.0k 3.1k 22.7

E2E clean

val 0.26 0.001 0.004 5.6 7.0 11 68 144 23.4
test 0.27 0.001 0.005 5.7 7.1 5 33 136 22.4
sample 0.44 0.01 0.027 5.6 7.0 6 43 117 23.7
scramble 0.47 0.01 0.034 5.7 7.1 7 56 117 22.4

WebNLG (en)

val 0.54 0.10 0.30 8.5 11.9 1.1k 4.8k 3.2k 19.2
test 0.65 0.04 0.16 8.0 10.9 368 2.1k 1.5k 19.5
sample 0.57 0.20 0.50 8.3 11.3 942 3.0k 1.9k 19.2
scramble 0.50 0.11 0.32 7.9 10.6 362 1.5k 2.9k 19.8
numbers 0.65 0.12 0.32 7.9 10.6 426 1.6k 1.1k 19.6

Table 5: Results from automatic evaluation metrics measuring lexical similarity, semantic equivalence, diversity
and system characteristics on the validation set, test set and the three challenge sets – sample, scramble and numbers
for DART, WebNLG (en), E2E and CommonGen.

in the input before concatenating them into a single
sequence. We find in our results that additional
pre-training on monolingual data on the target ap-
pears to hurt the performance when measured with
automatic evaluation metrics. This is true in both
the cases when masking is done randomly or when
only specific concepts are masked.

3 Results

Table 5 shows results on the validation set, test
set and the challenge sets evaluated using GEM
metrics2. At the time of writing we do not have
access to all the references in the test set as well
as the challenge sets for DART and CommonGen,
hence scores on some subsets are not shown.

The evaluation metrics are divided into different
categories measuring lexical similarity, semantic
equivalence, diversity and system characteristics.
Popular metrics such as BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005) and
ROUGE-1/2/L (Lin, 2004) are used for lexical sim-
ilarity, while recently proposed metrics such as

2https://github.com/GEM-benchmark/
GEM-metrics

BERTScore (Zhang et al., 2020) and BLEURT
(Sellam et al., 2020) which rely on sentence embed-
dings from pre-trained contextualised embedding
models such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) are used for evaluating
semantic equivalence. To account for the diverse
outputs, Shannon Entropy (Shannon et al., 1950)
is calculated over unigrams and bigrams (H1, H2)
along with the mean segmented type token ratio
over segment lengths of 100 (MSTTR) (Johnson,
1944). Furthermore, the ratio of distinct n-grams
over the total number of n-grams (Distinct1,2), and
the count of n-grams that appear once across the
entire test output (Unique1,2) is calculated (Li et al.,
2018). The size of the output vocabulary (|V|) and
the mean length of the generated output texts are re-
ported as system characteristics (Sun et al., 2019).

Compared to the baselines described in the GEM
benchmark (Gehrmann et al., 2021), we observe
higher scores in our submissions for automatic met-
rics on the CommonGen and DART datasets while
scoring lower on the cleaned E2E and WebNLG
(en) datasets especially on the test and challenge
subsets for both E2E and WebNLG.
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4 Conclusion

We presented a description of the system submit-
ted by NUIG-DSI to the GEM benchmark 2021.
We participated in the modeling shared task and
submitted outputs on four datasets for data-to-text
generation including DART, WebNLG (en), E2E
and CommonGen using the T5-base model. We
first trained this model with monolingual data from
DBpedia abstracts and target side references before
fine-tuning on respective training datasets. Addi-
tionally we experimented with various masking
strategies focusing specifically on masking enti-
ties, predicates and concepts as well as a random
masking strategy for training. We found random
masking to perform the best and submit our final
outputs using this approach.
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Abstract

This paper describes SimpleNER, a model de-
veloped for the sentence simplification task
at GEM-2021. Our system is a monolingual
Seq2Seq Transformer architecture that uses
control tokens pre-pended to the data, allow-
ing the model to shape the generated simpli-
fications according to user desired attributes.
Additionally, we show that NER-tagging the
training data before use helps stabilize the ef-
fect of the control tokens and significantly im-
proves the overall performance of the system.
We also employ pretrained embeddings to re-
duce data sparsity and allow the model to pro-
duce more generalizable outputs.

1 Introduction

Sentence simplification aims at reducing the lin-
guistic complexity of a given text, while preserving
all the relevant details of the initial text. This is
particularly useful for people with cognitive dis-
abilities (Evans et al., 2014), as well as for second
language learners and people with low-literacy lev-
els (Watanabe et al., 2009). Text and Sentence
simplification also play an important role within
NLP. Simplification has been utilized as a prepro-
cessing step in larger NLP pipelines, which can
greatly aid learning by reducing vocabulary and
regularizing of syntax.

In our model, we use control tokens to tune a
Seq2Seq Transformer model (Vaswani et al., 2017)
for sentence simplification. We take character
length compression, extent of paraphrase, and lex-
ical & syntactic complexity as attributes to gauge
the transformations between complex and simple
sentence pairs. We then represent each of these
attributes as numerical measures, which are then
added to our data. We show that this provides a
considerable improvement over as-is Transformer
approaches.

The use of control tokens in Seq2Seq models for
sentence simplification has been explored before
(Martin et al., 2020). But this approach has shown
to add data sparsity to the system. This is because
the model is required to learn the distribution of
the various control tokens and the expected outputs
across the ranges of each control token. To mitigate
this sparsity, we process our data to replace named
entities with respective tags using an NER tagger.
We show that this reduces the model vocabulary
and allows for greater generalization. To further
curb the data sparsity, we make use of pre-trained
embeddings as initial input embeddings for model
training. Our code is publicly available here. 1

2 Background

2.1 Sentence Simplification

Past approaches towards sentence simplification
have dealt with it as a monolingual machine transla-
tion(MT) task (specifically Seq2Seq MT (Sutskever
et al., 2014)). This meant training MT architectures
over complex-simple sentence pairs, either aligned
manually (Alva-Manchego et al., 2020; Xu et al.,
2016) or automatically (Zhu et al., 2010; Wubben
et al., 2012) using large complex-simple repository
pairs such as the English Wikipedia and the Simple
English Wikipedia.

Some implementations also utilize reinforce-
ment learning (Zhang and Lapata, 2017) over the
MT task, with automated metrics such as SARI (Xu
et al., 2016), information preservation, and gram-
matical fluency constituting the training reward.

2.2 Controllable Text Generation

A recent approach towards sentence simplification
involves using control tokens during machine trans-
lation (Martin et al., 2020). For simplification, it

1https://github.com/kvadityasrivatsa/
gem_2021_simplification_task
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Control Attribute Control Measure Control Token
Amount of compression Compression ratio <NbChars x.xx>
Paraphrasing Levenshtein similarity <LevSim x.xx>
Lexical complexity Avg. third-quartile of log-ranks <WordRank x.xx>
Syntactic complexity Max dependency tree depth <DepTreeDepth x.xx>

Table 1: Control Tokens used for Modelling

encodes and enforces changes in certain attributes
of the text. Similar approaches for controlling gen-
erated text have been explored in other domains:
Filippova (2020) uses control tokens to estimate
and control the amount of hallucination in gener-
ated text, Fan et al. (2018) explored pre-pending
control tokens to the input text for summarization,
providing control over the length of the output, and
customizing text generation for different sources.

Our model makes use of control tokens similar
to Martin et al. (2020) to tailor the generated sim-
plifications according to the extent of changes in
the following attributes: character length, extent of
paraphrasing, and lexical & syntactic complexity.
These attributes are represented by their respective
numerical measures (see 3.1), and then pre-pended
to the complex sentences using in specific formats
(Table 1). Alongside this, we use NER tagging
and pre-trained input embeddings as a method to
curb data sparsity and unwanted named entity (NE)
replacements.

3 System Overview

3.1 Control Attributes

Following Martin et al. (2020), we encode the fol-
lowing attributes during training and attempt to
control them during inference time. Eg:

Complex: ”<NbChars 0.80> <LevSim 0.76>
<WordRank 0.79> it is particularly famous for the
cultivation of kiwifruit .”

Simple: ”It is mostly famous for the growing of
kiwifruit .”

3.1.1 Amount of compression
Compression in sequence length has been shown
to be correlated with the simplicity and readability
of text (Martin et al., 2019). Since compression as
an operation directly involves deletion, controlling
its extent plays a crucial role in the extent of infor-
mation preservation. We make use of the compres-
sion ratio (control token: ‘NbChars’) between the
character lengths of the simple and complex sen-
tences to encode for this attribute.

3.1.2 Paraphrasing
The extent of paraphrasing between the complex
and simple sentences ranges from a near replica of
the source sentence to a very dissimilar and pos-
sibly simplified one. The measure used for this
attribute is Levenshtein similarity (Levenshtein,
1966) (control token: ‘LevSim’) between the com-
plex and simple sentences.

3.1.3 Lexical Complexity
For a young reader or a second language learner,
complex words can decrease the overall readability
of the text substantially. The average word rank
(control token: ‘WordRank’) of a sequence has
been shown to correlate with the lexical complex-
ity of the sentence (Paetzold and Specia, 2016).
Therefore, similar to Martin et al. (2020), we use
the average of the third-quartile of log-ranks of the
words in a sentence (except for stop-words and spe-
cial tokens), to encode for its lexical complexity.

3.1.4 Syntactic Complexity
Complex syntactic structures and multiple nested
clauses can decrease the readability of text, es-
pecially for people with reading disabilities. To
partially account for this, we make use of the
maximum syntactic tree depth (control token:
‘DepTreeDepth’) of the sentence as a measure of
its syntactic complexity. We use SpaCy’s English
dependency parser (Honnibal et al., 2020) to ex-
tract the depth. The deeper the syntax tree of a
sentence, the more likely it is that it involves highly
nested clausal structures.

3.2 NER Replacement

Using control tokens contribute to the overall per-
formance of the model, but it also gives rise to an
added data sparsity. It divides the sentences of the
train set into different ranges of the control tokens.
This results in some control values having little to
no examples, which adds the task of learning and
generalizing over the control token values for the
model. Additionally, the model can learn to ad-
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Raw (Complex) ”Sergio PÃ rez Mendoza ( born January 26 , 1990 in Guadalajara , Jalisco ) ,
also known as ”Checo” PÃ rez , is a Mexican racing driver .”

NER Replaced ”person@1 ( born date@1 in gpe@1 ) , also known as ” person@2 ” , is a
norp@1 racing driver .”

Table 2: NER Tagging input sentence

here to the control requirement, while still failing
to correctly simplify the sentence. Eg:

Source: <NbChars 0.95> <LevSim 0.75>
<WordRank 0.75> oxygen is a chemical element
with symbol o and atomic number 8 .

Prediction: It has the chemical symbol o . It
has the atomic number 8 .

Here, the proper noun ”Oxygen” is replaced by
the pronoun ”it”. Although the model follows the
requirement of bringing down the word rank of
the sentence and remains grammatically sound, it
doesn’t help with the simplification.

To address the issue of data sparsity as well that
of unwanted NE-replacement, we propose NER
mapping the data before training, and replacing the
NE-tokens back after generation. We make use
of the Ontonotes NER tagger (Yu et al., 2020) in
the Flair toolkit (Akbik et al., 2019). We identify
named entities in the complex halves of all three
of the data splits and replace them with one of 18
tags (from the NER tagger) with a unique index
(Table 2). NER replacement for simplification was
previously explored by Zhang and Lapata (2017),
but consisted of fewer classes. The large number
of tags allow for a fine division between different
named-entity types, which helps the model to en-
code the contexts of each of the types better while
still reducing the NE-vocabulary size substantially.

The tagged data is then used for training and sub-
sequent generation on the test set. Then any tags
in the simplified output are located in the saved
NER-mapping and reverted back to the original
token or phrase. This step not only prevents proper
nouns from getting replaced, but also greatly re-
duces the model vocabulary (allowing for greater
generalizability).

3.3 Pre-Trained Embeddings

The vocabulary of a model trained on a corpus like
WikiLarge is quite small, which prevents the model
from predicting better fitting tokens. To address
this, we use FastText’s pre-trained embeddings (Bo-
janowski et al., 2016) (dimensionality: 300) as in-
put embeddings for our model. The embeddings

significantly boost the vocabulary size of usable
content words for the model.

4 Experimental Setup

4.1 Architecture
Our architecture is a Transformer Model (Vaswani
et al., 2017), and we make use of the Transformer
Seq2Seq implementation from FairSeq (Ott et al.,
2019). To understand the impact of each of the
proposed methods, we train a total of four models:

• T: Vanilla Transformer (Vaswani et al., 2017),
with control tokens, used as a baseline model.

• T+Pre: Transformer trained with FastText’s
pretrained embeddings.

• T+NER: Transformer trained on NER
mapped data.

• SimpleNER (T+Pre+NER): Transformer
trained on NER mapped data with FastText’s
pretrained embeddings.

For ease of comparison, all four models were
trained with an input embedding dimensionality
of 300, fully connected layers with a dimensional-
ity of 2048, 6 layers and 6 attention heads on both,
the encoder and the decoder. During training , we
are using Adam optimizer (Kingma and Ba, 2015)
(β1 = 0.9, β2 = 0.999, ε = 10−8), with a learning
rate of 0.00011 and 4000 warm-up updates, while
dropout is set at 0.2.

4.2 Datasets
For training, we make use of the WikiLarge dataset
(Zhang and Lapata, 2017), with 296,402 automat-
ically aligned complex-simple sentence pairs ob-
tained from the English Wikipedia and Simple En-
glish Wikipedia.

For validation and testing, we use the evaluation
sets of the two tracks we participated in, namely:
ASSET (Alva-Manchego et al., 2020) and TurkCor-
pus (Xu et al., 2016). Both have the same source
sentences in their test (359 sentence pairs) and vali-
dation sets (2000 sentence pairs). ASSET provides
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Model test asset val asset test turk val turk
BLEU SARI BLEU SARI BLEU SARI BLEU SARI

T (Baseline) 68.815 36.707 72.561 35.992 71.167 37.801 74.339 37.604
T + Pre 62.488 38.845 71.536 37.700 63.861 38.139 73.627 38.196
T + NER 59.215 39.380 70.433 37.985 58.985 38.996 72.181 38.375
SimpleNER 59.324 39.551 70.202 38.897 59.586 39.777 68.622 38.231

Table 3: Scores obtained by the trained models on different test and validation sets (best scores are bolded)

1. Source ”orton and his wife were happy to have alanna marie orton on july 12 , 2008.”
Baseline (T) ”orton and his wife , dorothy marie orton on july 12 , 2007 .”
SimpleNER ”orton and his wife supported alanna marie orton on july 12 , 2008.”

2. Source ”aracaju is the capital of the state.”
Baseline (T) ”it is the capital city of the country .”
SimpleNER ”aracaju is the capital city of the country .”

3. Source ”yoghurt or yogurt is a milk-based food made by bacterial fermentation of milk.”
SimpleNER ”yogurt is a type of food that is made by bacterial fermentation of product@1.”

4. Source ”entrance to tsinghua is very very difficult.”
SimpleNER ”the entrance to tsinghua is very very simple .”

Table 4: Sample outputs of the baseline(T) and SimpleNER models on the TurkCorpus-testset

10 human-annotated simplifications for each of the
2359 source sentences, whereas TurCorpus pro-
vides 8.

Apart from lower-casing all three splits of the
data, the data pairs of the trainset with token length
lower than 3 were removed, and sentence pairs with
compression ratio (len(target)/len(source)) be-
yond the bounds [0.2, 1.5] were omitted.

4.3 Evaluation Metrics

Our model is evaluated on both BLEU (Papineni
et al., 2002) and SARI (Xu et al., 2016). But as
Martin et al. (2020) points out, BLEU favours di-
rectly replicating the source sentence because of
a high N-Gram similarity between the source and
target sentences in most sentence simplification
datasets. Therefore we only use SARI to rate and
compare the models. We also make use of SARI
to choose the best performing checkpoints on the
validation sets of each of the tracks for evaluation
on their respective test sets.

4.4 Training

All models were trained on 4 Nvidia GeForce GTX
1080 Ti GPUs with 64 GB of vRAM. Training
was carried out for 20 epochs, and took roughly
11 hours for each model. For all four models, we
set the control tokens to NbChars: 0.95, LevSim:
0.75, and WordRank: 0.75. We have omitted

DepTreeDepth as Martin et al. (2020) shows that
using all four tokens brings down the overall per-
formance.

5 Results

We report the BLEU and SARI scores on the test
and validation splits of the ASSET & TurkCorpus
datasets for each of the four models (Table 3). All
three variants outperform the baseline model (T)
across evaluation sets. Using pretrained embed-
dings (T+Pre) and NER tagged data (T+NER) indi-
vidually boosts the baseline SARI scores substan-
tially, with the latter approach providing a larger
increment in the performance. Using both methods
together, further improves the overall SARI score
(SimpleNER). Also note how the general BLEU
score of the models reduce as the SARI score im-
proves, indicating an increasingly dissimilar and
simplified generation.

SimpleNER shows a better retention of named
entities from the source sentence than the baseline
model (Example 1, Table 4). The contrast is clearer
between T+Pre and SimpleNER, as the standalone
use of pretrained embeddings in T+Pre allows for
unwanted switching between two named entities
with similar vector representations (eg. ”2007” &

”2008”). Also, NER tagging prevents the unwanted
shift from proper nouns to pronouns as observed in
the baseline model (Example 2, Table 4).
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We also noted that using NER tagging can ham-
per certain outputs: While decoding, if the model
generates an NER-tag that either has a type or index
mismatch with the original NE token, then the tag
remains in the output even after NER-untagging
(Example 3, Table 4). Also, using pretrained-
embeddings can result in instances where a source
gets replaced with another token having a similar
vector representation. This was particularly ob-
served when some tokens were replaced by their
exact antonyms (Example 4, Table 4).

6 Social Impact

The following is a summary of the response sub-
mitted with our output and model card submission
to the GEM 2021 modelling shared task.

6.1 Real World Use

Our model can be utilized to produce point-to-point
simplifications for people with cognitive disabili-
ties, to read and understand text. Additionally, it
proves helpful for second language learners, espe-
cially in public service centres such as airports or
health clinics. Although the use of NER-mapping
improves our model performance, it can lead to
certain pitfalls. Masking NERs before training as-
sumes that named entities don’t need to undergo
simplification or elaboration. This may be true for
most evaluation datasets like ASSET and TurkCor-
pus, however this isn’t the case for many real world
cases. High-ranked named entities are often part of
domain specific texts, which may require further
explanation to be clearly understood by the general
public.

6.2 Measuring Impact

Elaboration and replacement of NEs are both cru-
cial for simplification and also the pitfalls of our
model. This shows that there is more linguistic
information and knowledge of the named entities
required to build the model to perfection or evalu-
ate its results. Thus, the best suited method would
be a manual evaluation and it could be as simple as
a filling a likert scale on how well the simplification
and elaboration were.

Since this method is inefficient with respect to
time and resources, there is a need for automated
evaluation methods to approximate human judg-
ment. A rudimentary measure to work on could
take into account the NE’s word rank (WR) and
its average similarity (AS) to the other words in its

sentence. Here, a high WR and a low AS would
imply that the sentence does not contextualize the
NE even when it might require elaboration. The
other case would be when the NE has a relatively
low WR and a high AS implying that the sentence
contextualizes the NE aptly.

7 Conclusion

In this paper, we report the performance of four
Seq2Seq Transformer models on the sentence sim-
plification task of GEM 2021 under two tracks: AS-
SET and TurkCorpus. We show that individually
using pre-trained embeddings and NER-replaced
data substantially boosts the performance of a
Transformer model assisted by control tokens. The
NER tagging prevents the model from replacing im-
portant NEs with low rank tokens Also, using pre-
trained embeddings lets the model access a larger
and fine-grained content-word vocabulary for sim-
plification, despite training the model on relatively
small data. When put together, the two approaches
give rise to a much higher overall performance on
the task.

8 Future Work

Some pitfalls to be addressed are: The mismatch
between the NER tags generated at the simplified
end and the original NE tokens could be due to the
exact string matching for NEs, the use of static em-
beddings (FastText) may have caused the unwanted
swaps between highly similar tokens. Using fined-
tuned contextual embeddings may help. Addition-
ally, since simplification datasets like TurkCorpus
and ASSET might utilize different summarization
styles, adding a control token to encode and control
the output style could be explored.
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Abstract

In a current experiment we were testing Com-
monGen dataset for structure-to-text task from
GEM living benchmark with the constraint
based POINTER model. POINTER represents
a hybrid architecture, combining insertion-
based and transformer paradigms, predicting
the token and the insertion position at the same
time. The text is therefore generated gradually
in a parallel non-autoregressive manner, given
the set of keywords. The pretrained model was
fine-tuned on a training split of the Common-
Gen dataset and the generation result was com-
pared to the validation and challenge splits.1

The received metrics outputs, which measure
lexical equivalence, semantic similarity and di-
versity, are discussed in details in a present
system description.

1 Introduction

The 2021 edition of the Generation Evaluation and
Metrics (GEM) challenge for the creation of liv-
ing NLG benchmark leaderboard (Gehrmann et al.,
2021), comprised four groups of tasks - summa-
rization, structure-to-text, simplification and dia-
log. The CommonGen dataset makes part of the
structure-to-text group and was designed to mea-
sure a common sense reasoning capacities of gen-
erative models given a set of concepts (Lin et al.,
2020). Due to the nature of the constraint based text
generation of the POINTER model (Zhang et al.,
2020b) and resemblance in a generation strategy
(the model takes a set of keywords as an input and
generates a text, containing these keywords) the
CommonGen dataset for hard constrained genera-
tion of the GEM benchmark appears to be a good
fit for testing the model performance. The pre-
trained POINTER model was therefore fine-tuned
on a training set of the CommonGen dataset and the

1CommonGen have a private test set, which is not dis-
tributed by GEM benchmark, therefore a comparison to the
test set was not possible.

inference results were compared to the validation
and challenge splits of the same dataset.2

2 Data description and pre-processing

The Insertion-based transformer architecture lever-
age implies the use of the masking mechanism,
the goal of which is to predict not only the like-
lihood of a token itself, but the likelihood of
the token insertion between two given tokens, in
other words, we need to predict the word and
the place where a new word is inserted. In that
regard, a text is preprocessed in a specific way,
where the tokens are scored using a combination
of three schemes of the token importance measure-
ment (term frequency-inverse document frequency
(TF-IDF), part-of-speech (POS) tagging and Yet-
Another-Keyword-Extractor (YAKE)) and the high-
est scored tokens are replaced with a special no-
insertion token [NOI] tag. This procedure is itera-
tive and results in generation of several utterances
out of the initial sentence. During the training
phase, the model is initialised with the Multilin-
gual BERT and its vobabulary is extended with
the [NOI] tag. At the inference time, the masking
mechanism is used in a reverse order, allowing an
iterative tokens prediction - the model will chose to
either generate a token or a [NOI] tag at a given gen-
eration stage and if the next stage contains [NOI]
tag predictions only, the generation is finished.

The model was pre-trained on 12GB of
Wikipedia corpora, therefore the pre-training data
consisted of a well written English with the correct
spelling, grammar and punctuation. For the fine-
tuning, the sentences from the training split were
preprocessed with the pre-training data generation
script,3 which inserts the token position masks in a
gradual manner, resulting in a data augmentation
from 67.389 source entries to 160.680 processed

2Available under the MIT license at
https://github.com/dreasysnail/POINTER.

3Available in the project repository cited earlier.
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entries.

3 Training details and decoding strategy

The fine-tuning was done on 8 cores (16GB of
RAM each) of a TPU-v3 device, following the
multiprocessing paradigm, and took three hours
to train on 40 epochs with the batch size equal
to 64 and gradient accumulation equal to 2. The
finetuning hyperparameters were preserved from
the original paper and included AdamW optimizer,
learning rate equal to 1e-5, Adam epsilon equal to
1e-8, 10 warmup optimizer scheduler steps and the
seed equal to 1.

The inference of the finetuned model was done
using the concept sets from the validation and chal-
lenge splits of the CommonGen dataset. The de-
coding strategy included two sampling methods,
applied separately - greedy and sampling. The
greedy decoding is based on a greedy search al-
gorithm, which consists of choosing the highest
scoring token at a given time step, along with the
temperature (Ackley et al., 1985), while sampling
uses a combination of top-k (Fan et al., 2018), top-p
(Holtzman et al., 2020) and the temperature param-
eters to render model predictions.

For the greedy decoding method, a temperature,
which is a scale factor of each token’s probability
before going through softmax function, was set
to its lower value 0.3, ensuring the most stable
generations. This parameter alone draws a limit
on the model’s creativity, resulting in a more rigid
generation.

For the sampling decoding method, the parame-
ters promoting a high creativity of the model were
chosen: the top-k window of the most probable to-
kens was set to 10, following the strategy expressed
in the original paper (Fan et al., 2018), the top-p
cumulative probability threshold for the most prob-
able tokens was set to its highest tested value 0.95,
according to the original paper (Holtzman et al.,
2020), and the temperature was set to 0.9 - this is
the highest lower probability threshould for this
sampling parameter, allowing the maximum tokens
pass-though without giving up stability of the text
generation.

Other parameters were common for both
sampling methods and included noi decay and
reduce decay, which were equal to 1, and
prevent, reduce stop, lessrepeat, which were
set to true. The inference for both decoding meth-
ods was done with the maximum sequence length

Description Content
keys val. ball court run throw
greedy val. Olympic athlete then brings in

the tennis ball straight back up
down on the tennis court.

sampling val. Olympic athlete quickly
moves toward the soccer ball
about halfway way up on the
clay court.

target val. The boy must run from one
end of the court to the other
to throw the ball into the hoop.

Table 1: Examples of generated text compared to the
ground truth.

equal to 256.
The opposite set of parameters (rigid versus cre-

ative) intended to explore the model’s edge gener-
ative performance. This induces the metrics mea-
surements for both types of the decoding strategy
within validation and challenge splits.

4 Metrics outputs

Before diving in the metrics output results, let us
explore a few examples of the generated text.4 The
Table 1 shows the examples of generation using
greedy and sampling decoding methods for the
validation split, compared to the human-generated
target from the CommonGen dataset. To fairly
measure the metrics output, the number of entries
in the validation split was truncated to 500 in order
to match the number of entries in the challenge set.

Since the goal of GEM challenge is an in-depth
analysis of the model performance regarding lexi-
cal, semantic similarity and language richness, we
will divide the analysis in separate subsections.

4.1 Lexical equivalence

The lexical equivalence was measured with four
n-gram based automated metrics and is reflected in
two tables: Table 2 and Table 3.

The Recall-Oriented Understudy for Gisting
Evaluation (ROUGE), which relies on counting the
matching n-grams in candidate and reference text,
is a metric initially designed for evaluating sum-
maries (Lin, 2004), which nowadays is widely used
for many other tasks in natural language processing

4The complete lists of generated sentences along with the
scripts for calculating the metrics can be found in a dedicated
github repository: https://github.com/asnota/metrics
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Sample R1 R2 RL
greedy val. 0.137 0.008 0.109
sampling val. 0.142 0.008 0.106
greedy ch. 0.142 0.009 0.111
sampling ch. 0.136 0.008 0.103

Table 2: Lexical equivalence: ROUGE metric.

and generation. The ROUGE-1 (R1) and ROUGE-
2 (R2) in a Table 2 reflects the co-occurrence of
unigrams and bigrams in generated text versus
validation or challenge splits of the CommonGen
dataset. The ROUGE-L (RL) measures the longest
in-sequence common n-grams and as we may ob-
serve, the values are quite small, meaning that the
generated text might use different vocabulary, com-
pared to the reference text. The ROUGE score
is a bit higher for greedy decoding method of the
challenge set.

While ROUGE is a recall-oriented metric, BLEU
relies on a precision calculation of the overlapping
n-grams and was primarily designed to measure
the quality of the automatic translation (Papineni
et al., 2002). The BLEU score augmentation is
observed for the challenge set (Table 3), which
might indicate, that the generated text might suffer
from the noise, since it gives better scores when
compared to a noisy reference text.

The calculation of the geometric mean with the
BLUE score is completed by calculation of the
arithmetic mean of the n-gram overlap with the
NIST metric. This metric also calculates a degree
of the informativeness of n-grams (rare n-grams
are given more weight) and is less sensible towards
small differences between the candidate and refer-
ence texts (Doddington, 2002). The NIST score
shows no significant difference between validation
and challenge splits, however the score itself is
rather low, which indicates considerable lexical
differences of the generated text compared to the
reference text.

Additionally to the geometric and arithmetic
mean, a harmonic mean of unigram precision
and recall is calculated with the METEOR metric
(Banerjee and Lavie, 2005). The advantage of this
n-gram based metric is that the calculation includes
synonym matching, stemming and word matching,
which lowers the impact of alternative vocabulary
and grammatical forms used in the generated text,
compared to the golden human standard. Although
the values appear to be low, it should be noted, that

Sample BLEU NIST METEOR
greedy val. 2.88 0.114 0.123
sampling val. 2.456 0.093 0.141
greedy ch. 2.996 0.113 0.125
sampling ch. 2.473 0.09 0.136

Table 3: Lexical equivalence: BLEU, NIST and ME-
TEOR metrics.

the maximum correlation with human judgement
achieved was equal to 0.403.5 The METEOR score
is slightly higher for the challenge set and is gener-
ally higher for the sampling decoding method.

4.2 Semantic similarity
A recent shift towards neural based metrics
changed the very essence of the metrics input -
the words are represented by their embeddings,
facilitating the calculation of many parameters, un-
available while calculating n-grams. In this system
description three neural based automated metrics
were used: BERTscore, which computes the cosine
similarity of word embedding and applies greedy
matching to maximize the similarity score in score
arrays between words in the candidate and refer-
ence sentences (Zhang et al., 2020a), BLEURT,
which uses a BERT model, pre-trained on a large
amount of synthetic examples and finetuned on hu-
man judgement (Sellam et al., 2020), and NUBIA,
which uses neural models output predictions on a
set of parameters (Kane et al., 2020).

As shown in Table 4, there is no significant dif-
ference neither in BERTscore, nor in BLEURT
score between validation and challenge sets. F1
and precision of the BERTscore are higher for
greedy decoding, while recall is higher for the sam-
pling decoding. We used the HuggingFace’s API
load metric() from Datasets library to calculate
the BLEURT score: by default, the API loads the
BLEURT-base checkpoint with the sequence length
limited to 128 tokens - the truncation of the orig-
inal sentences resulted in an average score -1.4
for both decoding methods in both splits; the load-
ing of the BLEURT-large checkpoint with the se-
quence length equal to 512, augmented the average
score by 14%. The final values are shown in the
above-mentioned Table 4 - the higher scores are
observed for the greedy decoding method in both
splits, however the overall values of the BLEURT

5Non-european languages have even lower METEOR
scores - 0.347 on the Arabic data and 0.331 on the Chinese
data, according to the ressource.
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Samp. FBERT PBERT RBERT BLEURT
g. v. 0.842 0.822 0.863 -1.233
s. v. 0.838 0.813 0.865 -1.252
g. ch. 0.842 0.822 0.863 -1.225
s. ch. 0.838 0.815 0.864 -1.243

Table 4: Semantic similarity: BERTscore and
BLEURT.

Samp. NUBIA score semantic rel.
greedy val. 0.395 0.803
sampling val. 0.523 0.743
greedy ch. 0.406 0.35
sampling ch. 0.52 0.335

Table 5: Semantic similarity: NUBIA.

metric are rather low (since the maximum score
that can be achieved with this metric is equal to
1), which indicates the semantic distance of the
model’s generations from the benchmark reference
text.

NUBIA metric calculates such parameters as se-
mantic relation, logical agreement, grammaticality,
contradiction and a degree of new information pres-
ence (which might also signify the irrelevance) in
the candidate sentence, regarding the reference sen-
tence. In view of the current experiment’s scope,
we show the mean values of the cumulative NU-
BIA score and a semantic relevance measurement
in Table 5. As we can see, the semantic relevance
is considerably higher for the validation split.

4.3 Vocabulary diversity

Finally, the calculation of the lexical richness was
done with four automated metrics - Mean Segmen-
tal Type-Token Ratio (MSTTR) (Johnson, 1944),
Distinct (Li et al., 2016), Unique and Entropy
(Shannon, 1948).

We can see in Table 6 that MSTTR is higher for
the sampling decoding and is equivalent for greedy
decoding in validation and challenge splits together.
The Distinct score is surprisingly higher for the
greedy decoding, but doesn’t differ substantially
between validation and challenge splits.

Table 7 shows that the amount of the unique
unigrams and bigrams is higher for the sampling
decoding (which is rather expected, as the sampling
allows more creativity) and is substantially lower
for the challenge set for both decoding methods.
The Entropy is slightly higher for the sampling
decoding method, and is generally higher for the

Sample MSTTR Dist1 Dist2
greedy val. 0.858 0.19 0.594
sampling val. 0.88 0.147 0.548
greedy ch. 0.858 0.19 0.596
sampling ch. 0.878 0.158 0.553

Table 6: Diversity: MSTTR and Distinct.

Sample U1 U2 E1 E2
greedy val. 972 13115 5.818 10.241
sampling val. 1285 20540 6.123 10.602
greedy ch. 758 8172 5.788 9.638
sampling ch. 1030 11693 6.051 9.915

Table 7: Diversity: Unique and Entropy.

validation set. This can be explained by the incon-
sistencies of the challenge set, which correlate with
possible inconsistencies of the model generations,
while a comparison with the perfect validation set,
translates into higher rates of entropy, required to
map one probability distribution to another.

5 Conclusions

The system description depicted the experiment on
application of the CommonGen task from the GEM
benchmark to a hard constraint text generation with
the insertion based transformer. The use of eleven
automated metrics for measuring the generative
performance of the POINTER model allowed to
detect the issues of the model output and reveal the
advantages of a specific decoding method. For the
lexical equivalence, METEOR metric seems to be
the most relevant (since it takes stemmed forms of
the words and makes the synonym comparison),
when looking at the score augmentation for more
creative text generations, accomplished with the
sampling decoding method. The semantic similar-
ity measured with the BERTscore and BLEURT
neural based metrics showed that both validation
and challenge splits result in a semantically equiv-
alent text generations, with a small difference be-
tween decoding methods, while the application of
NUBIA metric with a refined semantic relevance
parameter resulted in a better score for the valida-
tion split. The Entropy showed the noisiness of
the generated text for both decoding methods, and
the Distinct score showed an unexpected boost for
the greedy decoding, which means less words’ rep-
etitions than for the sampling decoding. Finally,
the Unique score showed that sampling decoding
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method resulted in lexically richer text generations.
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Abstract

Narrative generation is an open-ended NLP
task in which a model generates a story given a
prompt. The task is similar to neural response
generation for chatbots; however, innovations
in response generation are often not applied
to narrative generation, despite the similarity
between these tasks. We aim to bridge this
gap by applying and evaluating advances in
decoding methods for neural response gener-
ation to neural narrative generation. In particu-
lar, we employ GPT-2 and perform ablations
across nucleus sampling thresholds and di-
verse decoding hyperparameters—specifically,
maximum mutual information—analyzing re-
sults over multiple criteria with automatic and
human evaluation. We find that (1) nucleus
sampling is generally best with thresholds be-
tween 0.7 and 0.9; (2) a maximum mutual in-
formation objective can improve the quality
of generated stories; and (3) established auto-
matic metrics do not correlate well with human
judgments of narrative quality on any qualita-
tive metric.

1 Introduction

Narrative generation (or story generation) is the
task of generating a creative response given an in-
put prompt. This output can be a story closure, a
paragraph, or a structured story with multiple para-
graphs. This input and output setup is similar to
the response generation task of chatbots, as both
tasks convert some variable-length sequential input
from a user to an automatically generated variable-
length sequential output. Thus, the neural models
and methods proposed to date for story generation
and dialogue generation have been similar.

However, as narrative generation is largely fo-
cused on coherence across long outputs, the strate-
gies used in this subfield have evolved separately

∗∗Equal contribution.
††Work performed while at Johns Hopkins University.

Figure 1: Example of interactive narrative generation.
A user provides a prompt to our model (fine-tuned GPT-
2 model), and the model responds with a story condi-
tioned on the prompt.

from those in chatbot response generation; the lat-
ter has been more concerned with generating inter-
esting and diverse—and typically short—outputs.
Thus, while many beneficial techniques may have
arisen from one domain, they are not often em-
ployed in the other. One decoding method, nu-
cleus sampling (Holtzman et al., 2020), has re-
cently been applied to narrative generation (Ip-
polito et al., 2020), but a thorough evaluation of its
various p thresholds has not been performed with
human judgments using narrative-specific criteria,
as this can be time- and labor-intensive. Also, re-
cent advances in decoding methods for response
generation—notably, the application of the max-
imum mutual information (MMI) objective (Li
et al., 2016a)—have resulted in more interesting
dialog according to human evaluators (Zhang et al.,
2020b); nonetheless, this also has not been applied
to narrative generation. Indeed, the MMI objec-
tive has been confined to short-form and less open-
ended generation tasks thus far.

Thus, we apply techniques from neural response
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generation to neural narrative generation in order to
investigate the potential benefits—and pitfalls—of
applying these methods in this underexplored do-
main. This study aims to connect research develop-
ments across tasks by sweeping various thresholds
of nucleus sampling and the application of diverse
decoding to generate more long-form creative out-
puts. We perform human and automatic evaluations
of automatically generated stories in these settings
in order to investigate the following phenomena:

1. The effect of the nucleus sampling threshold
p on narrative quality.

2. The effect of the maximum mutual informa-
tion (MMI, Li et al. 2016b) diverse decoding
objective with various diversity strengths λ on
narrative quality.

3. The correlation (or lack thereof) between hu-
man evaluations of narrative quality and auto-
matic metrics for response generation.

As this domain generates longer and less con-
strained outputs than other natural language gen-
eration (NLG) tasks, we expect to find different
ideal settings than those found for short-form or
constrained generation.

Our preprocessing, training, generation, and
analysis scripts are available publicly.1

2 Related Work

Narrative generation tasks Work on narrative
generation is split between cloze tasks, open-ended
generation, and guided generation. In a cloze task,
a full story except for a final word, phrase, or sen-
tence is given, and a model generates a completion.
This could be cast as a short generation problem—
or, more commonly in this domain, a multiple-
choice problem (Mostafazadeh et al., 2016; Weston
et al., 2015; Hill et al., 2015; Ippolito et al., 2019a).

Open-ended generation is the task of generat-
ing long-form output conditioned on a prompt
(Figure 1). Fan et al. (2018) create a paired
prompt and response dataset from the subred-
dit r/WritingPrompts2 to train a sequence-to-
sequence “fusion model.” See et al. (2019) extend
Fan et al. (2018), but use GPT-2 small and perform
a top-k decoding parameter sweep. We focus on
this open-ended narrative generation task in our in-
vestigation, but primarily focus on GPT-2 Medium
and on the effect of nucleus sampling thresholds

1https://github.com/AADeLucia/
gpt2-narrative-decoding

2https://www.reddit.com/r/WritingPrompts/

[ WP ] You live in a world where there has never
been sickness , and you are the first to have ever
experienced being sick .
I open my eyes in a panic , sweat beading and
then falling down my face . I look around and
the sun in shining through the maroon curtains
of my studio apartment . Everything seems to
be as I left it the afternoon before , but there is a
heavy , unfamiliar air in the room .

Table 1: Example prompt and response excerpt from
WRITINGPROMPTS.

and diverse decoding strengths on narrative quality.
While Nadeem et al. (2020) similarly perform a
hyperparameter search over sampling algorithms
in a language generation setting, they perform hu-
man evaluations using a convincingness metric on
a short-form news generation task; long-form nar-
rative generation is not bound by realism (and may
actually benefit from less realistic output), and thus
requires different metrics and evaluation setups.

Guided generation is the middle ground of cloze
and open-ended generation. The model is provided
more context, such as characters, plot information,
and potentially other information, and then gener-
ates a story based on all of the provided structural
and semantic information (Peng et al., 2018; Ak-
oury et al., 2020).

Decoding methods for generation Decoding
refers to the inference methods used in natural lan-
guage generation; given input sequence S, how
should we construct the output sequence T ? Since
finding the exact most probable token at each time
step often does not produce human-like or high-
quality results (Zhang et al., 2020a; Holtzman et al.,
2020), search and sampling are used to overcome
label bias and generate more human-like language.
One popular search method is beam search, where
at each time step, the algorithm keeps track of the
top B most probable partial hypotheses. When
B = 1, this method reduces to the greedy decoder,
which chooses the argmax over the model’s token
distribution at each time step.

An alternative to search is sampling-based ap-
proaches, which select a token with likelihood pro-
portional to a (typically constrained) probability
distribution at each time step. Such methods in-
clude top-k (Fan et al., 2018) which restricts the
sampling space to the top k most probable tokens
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at every time step, and “nucleus sampling”3 (Holtz-
man et al., 2020) which thresholds the cumulative
token probability distribution according to a hy-
perparameter p. We focus on nucleus sampling,
as it has tended to be a more effective decoding
method in various response generation settings
(Zhang et al., 2020a; Ippolito et al., 2020).

An approach to control sampling is tempera-
ture (Ackley et al., 1985), which modifies the soft-
max estimating the token probability distribution.
This has been applied widely in neural text gen-
eration (Ficler and Goldberg, 2017; Caccia et al.,
2018), especially when using top-k or random sam-
pling. Low temperatures bias the model toward
high-probability events, which tends to increase
generation quality while decreasing token diversity
(Hashimoto et al., 2019). Temperature sampling
has been investigated extensively in natural lan-
guage generation over multiple sampling methods,
and nucleus sampling has been found to be a more
effective method of controlling the sampling dis-
tribution (Holtzman et al., 2020), so we do not
investigate this here.

Decoding objective In chatbot response genera-
tion, top-k and nucleus sampling have been known
to generate fluent, but uninteresting and simple
high-probability responses which do not address
the input (Li et al., 2016b). This issue is com-
monly referred to as the “I don’t know” problem,
where the response to all inputs is often the high-
probability phrase “I don’t know.” Proposed so-
lutions to this response blandness issue involve
altering the decoding objective. Some recent work
in this domain includes Nakamura et al. (2018),
who use Inverse Token Frequency to reweight gen-
erated tokens. Xu et al. (2018) and Zhang et al.
(2018) use adversarial loss to optimize for diver-
sity, informativeness, and fluency. Martins et al.
(2020) propose entmax sampling to generate more
effectively from sparse distributions and address
the train-test mismatch in text generation.

Another approach explores variants of the stan-
dard log-likelihood loss, applying different objec-
tives during inference. An example of this is maxi-
mum mutual information (MMI, Li et al. 2016b),
an objective that promotes more diverse responses
in the neural response generation task. This miti-
gates the “I don’t know” problem in which all re-
sponses tend to converge to some high-probability
sequence with no real content conveyed in response

3Also referred to as “top-p”.

to the input sequence. Two versions are introduced
in Li et al. (2016b): bidirectional (MMI-bidi) and
an anti-language model (MMI-antiLM) objective.
The typical decoding objective is defined as

T̂ = argmax
T

log p(T | S)

where S is the input sequence, T is a possible tar-
get sequence, and T̂ is the selected target. We
use a slightly modified form of the MMI-antiLM
objective (Li et al., 2016a), defined as follows:

T̂ = argmax
T

log p(T | S)− λ log p(T )

where λ is a hyperparameter controlling the degree
to which the language modeling objective is sub-
tracted from the sequential transduction objective.
Intuitively, this is meant to increase the likelihood
of relevant targets while penalizing popular generic
responses (e.g. “okay”).

This diverse decoding objective has been applied
to response generation but has not yet been applied
to the narrative generation task; here, we evaluate
the effect of the MMI-antiLM objective on narra-
tive generation quality.

3 Experimental Setup

3.1 Dataset

For our task of narrative generation, we train on Fan
et al. (2018)’s long-form response dataset WRIT-
INGPROMPTS.4 This dataset was built from the
subreddit r/WritingPrompts5, where users post a
“prompt" consisting of up to a few sentences, and
other users reply to the post with a story continuing
the prompt (the “response"). An example prompt
and response pair is in Table 1.

To create datasets of varying lengths—and to
make the dataset compatible with our model (GPT-
2, discussed more in §3.2)—we preprocess the
WRITINGPROMPTS dataset as follows:

1. Remove all prompts that are not tagged with
[ WP ]. Other tags in r/WritingPrompts
have response requirements and constraints,
such as having to occur in an established uni-
verse or not including particular tokens; we
want only unconstrained responses.

2. Create different versions of each response
by using all content from (1) before the

4https://github.com/pytorch/fairseq/blob/
master/examples/stories/README.md

5https://www.reddit.com/r/WritingPrompts/

168



<|startoftext|> [WP] PROMPT [RESPONSE] RESPONSE
<|endoftext|>

Figure 2: Each prompt/response pair from WRITING-
PROMPTS was formatted for compatibility with GPT-2.
Note: “[WP]" and “[RESPONSE]" are defined as spe-
cial tokens so that they are not split into subword units.

Fold Size Tokens Per Example Total Tokens

Train
Small 92.9 (± 82.8) 21.4M
Medium 206.0 (± 128.2) 47.5M
Large 718.4 (± 458.9) 165.8M

Valid
Small 92.9 (± 80.2) 1.2M
Medium 206.1 (± 128.3) 2.8M
Large 714.4 (± 463.3) 9.5M

Test
Small 91.4 (± 79.4) 1.2M
Medium 204.7 (± 124.1) 2.6M
Large 720.4 (± 455.9) 9.3M

Table 2: Corpus sizes for each fold and response length.
Tokens Per Example indicates the mean number of to-
kens per prompt/response pair (± standard deviation).
Total Tokens indicates the number of tokens in the en-
tire corpus.

first line break/the first 100 tokens, (2) be-
fore the third line break/the first 256 to-
kens, and (3) the entire response/the first
1024 tokens, respectively. These are referred
to as the “small”, “medium”, and “large”
datasets/response lengths, and are treated as
separate corpora. Thus, we have 3 train, vali-
dation, and test corpora for a total of 9.

3. Combine the source (prompt) and target (re-
sponse) strings into one, as in Figure 2.

During step 2, we create multiple versions of
the training set with varying response lengths to
evaluate the quality of narrative generation for out-
puts of various lengths. We use line breaks instead
of a token cutoff as in Fan et al. (2018), because
line breaks are more likely to provide complete sen-
tences. See Table 2 for the sizes of these datasets.

3.2 Narrative Generation with GPT-2
Instead of the convolutional-sequential model used
in Fan et al. (2018), we focus on the generative
Transformer-based model GPT-2 (Radford et al.,
2019).6 We employ this model because it is cur-
rently the state-of-the-art publicly available text
generation model, though this may change when
GPT-3 (Brown et al., 2020) is released publicly.

We investigate the small and medium GPT-2
6We use the Huggingface implementation: https://

huggingface.co/transformers/model_doc/GPT-2.html

models for output quality comparison. GPT-2
Large was infeasible to train on the medium and
large datasets, even on a machine with multiple
Tesla P100 GPUs.

GPT-2 is pre-trained on WebText. For this work,
we fine-tune GPT-2 Small and Medium on the
small, medium, and large versions of the WRIT-
INGPROMPTS dataset discussed in §3.1. We fine-
tuned for one epoch using Adam with a learning
rate of 5×10−5, epsilon of 1×10−8, and batch size
of 4. Fine-tuning is performed on Google Cloud
instances using NVIDIA Tesla K80s or T4s. Infer-
ence is performed by feeding GPT-2 a string of the
format in Figure 2 up to the [RESPONSE] token.

3.3 Decoding Methods

After GPT-2 is fine-tuned on the WRITING-
PROMPTS dataset, we evaluate the model’s gen-
erated responses with a parameter sweep of p for
nucleus sampling. We also provide a small compar-
ison with top-k sampling in Appendix C.

Holtzman et al. (2020) uses a threshold of
p = 0.95 for chatbot response generation; we
perform an ablation over values of p here to dis-
cover which value best suits narrative genera-
tion. Specifically, we investigate the thresholds of
of 0.3, 0.5, 0.7, 0.9, 0.95, and also include greedy
search and full random sampling, represented by
p = 0 and p = 1, respectively.

Once we find the best p, we apply the di-
verse decoding objective to narrative generation
to investigate whether this generates better stories.
Specifically, we implement the MMI-antiLM (anti-
language model) objective for GPT-2.

We also perform an ablation over λ values
for the antiLM objective, testing the values
0.1, 0.2, 0.35, 0.5; λ = 0 represents not using di-
verse decoding. As this objective was originally
designed to increase the specificity of a response
with respect to a prompt, we expect this to increase
interestingness and relevance (but perhaps decrease
fluency and coherence, since we are subtracting the
language modeling objective from the response
generation objective). We only employ the antiLM
objective when generating the first 20 tokens of
the target sequence, after which we use the regu-
lar log-likelihood loss. This follows the approach
of Li et al. (2016b), who find that ungrammatical
sequences often arise later in the output sequence
and that the first few tokens have a large effect on
the rest of the output sequence; thus, they threshold
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the objective to only apply to the first few tokens
during generation.

There is an established quality-diversity trade-
off (Zhang et al., 2020a) in natural language gen-
eration, so we expect that strong diverse decoding
(e.g., λ = 0.5) will generate lower-quality narra-
tives overall compared to lower λ values, which
may increase interestingness more than they de-
crease fluency.

3.4 Evaluation

The qualities important for narrative generation are
interestingness, coherence, fluency, and relevance
to the prompt. These metrics are also evaluated in
Akoury et al. (2020), though they measure “like-
ability" instead of interestingness.

A combination of automatic and human eval-
uation is used to assess the quality of generated
narratives. For automatic evaluation, we employ
test perplexity, lexical diversity (dist-n, Li et al.
2016b), and a BERT-based sentence similarity
metric, Sentence-BERT (sent-BERT, Reimers and
Gurevych 2019). Perplexity is used to evaluate
language models and may correlate with fluency.
The latter two may act as proxies for interesting-
ness, since they measure n-gram diversity within
an output and sentence embedding diversity across
outputs, respectively. We use sent-BERT as an out-
put diversity metric by using the cosine distance
instead of cosine similarity. Our motivation in
choosing these diversity metrics is from Tevet and
Berant (2020), who identify dist-n and sent-BERT
as the best metrics to evaluate two targeted types of
diversity—diverse word choice and diverse content,
respectively.

For human evaluation, we employ 4-point Likert
scales to evaluate narratives for interestingness, co-
herence, fluency, and relevance. For the purpose of
evaluation, we define interestingness as the enjoy-
ment of reading the story, coherence as the level of
cohesion between sentences in a narrative, and flu-
ency as the grammaticality and naturalness of the
English output; these metrics judge the quality of a
generated narrative independently from the input
prompt. Relevance is a metric we employ to mea-
sure how well the response follows from the input
prompt. We evaluate 100 narratives per-p and per-
λ, and we have 5 human annotators per-narrative.
We judge quality on medium-length outputs, as
these are less variable in length than large narra-
tives while being long enough to properly judge our

metrics. Appendix B contains a thorough descrip-
tion and example of our Mechanical Turk setup.

3.5 Baseline
We employ the fusion model—the previous state-
of-the-art approach for narrative generation before
pre-trained Transformer models—from Fan et al.
(2018) as a baseline. This model is an ensemble
of two convolutional seq2seq models, where the
first is pre-trained on the training set and is then
used to boost a second model. We employ this
model on the WritingPrompts dataset and evaluate
on different narrative lengths.

4 Results

4.1 Quantitative Results

Response Length

Model Small Medium Large

GPT-2 Small 30.52 23.74 15.64
GPT-2 Medium 25.08 19.34 13.19

Fusion Model 44.20 39.03 34.71

Table 3: Perplexities of the GPT-2 models and baseline
model after fine-tuning on WritingPrompts dataset with
different response lengths. The fusion model from Fan
et al. (2018) is used as a baseline. Perplexities are not
directly comparable across GPT-2 and the fusion model
due to differences in tokenization.

The perplexities of each model on each narra-
tive length are shown in Table 3. GPT-2 Medium
had the lowest perplexity within each dataset size.
GPT-2 Small had a fairly close perplexity to GPT-2
Medium despite having significantly fewer param-
eters. Comparatively, the fusion model had a high
perplexity, though scores are not directly compara-
ble across models due to tokenization differences.
In general, perplexity decreased as the length of the
response increases, though perplexities are also not
necessarily comparable across dataset sizes since
this a per-word metric. Nonetheless, these results
suggest that we should generally expect GPT-2
Medium to be marginally more fluent than GPT-2
Small, and that both of these will output far better
English than the fusion model. We confirm this
qualitatively; see Appendix A. We thus focus on
GPT-2 Medium for the following analyses.

Next, we sweep over various p-values for nu-
cleus sampling using GPT-2 Medium on the
medium-length dataset, evaluating using human
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annotators (Figure 3). We found that p = 0.7 per-
formed best on average for all metrics except in-
terestingness, where p = 0.9 was best. p = 0.9
was a close second overall, and the difference in
performance between these two settings was not
high. Increasing p past 0.9 or decreasing p below
0.7 more notably decreased performance. Inter-
annotator agreement (measured with Fleiss’ kappa)
was 0.13 for interestingness and coherence, 0.12
for fluency, and 0.10 for relevance; these are sim-
ilar to agreements found in Akoury et al. (2020)
when prompts are included.
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Figure 3: Mean human ratings of the quality of out-
put narratives when using various p values. Ratings
are on a 4-point Likert scale in the range [1, 4]. Means
are significantly different (P < .05) between any two
consecutive top-p values in a series of t-tests, except
relevance from p = 0.5 onward, interestingness from
p = 0.7 onward, coherence in [0.9, 0.95], and fluency
in [0.7, 0.95].

To test the effect of diverse decoding on narra-
tive quality (Figure 4), we use the same human
annotator setup as for the p sweep. We decode
with nucleus sampling using p = 0.7 and vary the
λ hyperparameter (Figure 4). Higher λ indicates
a larger modification from the original decoding
objective. We found that setting λ = 0.1 increased
the quality of narratives for all metrics. Interest-
ingness and relevance further increased at λ = 0.2,
which is expected given that the p(T | S) term in
the decoding objective becomes more prominent
than p(T ) as λ increases; however, fluency and co-
herence began to decline here. Higher settings of λ
tended to reduce quality on all metrics.

Next, we discuss the relationship between model
size and the diversity of outputs. Table 4 contains
dist-n and sent-BERT scores for all model sizes, p
values in nucleus sampling, and response lengths.
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Figure 4: Mean human ratings of the quality of out-
put narratives when using diverse decoding at various
λ settings (note: p = 0.7). Ratings are on a 4-point
Likert scale in the range [1, 4]. Means are significantly
different (P < .05) for interestingness, coherence, and
fluency between λ = 0.0 and λ = 0.1, for fluency be-
tween λ = 0.1 and λ = 0.2, and for all metrics between
λ = 0.35 and λ = 0.5.

For any given p value and response length, GPT-
2 Medium tended to use a slightly larger variety
of tokens per-response than GPT-2 Small. Mean-
while, the diversity of the fusion model outputs
was quite low in comparison—typically due to the
degeneracy of the output. We also note that the
dist-n scores were the same for the medium and
large response lengths; this is also due to the de-
generacy of the output and the surprisingly short
stories generated, even when trained on large data
and when allowed to generate up to 1,000 tokens.

Dist-n and sent-BERT scores both declined with
increasing response lengths. We believe that the
former is due to the normalization constant (the
number of n-grams in the narrative) in dist-n cal-
culations. Larger responses tend to repeat tokens
more than shorter responses, so increasing response
length increases the normalization constant more
quickly than the number of unique n-grams. The
latter may be due to the way sentence embeddings
are calculated: as the number of tokens grows, sen-
tence embeddings may grow more similar on av-
erage, since they are calculated as the mean of the
token embeddings that compose the sentence.

Relatedly, even though we allow the fusion mod-
els trained on the large dataset to generate longer
responses, they often generated responses which
were of similar lengths to medium responses (i.e.,
they often did not generate to their maximum al-
lowed sequence length). This may explain the lack
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Small Response Medium Response Large Response

Model Decoding Dist-1 Dist-2 sent-BERT Dist-1 Dist-2 sent-BERT Dist-1 Dist-2 sent-BERT

GPT-2 Small
p = 0.7 0.018 0.149 0.830 0.011 0.112 0.741 0.003 0.034 0.694
p = 0.9 0.026 0.234 0.808 0.016 0.177 0.682 0.005 0.087 0.646
p = 0.95 0.030 0.274 0.798 0.019 0.213 0.663 0.007 0.118 0.632

GPT-2 Medium
p = 0.7 0.026 0.195 0.855 0.013 0.125 0.741 0.003 0.036 0.709
p = 0.9 0.034 0.272 0.842 0.018 0.190 0.692 0.007 0.093 0.660
p = 0.95 0.039 0.308 0.837 0.021 0.227 0.677 0.009 0.127 0.646

Fusion Model
p = 0.7 0.009 0.092 0.707 0.005 0.061 0.686 0.005 0.061 0.686
p = 0.9 0.014 0.174 0.667 0.008 0.130 0.637 0.008 0.130 0.637
p = 0.95 0.017 0.213 0.655 0.009 0.155 0.624 0.008 0.149 0.624

Table 4: Automatic diversity evaluations across models and decoding methods for each response length. The
decoding methods represent a subset of our sweep over p values in nucleus sampling (full table in Appendix D).
The fusion model is a baseline from Fan et al. (2018).

of distinction between the scores obtained in Ta-
ble 4 between medium and large narratives.

Finally, we analyze the effect of various p values
as well as different strengths of the MMI-antiLM
objective on narrative token diversity (Figure 5).
There was an expected consistent positive corre-
lation between p and dist-n, as well as a positive
correlation between λ and diversity; since dist-n
increases monotonically with both hyperparame-
ters, ρs = 1. Sent-BERT consistently decreased
with higher p when p > 0, indicating lower lev-
els of difference between narratives as p increases.
Sent-BERT decreased monotonically with respect
to λ.

4.2 Qualitative Results

In this section, we analyze the quality of narratives
by directly observing the outputs. Appendix A
shows generated narratives from a variety of model
architectures, sizes, and decoding hyperparameters.

4.2.1 Nucleus Sampling
When p was high, we generally observed more in-
teresting and vivid narratives with good diction and
fluency scores, but which had no single cohesive
plot. When p was low, we saw more repetitive
word choice but higher cohesion. However, when p
was very low (p ≤ 0.3), the output was degenerate.
Generally, when p was around 0.7, we observed
consistently good stories compared to other p val-
ues. With values of p = 0.9 and higher, we gener-
ally saw output stories with more variable quality
(i.e., whose quality is often either higher or lower
than stories with p = 0.7). This is intuitive with
respect to how p restricts the sampling space: when
p is too small, too many options are removed and
the model cannot generate fluent text. When p is

large, we more closely approach random sampling
and fewer tokens are removed from the sampling
space, so the probability tail increases the likeli-
hood for the model to choose unlikely tokens; this
can produce interesting output, but tends to reduce
fluency and coherence. A discussion of the number
of tokens sampled for each p is in Appendix E.

4.2.2 Diverse Decoding

For smaller values of λ, MMI had a smaller effect
on the output of the models. Within a given p value,
increasing MMI values up to 0.2 seemed to result
in slightly more interesting diction for the small
models. Coherence seemed to be unaffected by
changing values of λ, though we saw a notable
drop in the grammaticality of output at 0.35 and
higher.

More interesting is that the intensity of the sub-
ject matter seemed to increase with λ, especially
notable around 0.2 and 0.35. Indeed, we gener-
ally observed more cursing, violent content, and
jokes featuring sexuality and dark humor as λ in-
creased. This may not necessarily be a positive or
negative trend; if one wishes to generate stories
which are more vivid, and one’s language model is
sufficiently high-quality to start, then this may be a
beneficial method to employ. Nonetheless, we do
not have a clear mathematical explanation for this,
since the MMI-antiLM objective simply increases
the importance of the prompt while decreasing the
importance of the language model. Perhaps these
more intense subjects are somewhat less probable
than more tame content, hence why subtracting the
language model could increase the likelihood of
seeing these darker themes.
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Figure 5: Plots comparing dist-1, dist-2, and sent-
BERT scores across p values (top) and MMI-antiLM
λ values (bottom). Note: we use p = 0.7 for MMI-
antiLM analysis. Scores are for GPT-2 Medium with
medium-length responses.

4.2.3 Correlating Automatic Metrics with
Quality

Thus far, we have observed how perplexity, dist-
n, and sent-BERT vary with various model archi-
tectures/sizes, decoding approaches, and hyperpa-
rameters. However, what do these quantities say
about the quality of generated narratives? In gen-
eral, we note the following qualitative trends: (1)
Lower perplexity is better. This correlates mainly
with fluency and non-degenerate output. (2) Very
low dist-n scores indicate consistent neural text
degeneration. (3) Very high dist-n scores indicate
variable-quality narratives.

Dist-n demonstrated a moderate correlation7

with interestingness (ρs = .75, P < .1) across
top-p values. The two metrics correlated well up

7All correlations here are measured using Spearman’s rank
correlation (ρs) along with measures of significance (capital
P ).

to top-p = 0.9, but it is possible that decreased flu-
ency and coherence at higher values of p overshad-
owed the increased number of distinct tokens per-
response, thus negating any interestingness gains.
For all other human metrics, dist-n did not correlate
well (ρs ≤ .5, P > .1). Thus, we do not recom-
mend optimizing over dist-n. Rather, this quantity
can be a helpful heuristic when comparing across
model configurations at a high level, and both very
high and very low dist-n scores can be indicative
of distinct problems in narrative generation despite
having little inherent meaning in isolation.

Sent-BERT did not correlate well with any of
our metrics (0 ≤ ρs ≤ .43, P > .1), indicating
that it is either not a sufficient method for sentence
diversity measurement when applied to narratives,
or that it does not correlate with factors that make
for interesting narratives. When p is lower, we
observed stories that were degenerate in different
ways, whereas when p was higher, we observed
stories that were always more token-diverse, and
thus generally more similar on a sentential level.

We find a less marked diversity-quality trade-off
in the narrative generation setting compared to re-
cent natural language generation papers in other
settings (Ippolito et al., 2019b; Zhang et al., 2020a;
Nadeem et al., 2020). If this trade-off were strong,
we would expect generally decreasing human eval-
uation scores with higher p and higher λ, since
dist-n increases monotonically with both hyperpa-
rameters. While this held to an extent with λ (and
even then not monotonically, since λ = 0.1 showed
higher performance on all metrics), it was certainly
not true for p up to very high values. Perhaps this
is due to the more open-ended nature of narrative
generation, as stories can benefit from higher levels
of diversity without needing to maintain realism or
a specific writing style.

5 Conclusions

Our results suggest that p values lower than those
suggested for other tasks (Holtzman et al., 2020)
are ideal in narrative generation, and that small
magnitudes of diverse decoding may produce better
and more vivid stories. We also find that distinct-n
and sentence-BERT do not correlate well with any
of our human perceptions of narrative quality, and
that the quality-diversity trade-off is less strong in
narrative generation than in other generation tasks.
The latter finding is preliminary, though supported
by Martins et al. (2020), who find increases in both
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diversity and human scores with their proposed
method.

Our findings aim to inform future efforts in the
narrative generation domain by establishing future
baselines given our recommended hyperparameters,
and by facilitating further investigation of decod-
ing objectives for better narrative generation. Once
GPT-3 (Brown et al., 2020) is released for public
use, it is very likely that this model will outperform
GPT-2; thus, we encourage future work to investi-
gate similar hyperparameters and sampling meth-
ods to see whether these trends are stable across
model sizes.

6 Ethical Considerations

Our contributions include a story generation model
to be used by other researchers and AI hobbyists.
This model was fine-tuned on WritingPrompts
(Fan et al., 2018), which is a collection of prompts
and responses from a popular creative writing sub-
reddit r/WritingPrompts. To the best of our
knowledge, this dataset was not examined for hate
speech or gender bias, and we did not perform such
inspections here. Also, the released code has no
post-generation filter to flag potentially offensive
narratives.

We did not pursue any of these filters or offen-
sive text detection because our work was focused
on evaluating generated narratives for stylistic mea-
sures of quality, and was not focused on content-
based sources of bias. However, one should look to
relevant work in the field on bias and hate speech
detection (Sheng et al., 2020; MacAvaney et al.,
2019) before deploying such models as creative
writing tools. Besides the clear ethical obligation
to vet such a tool, a “creative” writing tool which
propagates or amplifies the bias of its training set
would potentially hinder the quality of output narra-
tives. Normative and stereotypical narratives would
likely be uninteresting.
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A Example Outputs

All examples start on the following page. We report
narrative responses given a single prompt for vari-
ous model architectures/sizes, decoding methods,
and hyperparameter sweeps.

B Human Annotator Survey Details

As discussed in §3.4, we created a survey on
Amazon Mechanical Turk for the human eval-
uation. Evaluating all of the prompts was in-
feasible, so we sampled 100 prompts and gener-
ated one story for each nucleus sampling p value
({0.0, 0.3, 0.5, 0.7, 0.9, 0.95, 1.0}), for a total of
700 stories. We wanted story lengths that were
long enough to give the worker sufficient context
to be able to evaluate a passage, but not too long
as to take too much time per story. We used the
GPT-2 Medium model (best performing, see §4)
trained on the medium length dataset because it fit
our requirements. Due to the projected length of
time to complete the survey, we paid $1 per human
intelligence task (HIT). Each HIT was seen by five
workers.

The generated stories were shuffled, and split
into groups of five for each HIT. The story display
is shown in Figure 9. In addition to the five stories,
each HIT had one “attention check." There were a
total of 140 HITs. The definitions for interesting,
fluent, coherent, and relevant were explained, along
with guidelines for each of the [1, 4] Likert scale
options (shown in Figure 7). For convenience, the
definitions were available as a tooltip when a mouse
hovered over a question or option. Example ratings
were available to the worker under the “Examples"
tab (not shown).

As mentioned earlier, each HIT included one
attention check. The attention check was used to
check if a worker was paying attention to the task
or selecting options at random. The check, shown
in Figure 8, asked the worker to fill in the same
answers as for the previous story. In addition to
the attention checks, we supervised the workers
by only releasing 20 HITs at a time (total of seven
batches), and iteratively removing workers who did
a poor job. While this task was very subjective
(a handful of workers left us comments about the
difficulty of the task), we consider performance
subpar for any combination of the following: (1)
if a worker finished the task unreasonably quickly
(under 5 minutes), (2) failed an attention check, (3)
had low agreement with other annotators, and (4)

completed many HITs in a short amount of time.
We spot-checked work from those who were auto-
matically flagged as suspicious by checking their
task answers. Overall, we removed 28 workers
from the final results.

Once the highest-rated nucleus sampling param-
eter was chosen (p = 0.7), we repeated the same
setup for the antiLM λ parameter sweep. Using
the same 100 prompts from earlier, we generated
stories with GPT-2 Medium-medium with p = 0.7
and λ = {0.1, 0.2, 0.35, 0.5}. We also included
λ = 0.0 (i.e. without the antiLM objective) to help
with worker calibration. The 500 stories were split
into 100 HITs (five batches of 20 HITs).

Total cost of both the nucleus sampling and an-
tiLM sweeps was $1,440.
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C Top-k vs. Nucleus Sampling

C.1 Setup
For top-k sampling, we use k = 40; our motivation
for choosing this value is that it is the one used in
Radford et al. (2019) for “conditional" (prompted)
generation8, and in Fan et al. (2018).

The following is a qualitative review performed
by the authors.

C.2 Qualitative Evaluation
For most reasonable settings of p, nucleus sampling
tends to produce stories which are dramatic, vivid,
and fun to read, but which do not often stay on
topic. Indeed, the outputs demonstrate two main
types of errors: (1) cramming too many topics into
one story, and (2) sudden shifts in topic. Example
outputs are in Table 8.

Top-k sampling, however, demonstrates quite
extreme variance. Some of the generated stories
feel almost human-like with how on-topic they re-
main for multiple paragraphs—but they are about
safe and boring topics and generally employ very
common token collocates, which makes the output
feel uncreative and uninteresting. Other stories are
dramatic, but almost dream-like due to the stream-
of-consciousness incoherent flow. Yet other stories
are completely unintelligible and show signs of
neural text degeneration. Holtzman et al. (2020)
finds nucleus sampling to generally be preferable
to top-k sampling, and we find this to be true in
the narrative generation task. p seems to correlate
more closely with narrative quality than k.

C.3 Conclusions
As we had expected, we preferred the stories gen-
erated with nucleus sampling decoding. Since nu-
cleus sampling is essentially a dynamic top-k al-
gorithm (i.e. each step has a different number of
tokens that constitutes the top x%), and even small
nucleus sampling values have large number of to-
kens to choose from (k), this aligns with the results
of See et al. (2019), who found large k to be pre-
ferred according to automatic evaluations.

8Example generated responses are located in Radford et al.
(2019)’s Appendix.

D Automatic Metrics

Here, we provide the full table of automatic metrics
for all p values tested (Table 9). Dist-n scores
tend to increase consistently with higher p values,
whereas sent-BERT tends to peak at lower p values
in [0.3, 0.5] and continually decline after.
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E A Closer Look at Nucleus Sampling

How does the nucleus sampling token filter com-
pare to the top-k filter? For example, when a token
is sampled from p = 0.3, how many tokens are in
the sampling space?

Figure 6 shows the cumulative distribution func-
tion (CDF) for the p values tested in the nucleus
sampling hyperparameter sweep. Using the same
set of 100 prompts from the human evaluation, we
re-generate the responses and collect the number
of tokens in the sampling space at each step. Each
p is represented by the raw number of tokens in
the distribution across all 100 prompts and is not
averaged for each generated story.

Surprisingly, nucleus sampling often reduced to
the greedy decoder (token space reduced to a sin-
gle token), even at higher p values. Despite high
probability thresholds, 0.7 <= p <= 0.95 still
skewed towards sampling from a relatively low
number of tokens, as these tokens tended to have
very high probability in certain contexts. All p
values frequently sampled from less than 1, 000
tokens, which is less than 2% of the total number
of tokens in GPT-2’s vocabulary (50, 260). As p in-
creased, we observed a larger sample space, which
indicates more of a return to the long-tailed token
probability distribution seen in random sampling.

This shows that it may not be correct to com-
pare a nucleus sampling p value directly against
a single top-k value. Nucleus sampling is essen-
tially dynamic top-k sampling, which makes a di-
rect comparison unfair without first checking the
distribution of the number of tokens sampled by p
for the model and task in question.

Figure 6: Cumulative distribution of the frequency of
the number of sampled tokens for each tested p. We do
not include p = 1.0 since it is constant with the number
of tokens in GPT-2 vocabulary (50, 260). The top and
bottom plots are the same, but the bottom plot has a
restricted x-axis to see the trend better.
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Model Prompt: “[WP] You just started a new job in a large office building and what you do n’t
know is that at twelve o’clock every day , there is a office wide Purge style battle to the death
, those who survive an hour get a significant pay raise and can come back tomorrow . A bell
just went off , it ’s twelve o’clock .”

GPT-2 Small, p = 0.7 The last time I saw this place was in a very old diner, that was a pretty nice diner. The
waiters were in all black suits and shoes, and the only reason they didn’t make it in time
was because I didn’t want to. I had my smartphone in my hands, but I ’d had it the whole
time. <newline><newline>“ Don’t take it anymore, it’s been a while. ” A voice said, and
I smiled. “ I don’t want to take it anymore. ” <newline><newline>I smiled and held my
phone out. I was still on the phone, but I could feel my stomach churning. I could feel the
sun on my face, so I held it out, but the lights went out. I wasn’t sure how long I had left, but
it wasn’t long before I woke up.

GPT-2 Med., p = 0.7 “ Hi, I’m Mr. Smith, and I’m here for the Purge! ” <newline><newline>The building’s
boss sat at the desk with a huge grin. I ’d been working in the building for about five months
now and I ’d grown tired of it. <newline><newline>“ Now, I understand the concerns, but
we have a very strict policy about employees not coming into work after 12:00 PM. If you’re
caught cheating, or even the slightest bit annoying, you’re fired. We also don’t allow anyone
over 12 hours without the company paying a visit. ”

Fusion Model, p = 0.7 “ Hello ! My name is Randy , ” I shouted into the air . “ I ’ m the <unk>"
<newline><newline>“ Well , it ’ s just that I need a new way to put this . I ’ m not
going to let you take my own life. ” Randy said . “ You ’ re not going to allow me to use my
own life . But I ’ m not going to let you take your own life ! ” <newline><newline>“ Oh ,
you ’ re sorry ! I was just thinking about your life ! You ’ re going to make a decent living ,
and all I need to do is come back to the living room . I need to be happy . But you ’ re not
going to let me get my own life ! ” <newline><newline>“ You ’ re going to have to put my
own life together , <unk>! ” Randy laughed . “ If I ’ m going to take your own life , I ’ ll
take you on to your own life . ” <newline><newline>“ You ’

Table 5: Medium-length responses from GPT-2 Small, GPT-2 Medium, and Fusion (baseline) models with nucleus
sampling parameter p = 0.7.
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top-p Prompt: “[WP] You just started a new job in a large office building and what you do n’t
know is that at twelve o’clock every day , there is a office wide Purge style battle to the death
, those who survive an hour get a significant pay raise and can come back tomorrow . A bell
just went off , it ’s twelve o’clock .”

greedy Hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey,
hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey,
hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey,
hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey,
hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey,
hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey, hey,
hey, hey, hey, hey, hey, hey, hey, he

p = 0.3 I was nervous. <newline><newline>I was nervous about the job. <newline><newline>I
was nervous about the pay.

p = 0.5 The first thing I noticed was the absence of people. I wasn’t sure why, but I couldn’t
shake the feeling that it wasn’t just the people that were gone. I mean, it wasn’t like I
hadn’t been here before. I mean, I was in the office for a month, but it felt like a year.
<newline><newline>I wasn’t sure what was going on, but I could tell that something was
wrong. <newline><newline>“ Hello? ”

p = 0.7 My boss was a loner. He liked to work late and I didn’t know why. I didn’t want to work
late. I just didn’t have the patience for it. <newline><newline>I don’t know what happened.
<newline><newline>“ You got ta be kidding me, ” he said, “ a sixteen year old would just
walk into the office and run out of work? ”

p = 0.9 All four of the chimes clicked and the chandelier snapped, as the room dimmed and grew dim
until the only light came from an overhead television, showing the “ The Purge ” live. In the
background, a towering wall of reds, greens, and yellows flashed in contrast to the background
colors, casting warm green shimmers across the television. <newline><newline>The
chandelier struck the ceiling, crumpling under the weight. A small circle of lights in
the ceiling blinked and illuminated what had been a desk, until two figures entered it.
<newline><newline>The first man, dressed in a yellow and white baseball cap and sun-
glasses, stood tall, wearing khakis and a button-down shirt. A muscular build and hairy arms
waved about as he spoke.

p = 0.95 Those who survive are always in their offices when they finish, they wake up, make sure they
run the water for a while, then try to get up and make the 9 to 5 as fast as possible. The rest
are scared to take a break from that, they’re afraid the DIT will find them and kill them and
they have to do it. Well those people, these employees, they’re all so qualified to run around
the office. I mean they’re trained. I took the systems Administrator and Job Writer ( same
person from last year ) and fired them in 15 minutes. The guy, one of the better systems
engineers had died from a heart attack and there are only 3 employees left. I’ve never heard
of a DIT being fired like that before. ” <newline><newline>Dr. Neutson was writing these
words down as they told her to, he ’d always loved his wife Sandy too and she was absolutely
dying. Mrs. Neutson looked as though she was about to make another coffee, now that she
realized it was someone else who was in her office, there was tears streaming down her face,
she was going to finish today. “ Great, I’m going to have no more"

p = 1.0 Chad’s Melatonin Impaired Heart implant had occurred during the Golden elimination pilot.
“ Critically, ” the docs explained to the board, “ Third lapse, unlocking the minimum Carol
Corporation-mandated for the Restricted Solid Species Program. We penalize those who have
such lapses as early and late entry personnel. ” <newline><newline>Chad felt pain in the
core of his neck - compressing saliva into his neckline, seeing his neighbors ’ streaks poking
out, “ That doesn’t work, I still live in Seattle ’ s Milliner Square until May 17th, ” thought
Chad as he fell down the empty stairs the hospital had installed that morning. Without
warning, his head slammed into the steel sill beneath him and he felt a sharp pain begin to
run down his spine. The pain apparently doomed him to eternity in a single meditation, the
disease never getting better. <newline><newline>After five ER visits, nine Lab ultrasound
tests, six minor surgeries, pressure checks, one heart-heated ultrasound, Chad came back for
surgeries, six of which were removeable.

Table 6: Medium-length responses from GPT-2 Medium with a sweep of nucleus sampling parameter p.180



λ Prompt: “[WP] Your baby starts crying every time you leave their room . Finally , you pick
up your child and leave the room together . As soon as you step out, you hear crying coming
from the room .”

λ = 0.0 “Daddy!” <newline><newline>I cried into my mom’s breast. She was holding my son in
her arms. I ’d never seen a baby cry so deeply. Tears were streaming down my face. I ran to
the door and opened it to see a crying girl. I ran back to the room and opened the door, and
there was my little girl. She ’d started crying again. <newline><newline>“What is wrong,
mom?”

λ = 0.1 There were only two of us left in the hospital. The nurses wouldn’t let me leave. I was in pain.
My mother was looking at me with a confused look on her face. <newline><newline>“Can
you tell me what’s wrong, honey?” she asked. <newline><newline>“Honey, it’s okay.” I
whispered. I couldn’t hear her, and the nurses couldn’t hear me either.

λ = 0.2 My wife came home from work around 3 AM to find her child covered in blood
and screaming. Her heart was racing and her skin was boiling with the pain of be-
ing cut. <newline><newline>I rushed into the living room, eyes wide and bloodshot.
She was hysterical, sobbing, and cackling as she knelt over my body, gasping for air.
<newline><newline>“Wh-who are you?” I asked. She was gasping for air.

λ = 0.35 Sitting next to her bed hung cardboard boxes. Five candles burning brightly in their candles
hung in the ceiling. A bright yellow heart in a jar was stuck in the middle. There were three
other jars on the floor. The left was empty, with the word “SHIT” written on it. The other
two had the words “WAIT” written on them. <newline><newline>“Come on, Mom, it’s
just a puppy!” He was angry. <newline><newline>“It’s a girl!” I responded. “What are
you talking about? You have two of them, and they’re twins!”

λ = 0.5 “Daddy? Daddy what’s wrong honey? Daddy why are you crying honey? Daddy pick up
your child and leave the room, you have to get to work” <newline><newline>I picked up
my daughter and we walked out into the kitchen. <newline><newline>I held her close and
whispered into her ear “It’s ok honey, I’ll be ok.”

Table 7: Medium-length stories generated using GPT-2 Medium with nucleus sampling (p = 0.7) and various
diverse decoding strengths λ.
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Figure 7: Instructions presented to the workers. To make it easier for the workers, the definitions were available as
tool-tip hover text over the questions and options.

Figure 8: An attention check in the survey. The worker is asked to input the same answers as they did for the
previous story. A worker gets flagged for review if they fail at least one attention check.
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Figure 9: An example narrative display to a worker along with the questions. There were five stories in each HIT
and one attention check. The definitions of each metric and option are shown when the mouse hovers over the
questions and radio buttons, respectively.
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Model, Decoding Prompt: “[WP] You just started a new job in a large office building and what you do n’t
know is that at twelve o’clock every day , there is a office wide Purge style battle to the death
, those who survive an hour get a significant pay raise and can come back tomorrow . A bell
just went off , it ’s twelve o’clock .”

GPT-2 Med., p = 0.9 All four of the chimes clicked and the chandelier snapped, as the room dimmed and grew dim
until the only light came from an overhead television, showing the “ The Purge ” live. In the
background, a towering wall of reds, greens, and yellows flashed in contrast to the background
colors, casting warm green shimmers across the television. <newline><newline>The
chandelier struck the ceiling, crumpling under the weight. A small circle of lights in
the ceiling blinked and illuminated what had been a desk, until two figures entered it.
<newline><newline>The first man, dressed in a yellow and white baseball cap and sun-
glasses, stood tall, wearing khakis and a button-down shirt. A muscular build and hairy arms
waved about as he spoke.

GPT-2 Med., k = 40 The first time it happened I remember it vividly. The first time I met it. We got our first
coffee, we sat on the train and talked and made plans but when I first saw it coming I knew
something was going to happen. There was a man in white with a clipboard. I said “ how
you doing? ” and he asked “ what the hell did I just read you about ”. I told him nothing he
went through what the hell I knew everything about the Purge and I knew that I had to be
careful because if I wasn’t careful it would happen again. He looked at me expectantly and I
knew immediately that I had to go and try to help people ’ s lives. No one else would go
so I did as I was told. <newline><newline>He asked me if I had time for something more
serious than just reading

Fusion Model, p = 0.9 He was n’t ready to die . I did . The name on his chest would kill him if he wanted to know .
They wanted me to accept him as he wanted me to be not ready . I did it for him but he loved
me . <newline><newline>I was the one that started a revolution . It was a simple matter of
encouraging him and all the loyal soldiers that murdered him . And yet I never seemed to
know what he had to do to deserve my right to be born and robbed . If only I knew . I could
feel the faintest drop of power beneath my footsteps as he died . I felt the need to put some
strings around him . But he had so much to offer . He seemed to feel I was the leader of the
group and I was ready . He taught me the fact that he was supposed to be the most hated
man in the country . So the world slowed . <newline><newline>And so he fought me . I
was ready . He lost every step of his very being when he

Fusion Model, k = 40 It was a sunny Monday morning when I woke up to the noise of my alarm going off . I got
up from my bed , got out of bed , and went into the bathroom and took off my coat . It was
n’t exactly a normal morning . I walked into the bathroom and put on my shoes , and put
on some pants , and went to the bathroom . The light from the bathroom was n’t going to
change anything . I walked out of the bathroom and went to the bathroom . It was a good
morning . My morning routine was going well in bed , and I was going to see some shit , so
it was good . <newline>I went to the bathroom . It was the first step in my morning shift ,
so I took off my pants and

Table 8: Medium-length responses from GPT-2 Medium and the Fusion (baseline) model with top-k and nucleus
sampling.
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Small Medium Large

Model Decoding Dist-1 Dist-2 sent-BERT Dist-1 Dist-2 sent-BERT Dist-1 Dist-2 sent-BERT

GPT-2 Small

greedy 0.002 0.007 0.782 0.002 0.008 0.644 0.000 0.001 0.684
p = 0.3 0.006 0.038 0.835 0.005 0.029 0.815 0.001 0.006 0.804
p = 0.5 0.013 0.092 0.838 0.008 0.067 0.791 0.002 0.014 0.760
p = 0.7 0.018 0.149 0.830 0.011 0.112 0.741 0.003 0.034 0.694
p = 0.9 0.026 0.234 0.808 0.016 0.177 0.682 0.005 0.087 0.646
p = 0.95 0.030 0.274 0.798 0.019 0.213 0.663 0.007 0.118 0.632
p = 1.0 0.042 0.344 0.787 0.028 0.283 0.644 0.015 0.195 0.613

GPT-2 Medium

greedy 0.006 0.022 0.626 0.003 0.014 0.579 0.001 0.003 0.779
p = 0.3 0.014 0.078 0.842 0.008 0.047 0.813 0.001 0.008 0.813
p = 0.5 0.021 0.140 0.855 0.011 0.086 0.788 0.002 0.017 0.772
p = 0.7 0.026 0.195 0.855 0.013 0.125 0.741 0.003 0.036 0.709
p = 0.9 0.034 0.272 0.842 0.018 0.190 0.692 0.007 0.093 0.660
p = 0.95 0.039 0.308 0.837 0.021 0.227 0.677 0.009 0.127 0.646
p = 1.0 0.051 0.374 0.831 0.030 0.291 0.658 0.017 0.210 0.628

Fusion Model

greedy 0.006 0.068 0.690 0.005 0.055 0.666 0.005 0.055 0.666
p = 0.3 0.003 0.017 0.783 0.001 0.009 0.779 0.001 0.009 0.779
p = 0.5 0.005 0.046 0.758 0.003 0.027 0.750 0.003 0.027 0.750
p = 0.7 0.009 0.092 0.707 0.005 0.061 0.686 0.005 0.061 0.686
p = 0.9 0.014 0.174 0.667 0.008 0.130 0.637 0.008 0.130 0.637
p = 0.95 0.017 0.213 0.655 0.009 0.155 0.624 0.008 0.149 0.624
p = 1.0 0.025 0.277 0.633 0.016 0.229 0.603 0.016 0.229 0.603

Table 9: Automatic diversity evaluations across models and decoding methods for each response length. The
decoding methods represent a parameter sweep over the p value in nucleus sampling, where p = 1 corresponds to
completely random sampling. The fusion model is a baseline from Fan et al. (2018).
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