
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021), pages 161–165
August 5–6, 2021. ©2021 Association for Computational Linguistics

161

System Description for the CommonGen task with the POINTER model

Anna Shvets
FabLab by Inetum

Paris, France
anna.shvets@inetum.com

Abstract

In a current experiment we were testing Com-
monGen dataset for structure-to-text task from
GEM living benchmark with the constraint
based POINTER model. POINTER represents
a hybrid architecture, combining insertion-
based and transformer paradigms, predicting
the token and the insertion position at the same
time. The text is therefore generated gradually
in a parallel non-autoregressive manner, given
the set of keywords. The pretrained model was
fine-tuned on a training split of the Common-
Gen dataset and the generation result was com-
pared to the validation and challenge splits.1

The received metrics outputs, which measure
lexical equivalence, semantic similarity and di-
versity, are discussed in details in a present
system description.

1 Introduction

The 2021 edition of the Generation Evaluation and
Metrics (GEM) challenge for the creation of liv-
ing NLG benchmark leaderboard (Gehrmann et al.,
2021), comprised four groups of tasks - summa-
rization, structure-to-text, simplification and dia-
log. The CommonGen dataset makes part of the
structure-to-text group and was designed to mea-
sure a common sense reasoning capacities of gen-
erative models given a set of concepts (Lin et al.,
2020). Due to the nature of the constraint based text
generation of the POINTER model (Zhang et al.,
2020b) and resemblance in a generation strategy
(the model takes a set of keywords as an input and
generates a text, containing these keywords) the
CommonGen dataset for hard constrained genera-
tion of the GEM benchmark appears to be a good
fit for testing the model performance. The pre-
trained POINTER model was therefore fine-tuned
on a training set of the CommonGen dataset and the

1CommonGen have a private test set, which is not dis-
tributed by GEM benchmark, therefore a comparison to the
test set was not possible.

inference results were compared to the validation
and challenge splits of the same dataset.2

2 Data description and pre-processing

The Insertion-based transformer architecture lever-
age implies the use of the masking mechanism,
the goal of which is to predict not only the like-
lihood of a token itself, but the likelihood of
the token insertion between two given tokens, in
other words, we need to predict the word and
the place where a new word is inserted. In that
regard, a text is preprocessed in a specific way,
where the tokens are scored using a combination
of three schemes of the token importance measure-
ment (term frequency-inverse document frequency
(TF-IDF), part-of-speech (POS) tagging and Yet-
Another-Keyword-Extractor (YAKE)) and the high-
est scored tokens are replaced with a special no-
insertion token [NOI] tag. This procedure is itera-
tive and results in generation of several utterances
out of the initial sentence. During the training
phase, the model is initialised with the Multilin-
gual BERT and its vobabulary is extended with
the [NOI] tag. At the inference time, the masking
mechanism is used in a reverse order, allowing an
iterative tokens prediction - the model will chose to
either generate a token or a [NOI] tag at a given gen-
eration stage and if the next stage contains [NOI]
tag predictions only, the generation is finished.

The model was pre-trained on 12GB of
Wikipedia corpora, therefore the pre-training data
consisted of a well written English with the correct
spelling, grammar and punctuation. For the fine-
tuning, the sentences from the training split were
preprocessed with the pre-training data generation
script,3 which inserts the token position masks in a
gradual manner, resulting in a data augmentation
from 67.389 source entries to 160.680 processed

2Available under the MIT license at
https://github.com/dreasysnail/POINTER.

3Available in the project repository cited earlier.

https://github.com/dreasysnail/POINTER


162

entries.

3 Training details and decoding strategy

The fine-tuning was done on 8 cores (16GB of
RAM each) of a TPU-v3 device, following the
multiprocessing paradigm, and took three hours
to train on 40 epochs with the batch size equal
to 64 and gradient accumulation equal to 2. The
finetuning hyperparameters were preserved from
the original paper and included AdamW optimizer,
learning rate equal to 1e-5, Adam epsilon equal to
1e-8, 10 warmup optimizer scheduler steps and the
seed equal to 1.

The inference of the finetuned model was done
using the concept sets from the validation and chal-
lenge splits of the CommonGen dataset. The de-
coding strategy included two sampling methods,
applied separately - greedy and sampling. The
greedy decoding is based on a greedy search al-
gorithm, which consists of choosing the highest
scoring token at a given time step, along with the
temperature (Ackley et al., 1985), while sampling
uses a combination of top-k (Fan et al., 2018), top-p
(Holtzman et al., 2020) and the temperature param-
eters to render model predictions.

For the greedy decoding method, a temperature,
which is a scale factor of each token’s probability
before going through softmax function, was set
to its lower value 0.3, ensuring the most stable
generations. This parameter alone draws a limit
on the model’s creativity, resulting in a more rigid
generation.

For the sampling decoding method, the parame-
ters promoting a high creativity of the model were
chosen: the top-k window of the most probable to-
kens was set to 10, following the strategy expressed
in the original paper (Fan et al., 2018), the top-p
cumulative probability threshold for the most prob-
able tokens was set to its highest tested value 0.95,
according to the original paper (Holtzman et al.,
2020), and the temperature was set to 0.9 - this is
the highest lower probability threshould for this
sampling parameter, allowing the maximum tokens
pass-though without giving up stability of the text
generation.

Other parameters were common for both
sampling methods and included noi decay and
reduce decay, which were equal to 1, and
prevent, reduce stop, lessrepeat, which were
set to true. The inference for both decoding meth-
ods was done with the maximum sequence length

Description Content
keys val. ball court run throw
greedy val. Olympic athlete then brings in

the tennis ball straight back up
down on the tennis court.

sampling val. Olympic athlete quickly
moves toward the soccer ball
about halfway way up on the
clay court.

target val. The boy must run from one
end of the court to the other
to throw the ball into the hoop.

Table 1: Examples of generated text compared to the
ground truth.

equal to 256.
The opposite set of parameters (rigid versus cre-

ative) intended to explore the model’s edge gener-
ative performance. This induces the metrics mea-
surements for both types of the decoding strategy
within validation and challenge splits.

4 Metrics outputs

Before diving in the metrics output results, let us
explore a few examples of the generated text.4 The
Table 1 shows the examples of generation using
greedy and sampling decoding methods for the
validation split, compared to the human-generated
target from the CommonGen dataset. To fairly
measure the metrics output, the number of entries
in the validation split was truncated to 500 in order
to match the number of entries in the challenge set.

Since the goal of GEM challenge is an in-depth
analysis of the model performance regarding lexi-
cal, semantic similarity and language richness, we
will divide the analysis in separate subsections.

4.1 Lexical equivalence

The lexical equivalence was measured with four
n-gram based automated metrics and is reflected in
two tables: Table 2 and Table 3.

The Recall-Oriented Understudy for Gisting
Evaluation (ROUGE), which relies on counting the
matching n-grams in candidate and reference text,
is a metric initially designed for evaluating sum-
maries (Lin, 2004), which nowadays is widely used
for many other tasks in natural language processing

4The complete lists of generated sentences along with the
scripts for calculating the metrics can be found in a dedicated
github repository: https://github.com/asnota/metrics

https://github.com/asnota/metrics


163

Sample R1 R2 RL
greedy val. 0.137 0.008 0.109
sampling val. 0.142 0.008 0.106
greedy ch. 0.142 0.009 0.111
sampling ch. 0.136 0.008 0.103

Table 2: Lexical equivalence: ROUGE metric.

and generation. The ROUGE-1 (R1) and ROUGE-
2 (R2) in a Table 2 reflects the co-occurrence of
unigrams and bigrams in generated text versus
validation or challenge splits of the CommonGen
dataset. The ROUGE-L (RL) measures the longest
in-sequence common n-grams and as we may ob-
serve, the values are quite small, meaning that the
generated text might use different vocabulary, com-
pared to the reference text. The ROUGE score
is a bit higher for greedy decoding method of the
challenge set.

While ROUGE is a recall-oriented metric, BLEU
relies on a precision calculation of the overlapping
n-grams and was primarily designed to measure
the quality of the automatic translation (Papineni
et al., 2002). The BLEU score augmentation is
observed for the challenge set (Table 3), which
might indicate, that the generated text might suffer
from the noise, since it gives better scores when
compared to a noisy reference text.

The calculation of the geometric mean with the
BLUE score is completed by calculation of the
arithmetic mean of the n-gram overlap with the
NIST metric. This metric also calculates a degree
of the informativeness of n-grams (rare n-grams
are given more weight) and is less sensible towards
small differences between the candidate and refer-
ence texts (Doddington, 2002). The NIST score
shows no significant difference between validation
and challenge splits, however the score itself is
rather low, which indicates considerable lexical
differences of the generated text compared to the
reference text.

Additionally to the geometric and arithmetic
mean, a harmonic mean of unigram precision
and recall is calculated with the METEOR metric
(Banerjee and Lavie, 2005). The advantage of this
n-gram based metric is that the calculation includes
synonym matching, stemming and word matching,
which lowers the impact of alternative vocabulary
and grammatical forms used in the generated text,
compared to the golden human standard. Although
the values appear to be low, it should be noted, that

Sample BLEU NIST METEOR
greedy val. 2.88 0.114 0.123
sampling val. 2.456 0.093 0.141
greedy ch. 2.996 0.113 0.125
sampling ch. 2.473 0.09 0.136

Table 3: Lexical equivalence: BLEU, NIST and ME-
TEOR metrics.

the maximum correlation with human judgement
achieved was equal to 0.403.5 The METEOR score
is slightly higher for the challenge set and is gener-
ally higher for the sampling decoding method.

4.2 Semantic similarity
A recent shift towards neural based metrics
changed the very essence of the metrics input -
the words are represented by their embeddings,
facilitating the calculation of many parameters, un-
available while calculating n-grams. In this system
description three neural based automated metrics
were used: BERTscore, which computes the cosine
similarity of word embedding and applies greedy
matching to maximize the similarity score in score
arrays between words in the candidate and refer-
ence sentences (Zhang et al., 2020a), BLEURT,
which uses a BERT model, pre-trained on a large
amount of synthetic examples and finetuned on hu-
man judgement (Sellam et al., 2020), and NUBIA,
which uses neural models output predictions on a
set of parameters (Kane et al., 2020).

As shown in Table 4, there is no significant dif-
ference neither in BERTscore, nor in BLEURT
score between validation and challenge sets. F1
and precision of the BERTscore are higher for
greedy decoding, while recall is higher for the sam-
pling decoding. We used the HuggingFace’s API
load metric() from Datasets library to calculate
the BLEURT score: by default, the API loads the
BLEURT-base checkpoint with the sequence length
limited to 128 tokens - the truncation of the orig-
inal sentences resulted in an average score -1.4
for both decoding methods in both splits; the load-
ing of the BLEURT-large checkpoint with the se-
quence length equal to 512, augmented the average
score by 14%. The final values are shown in the
above-mentioned Table 4 - the higher scores are
observed for the greedy decoding method in both
splits, however the overall values of the BLEURT

5Non-european languages have even lower METEOR
scores - 0.347 on the Arabic data and 0.331 on the Chinese
data, according to the ressource.

https://github.com/huggingface/datasets/blob/master/metrics/meteor/meteor.py


164

Samp. FBERT PBERT RBERT BLEURT
g. v. 0.842 0.822 0.863 -1.233
s. v. 0.838 0.813 0.865 -1.252
g. ch. 0.842 0.822 0.863 -1.225
s. ch. 0.838 0.815 0.864 -1.243

Table 4: Semantic similarity: BERTscore and
BLEURT.

Samp. NUBIA score semantic rel.
greedy val. 0.395 0.803
sampling val. 0.523 0.743
greedy ch. 0.406 0.35
sampling ch. 0.52 0.335

Table 5: Semantic similarity: NUBIA.

metric are rather low (since the maximum score
that can be achieved with this metric is equal to
1), which indicates the semantic distance of the
model’s generations from the benchmark reference
text.

NUBIA metric calculates such parameters as se-
mantic relation, logical agreement, grammaticality,
contradiction and a degree of new information pres-
ence (which might also signify the irrelevance) in
the candidate sentence, regarding the reference sen-
tence. In view of the current experiment’s scope,
we show the mean values of the cumulative NU-
BIA score and a semantic relevance measurement
in Table 5. As we can see, the semantic relevance
is considerably higher for the validation split.

4.3 Vocabulary diversity

Finally, the calculation of the lexical richness was
done with four automated metrics - Mean Segmen-
tal Type-Token Ratio (MSTTR) (Johnson, 1944),
Distinct (Li et al., 2016), Unique and Entropy
(Shannon, 1948).

We can see in Table 6 that MSTTR is higher for
the sampling decoding and is equivalent for greedy
decoding in validation and challenge splits together.
The Distinct score is surprisingly higher for the
greedy decoding, but doesn’t differ substantially
between validation and challenge splits.

Table 7 shows that the amount of the unique
unigrams and bigrams is higher for the sampling
decoding (which is rather expected, as the sampling
allows more creativity) and is substantially lower
for the challenge set for both decoding methods.
The Entropy is slightly higher for the sampling
decoding method, and is generally higher for the

Sample MSTTR Dist1 Dist2
greedy val. 0.858 0.19 0.594
sampling val. 0.88 0.147 0.548
greedy ch. 0.858 0.19 0.596
sampling ch. 0.878 0.158 0.553

Table 6: Diversity: MSTTR and Distinct.

Sample U1 U2 E1 E2
greedy val. 972 13115 5.818 10.241
sampling val. 1285 20540 6.123 10.602
greedy ch. 758 8172 5.788 9.638
sampling ch. 1030 11693 6.051 9.915

Table 7: Diversity: Unique and Entropy.

validation set. This can be explained by the incon-
sistencies of the challenge set, which correlate with
possible inconsistencies of the model generations,
while a comparison with the perfect validation set,
translates into higher rates of entropy, required to
map one probability distribution to another.

5 Conclusions

The system description depicted the experiment on
application of the CommonGen task from the GEM
benchmark to a hard constraint text generation with
the insertion based transformer. The use of eleven
automated metrics for measuring the generative
performance of the POINTER model allowed to
detect the issues of the model output and reveal the
advantages of a specific decoding method. For the
lexical equivalence, METEOR metric seems to be
the most relevant (since it takes stemmed forms of
the words and makes the synonym comparison),
when looking at the score augmentation for more
creative text generations, accomplished with the
sampling decoding method. The semantic similar-
ity measured with the BERTscore and BLEURT
neural based metrics showed that both validation
and challenge splits result in a semantically equiv-
alent text generations, with a small difference be-
tween decoding methods, while the application of
NUBIA metric with a refined semantic relevance
parameter resulted in a better score for the valida-
tion split. The Entropy showed the noisiness of
the generated text for both decoding methods, and
the Distinct score showed an unexpected boost for
the greedy decoding, which means less words’ rep-
etitions than for the sampling decoding. Finally,
the Unique score showed that sampling decoding



165

method resulted in lexically richer text generations.

References
David H Ackley, Geoffrey E Hinton, and Terrence J Se-

jnowski. 1985. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147–169.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

George Doddington. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurrence
statistics. San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation.

Sebastian Gehrmann, Tosin Adewumi, Karmanya Ag-
garwal, Pawan Sasanka Ammanamanchi, Aremu
Anuoluwapo, Antoine Bosselut, Khyathi Raghavi
Chandu, Miruna Clinciu, Dipanjan Das, Kaustubh D.
Dhole, Wanyu Du, Esin Durmus, Ondřej Dušek,
Chris Emezue, Varun Gangal, Cristina Garbacea,
Tatsunori Hashimoto, Yufang Hou, Yacine Jernite,
Harsh Jhamtani, Yangfeng Ji, Shailza Jolly, Mi-
hir Kale, Dhruv Kumar, Faisal Ladhak, Aman
Madaan, Mounica Maddela, Khyati Mahajan, Saad
Mahamood, Bodhisattwa Prasad Majumder, Pe-
dro Henrique Martins, Angelina McMillan-Major,
Simon Mille, Emiel van Miltenburg, Moin Nadeem,
Shashi Narayan, Vitaly Nikolaev, Rubungo Andre
Niyongabo, Salomey Osei, Ankur Parikh, Laura
Perez-Beltrachini, Niranjan Ramesh Rao, Vikas Rau-
nak, Juan Diego Rodriguez, Sashank Santhanam,
João Sedoc, Thibault Sellam, Samira Shaikh, Anasta-
sia Shimorina, Marco Antonio Sobrevilla Cabezudo,
Hendrik Strobelt, Nishant Subramani, Wei Xu, Diyi
Yang, Akhila Yerukola, and Jiawei Zhou. 2021. The
gem benchmark: Natural language generation, its
evaluation and metrics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration.

Wendell Johnson. 1944. Studies in language behavior:
A program of research. Psychological Monographs,
56(2):1–15.

Hassan Kane, Muhammed Yusuf Kocyigit, Ali Abdalla,
Pelkins Ajanoh, and Mohamed Coulibali. 2020. NU-
BIA: NeUral based interchangeability assessor for
text generation. In Proceedings of the 1st Workshop
on Evaluating NLG Evaluation, pages 28–37, On-
line (Dublin, Ireland). Association for Computational
Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting objec-
tive function for neural conversation models.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020. Commongen: A constrained text genera-
tion challenge for generative commonsense reason-
ing.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh.
2020. Bleurt: Learning robust metrics for text gener-
ation.

Claude E Shannon. 1948. A mathematical theory of
communication. The Bell system technical journal,
27(3):379–423.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020a. Bertscore: Eval-
uating text generation with bert.

Yizhe Zhang, Guoyin Wang, Chunyuan Li, Zhe Gan,
Chris Brockett, and Bill Dolan. 2020b. Pointer: Con-
strained progressive text generation via insertion-
based generative pre-training. In EMNLP.

https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://doi.org/10.5555/1289189.1289273
https://doi.org/10.5555/1289189.1289273
https://doi.org/10.5555/1289189.1289273
http://arxiv.org/abs/1805.04833
http://arxiv.org/abs/2102.01672
http://arxiv.org/abs/2102.01672
http://arxiv.org/abs/2102.01672
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
https://www.aclweb.org/anthology/2020.evalnlgeval-1.4
https://www.aclweb.org/anthology/2020.evalnlgeval-1.4
https://www.aclweb.org/anthology/2020.evalnlgeval-1.4
http://arxiv.org/abs/1510.03055
http://arxiv.org/abs/1510.03055
http://arxiv.org/abs/1911.03705
http://arxiv.org/abs/1911.03705
http://arxiv.org/abs/1911.03705
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/2004.04696
http://arxiv.org/abs/2004.04696
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675

