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Abstract

We describe our NVJPFSI (NVIDIA Japan
Financial Services with AI) system for span-
based causality extraction from financial news
documents submitted as part of the Fin-
Causal 2021 Workshop. We investigated a
list of pretrained language models, such as
ALBERT-xxlarge, BERT-large, and RoBERTa-
large models fine-tuned under SQuAD2.0. A
grid-based ensemble learning algorithm is fur-
ther introduced to combine n-best predictions
from five checkpoints. We show impressive re-
sults of F1 (94.77%) and exact match (87.62%)
scores through applying these models individ-
ually and in grid-based ensemble learning.

1 Introduction

We describe the pipeline architecture and perfor-
mances of our system that participated the Fin-
Causal2021 span-based causality extraction task1

(Mariko et al., 2021) which used the same datasets
following FinCausal2020 (Mariko et al., 2020a).
Pretraining + fine-tuning metholody is adapted.
There are three pretrained models, ALBERT (Lan
et al., 2020), RoBERTa (Liu et al., 2019) and BERT
(Devlin et al., 2019), used in our system. Detailed
fine-tuning configurations, loss curves are reported
(Section 3). We made 18 submissions (Section 4) in
which 3 are combined predictions of 5 checkpoints
from individual models and 1 combined prediction
achieved the highest F1 (94.77%, ranked 3rd) and
exact match (87.62%, ranked 2nd) scores. A sim-
ple grid-based ensemble algorithm is described in
Section 5. We conclude this paper in Section 6.

2 Dataset for FinCausal2021

We used the full dataset with 2,394 samples for
training. There are duplicated usage of sample ids.
Thus, in our development set, we only keep the first

1https://competitions.codalab.org/com
petitions/33102
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Figure 1: Fine-tuning based system architecture.

text for duplicated ids yielding 2,289 samples. Our
second development set is a much smaller subset
with only 65 samples randomly selected from the
full training set. Our experimental setting can be
taken as a closed test, instead of open test. This is to
fully utilize the training set with less rich samples.

3 System Architecture

3.1 Pipeline of the system
Figure 1 depicts our fine-tuning based system ar-
chitecture. We borrow the major framework from
(Becquin, 2020). Starting from a batch of input
(id, text), we first use tokenizer of each pretrained
language model (PLM) and then use the PLM’s
forward function to represent the input text into a
dense tensor with a shape alike (batch size, max-
imum sequence length, h) where h stands for the
hidden layer dimension (such as 1,024). Then, we
use a projection network (one layer linear network)
to project from h to 4. That is, for one position in
a sequence, we need to compute its probabilities to
be start of a cause, end of a cause, start of an effect

https://competitions.codalab.org/competitions/33102
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and end of an effect. We reuse the two heuristic
rules in (Becquin, 2020) for candidate span filter-
ing: (1) one cause or effect should not span over
multiple sentences and (2) extend the clause (cause
or effect) to the entire sentence when one sentence
contains only one clause. These heuristic rules are
motivated by the data annotation criteria described
in (Mariko et al., 2020b). In addition, one text pos-
sibly has more than one pair of cause-effect. At
that time, different ids with suffices alike ".1", ".2"
will be appended to the original ids, resulting in
ids alike "0001.000005.1" and "0001.000005.2".
When projecting from n-best list to top-1 results,
the id of each input (id, text) is taken into con-
sideration: an id that ends with ".1" picks rank-0
prediction and ".2" picks rank1-prediction. Cross
entropy loss is used to compare the top-1 predicted
4 positions and their references.

There are two major differences between our
framework and (Becquin, 2020). First, different
types of pretrained language models (Section 3.2).
Second, grid-based ensemble learning among mul-
tiple n-best outputs (Section 5).

3.2 Employed pretrained language models

We use Huggingface’s transformer package2

(Wolf et al., 2019) and employ three pre-
trained language models which are ALBERT (Lan
et al., 2020) fine-tuned by SQuAD2.0 (Rajpurkar
et al., 2018) (m1=elgeish/cs224n-squad2.0-albert-
xxlarge-v13), RoBERTa (m2=roberta-large4) (Liu
et al., 2019) and BERT (Devlin et al., 2019)
fine-tuned by SQuAD2.0 (m3=deepset/bert-large-
uncased-whole-word-masking-squad25). Table 1
lists the major configurations of these 3 PLMs. We
run experiments on one DGX-1 machine equipped
with 8 NVIDIA V100-16GB GPU cards.

We first selected BERT model fine-tuned by
SQuAD2.0 basing on its well-known performance
in GLUE (Wang et al., 2018) and SuperGLUE
(Wang et al., 2019) shared tasks. Also, consid-
ering that SQuAD2.0 is another span-based answer
extraction tasks of general domain, its domain adap-
tion to financial domain will be meaningful for in-
vestigation. Also, we selected RoBERTa since it
trained BERT with a list of strategies and yielded

2https://huggingface.co/transformers/
3https://huggingface.co/elgeish/cs224

n-squad2.0-albert-xxlarge-v1
4https://huggingface.co/roberta-large
5https://huggingface.co/deepset/bert-l

arge-uncased-whole-word-masking-squad2

ALBERT RoBERTa BERT
dropout prob: 0 0.1 0.1
embedding size: 128 1,024 1,024
finetuning task: squad2 NA squad2
hidden act: gelu gelu gelu
hidden dropout prob: 0 0.1 0.1
hidden size: 4,096 1,024 1,024
initializer range: 0.02 0.02 0.02
intermediate size: 16,384 4,096 4,096
layer norm eps: 1.0E-12 1.0E-05 1.0E-12
max position embed: 512 514 512
num attention heads: 64 16 16
num hidden layers: 12 24 24
pad token id: 0 1 0
type vocab size: 2 1 2
vocab size: 30,000 50,265 30,522
parameter size 223M 355M 336M

Table 1: Major configurations of the 3 PLMs.
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Figure 2: Fine-tuning curves of the 3 PLMs.

significantly better results than BERT. Finally, AL-
BERT by parameter sharing is with only 2/3 of the
parameters of BERT yet still performed better than
BERT in GLUE, we thus take it into consideration
as well. Each model is attached with an indepen-
dent vocabulary and out-of-vocabulary words are
marked as <UNK> by models’ default and inde-
pendent tokenizers.

Figure 2 depicts the cross-entropy loss curves
during fine-tuning. After 50 epoches, BERT’s loss
is the lowest. However, these losses do not neces-
sary have the same order of the final performances
which are given in Table 2 and 3.

4 Our Submission Results

Table 2 lists the F1, Precision, Recall and exact
match scores on the official test set of our 18 sub-
mitted systems. Submissions from 1 to 12 are se-
lected by sorting the EM scores under a develop-
ment set with 64 samples.

We first pick the top-1 checkpoints of m1, m2,
and m3. These forms the first three submissions.
We observe that 2-m2-7563 achieved the best F1
score of 94.82% yet its EM is only 70.53% re-

https://huggingface.co/transformers/
https://huggingface.co/elgeish/cs224n-squad2.0-albert-xxlarge-v1
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https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2
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F1 P R EM
1-m1-4578 94.10 94.10 94.10 80.56
2-m2-7563 94.82 94.83 94.83 70.53
3-m3-3782 92.28 92.29 92.29 82.29
4-m1-8359 92.44 92.44 92.47 79.31
5-m1-8757 93.99 94.00 94.00 86.36
6-m1-9354 93.83 93.83 93.84 86.52
7-m2-14130 92.01 92.02 92.01 80.88
8-m2-14528 94.39 94.40 94.41 70.53
9-m2-16518 93.85 93.86 93.86 77.90
10-m3-2986 92.01 92.01 92.03 66.30
11-m3-4180 93.41 93.42 93.43 71.00
12-m3-30846 92.86 92.87 92.86 71.47
13-m1-9752 93.81 93.80 93.82 86.83
14-m1-9553 94.23 94.23 94.24 86.36
15-m1-7762 94.27 94.27 94.28 86.68
16-comb.1 94.77 94.78 94.78 87.62
17-comb.2 93.68 93.68 93.68 84.95
18-comb.3 93.85 93.86 93.86 85.11
mean 93.59 93.59 93.60 80.07
stdev 0.90 0.90 0.90 7.09

Table 2: F1 (%), P (Precision, %), R (Recall, %) and
EM (exact match, %) scores on the official test set of
our 18 submissions (m1 = albert-xxlarge-squad2, m2
= roberta-large, and m3 = bert-large-squad2). Num-
bers after m1/2/3, such as 7762, are iteration number
(= checkpoint index) of each individual model.

flecting a significant gap of between F1 and EM.
Similar gaps appear frequently in other submitted
results. These partially suggest that only using
F1/P/R scores for ranking the models is possibly
ambiguous. Basing on these observations and con-
siderations, we keep using EM as the major criteria
for ranking our models’ checkpoints.

Then, rank-2 to rank4 checkpoints from m1, m2,
and m3 are respectively selected. These form our 4
to 12 submissions. Even we selected them basing
on development set’s EM score, their performances
at the official test set contain high variances, from
66.30% to 86.52%.

We thus consider change our development set of
from 64 samples to the whole training set. There
are 5 ids used by 10 texts (i.e., two texts used the
same id) and we only keep one text for one unique
id. The result training set contains 2,288 samples.
We use this development set to rank the checkpoints
and submissions from 13 to 18 are related to it. In
which, submissions 13 to 15 are the top-3 single
models from m1 and both F1 and EM achieved in
a relatively high level: 13-m1-9752 achieved the
best EM score of 86.83% among all the individual
checkpoints.

Finally, we computed means and standard deriva-
tions in in Table 2. F1/P/R are averagely 93.60%
around and EM is averagely 80.07%. Also, note

that the standard derivations are only 0.9% for
F1/P/R while EM’s standard derivation reached
as much as 7.09%. It will be essential to disclose
this gap among F1/P/R and EM for better under-
standing the predicting qualities of the models.

5 Grid-based Ensemble Method

5.1 The algorithm for FinCausal dataset

We utilize grid-based ensemble method to the n-
best (n=5) predictions from several types of models.
During each ensemble learning, we intentionally
pick 5 strong individual models basing on their
exact matching scores in the development set and
in the whole training set. Each model is assigned a
weight of from 0 to 1 with a step length of 0.1 and
the sum up of the five weights are ensured to be 1
(line 5 in Algorithm 1).

Algorithm 1 gives our grid-based ensemble al-
gorithm. There are two functions, main() and
getEM(). The first function main() reads nbest pre-
diction results from external files, construct a grid
that ranges over the possible weights of each model
during combining. Then, in getEM(), under each
weight list, we try to compute the weighted proba-
bilities (line 16) of predicted cause-effect pairs for
each (id, text) input. One special treatment (lines
20 to 24) is motivated by the fact that one text is
allowed to have more than one cause-effect pairs.
Given one text with different id, the model outputs
the same n-best prediction. Thus, we are forcing a
text having several ids to pick different predictions.
This treatment brings significant improvements to
final scores. Also, this id based suffix_index for
top-n result determining is not only used for multi-
ple models’ ensemble learning, but also for single
model’s top-1 result selecting from top-n beam
search predictions (right-top at Figure 1).

5.2 Experimental results with ensemble

Table 3 lists F1 and EM scores of three ensem-
ble predictions and their source individual models’
outputs. In order to select individual models for en-
semble learning, we first rank each model’s check-
points by the EM scores on the whole training set.
That is, we are using a closed test set which ranges
over all the training samples. The top-1 checkpoint
of each model, namely m1-7762, m2-31642, and
m3-30647, are selected at first. Then, we further
append ALBERT model m1-9752 to all the three
combinations since it achieved the best EM score
(86.83%) among all the individual models’ submis-



Algorithm 1: Grid-based ensemble

1 . main()
2 best_w5 = []; best_em = 0.0
3 nbest = [{id:{(text;cause;effect) :

probability}}, {}, {}, {}, {}] . read from
external nbest files

4 reference = [(id;text;cause;effect)] . read
from external reference file

5 for w5 in {0.0, 0.1, ..., 1.0}*5 and sum(w5)
= 1.0 . grid-based searching do

6 em = getEM(w5, nbest, reference)
7 if em > best_em then
8 best_em = em; best_w5 = w5

9 return best_em, best_w5
10 . getEM(w5, nbest, reference)
11 w_nbest = {id:{(text;cause;effect):0.0}}
12 for i in [0, 4] . range over 5 models do
13 for aid in nbest[i].keys do
14 top5_dict = nbest[i][aid]
15 for text_cause_effect in

top5_dict.keys do
16 w_nbest[aid][text_cause_effect]

+= w5[i] *
top5_dict[text_cause_effect]

17 output = {} . one (id,text) with the best
(cause,effect)

18 for aid, entry_map in w_nbest.items() do
19 sorted_texts = sort entry_map based on

descending order of scores
20 suffix_index = 0
21 if aid.count(’.’) == 2 then
22 suffix_index = int(aid.split(’.’)[-1])

23 if suffix_index > 0 then
24 suffix_index -= 1

25 best_text = sorted_texts[suffix_index]
26 output[aid] = best_text . best_text =

(text;cause;effect)
27 return em (= EM(output,reference))

sions. The fifth checkpoint is then selected to be
rank-3 in m1, rank-2 in m2 and rank-2 in m3.

From Table 3, we have the following observa-
tions. First, in the development set, through grid-
based ensemble learning, the F1 and EM scores
are averagely improved 3.39% and 5.14%, respec-
tively. Second, in the test set, only comb.1’s EM
and F1 are better than all the submitted individual
checkpoints, +0.94% of EM and +0.80% of F1,

test dev (=train)
EM F1 EM F1 w

16-comb.1 87.62 94.77 95.02 97.56
15-m1-7762 86.68 94.27 89.89 94.20 0.4
m2-31642 - - 89.93 94.11 0.2
m3-30647 - - 89.97 94.10 0.3
13-m1-9752 86.83 93.81 89.80 94.32 0.0
6-m1-9354 86.52 93.83 89.72 94.05 0.1
17-comb.2 84.95 93.68 94.97 97.17
15-m1-7762 86.68 94.27 89.89 94.20 0.0
m2-31642 - - 89.93 94.11 0.8
m3-30647 - - 89.97 94.10 0.1
13-m1-9752 86.83 93.81 89.80 94.32 0.1
m2-6369 - - 89.76 94.07 0.0
18-comb.3 85.11 93.85 95.10 97.23
15-m1-7762 86.68 94.27 89.89 94.20 0.0
m2-31642 - - 89.93 94.11 0.6
m3-30647 - - 89.97 94.10 0.1
13-m1-9752 86.83 93.81 89.80 94.32 0.2
m3-3583 - - 89.93 94.10 0.1

Table 3: F1 and EM scores on the official test set and de-
velopment set (=full training set) of three combined pre-
dictions in ensemble and their source individual mod-
els. w ∈ [0.0, 1.0] is each checkpoint’s learned weight.

averagely. The other two combinations, comb.2
and comb.3 performed worse than almost all the
submitted individual checkpoints. Due to submis-
sion limitations, our current guess is that the usage
of the whole training set as the development set
for individual checkpoint selecting possibly caused
overfitting problem. Third, interestingly, in our best
comb.1, the best individual checkpoint m1-9752’s
weight is assigned to be 0.0, while in comb.2/3, its
weight are 0.1 and 0.2 respectively. These partly re-
flect that using the best checkpoint is optimal in the
ensemble output and other checkpoints are strong
enough through combination.

6 Conclusion

We have described our system architecture, 3 pre-
trained language models, 18 submissions in which
3 are system combination results and a simple grid-
based ensemble learning algorithm. Our best sub-
mission achieved F1 (94.77%, ranked 3rd) and
exact match (87.62%, ranked 2nd) scores in the
official test set. In addition, we analyzed the perfor-
mance gap of among F1 and exact match and used
exact match for ranking our checkpoints.

In the future, it will be interesting to investigate
other types of pretrained language models such as
the auto-regressive GPTx (Brown et al., 2020) with
prompt-based learning (Liu et al., 2021). Also it
will be interesting to employ other deep learning
based ensemble methods (El-Geish, 2020).
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A Illustration of Our 18 Submissions

In addition, we depict the F1 and EM scores of
these 18 submissions in Figure 3, where the best
F1 (94.82%) for single checkpoint is 2-m2-7563
with EM of 70.53% while the best F1 (94.77%) for
ensemble system is 16-comb.1 with EM of 87.62%.
The F1 scores are only with a difference of 0.05%
yet EM’s difference is as much as 17.09%.
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Figure 3: Comparison of stable F1 and astonished EM
among our 18 submissions.
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