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Abstract

In this paper we show the results of our par-
ticipation in the FNS 2021 shared task. In our
work we propose an end to end financial nar-
rative summarization system that first selects
salient sentences from the document and then
paraphrases extracted sentences. This method
generates an overall concise summary that
maximises the ROUGE metric with the gold
standard summary. The end to end system
is developed using a hybrid extractive and ab-
stractive architecture followed by joint training
using policy-based reinforcement learning to
bridge together the two networks. Empirically,
we achieve better scores than the proposed
baselines and toplines of FNS 2021 (LexRank,
TextRank, MUSE topline and POLY baseline)
and we were ranked 2nd in the shared task
competition.

Keywords: Summarization, Neural networks,
Reinforcement learning, sequence to sequence
learning; actor-critic methods; policy gradi-
ents.

1 Introduction

The task of text summarization is to condense long
documents into short summaries while preserving
the content and meaning. It can be performed us-
ing two main techniques: extraction and abstrac-
tion. The extractive summarization method directly
chooses and outputs the salient phrases in the origi-
nal document (Jing and McKeown (1999); Knight
and Marcu (2002)). The abstractive summarization
approach involves rewriting the summary (Rush
et al. (2015); Liu et al. (2015)); and has seen sub-
stantial recent gains due to neural sequence-to se-
quence models (Chopra et al. (2016); Nallapati et al.
(2016a); See et al. (2017a); El-Haj et al. (2018);
Paulus et al. (2017) ).

In the general case, extractive summarization ap-
proaches usually show a better performance com-
pared to the abstractive approaches especially when
evaluated using ROUGE metrics (Kiyoumarsi,

2015). One of the advantages of the extractive
approaches is that they can summarize source ar-
ticles by extracting salient snippets and sentences
directly from these documents, while abstractive
approaches rely on word-level attention mechanism
to determine the most relevant words to the target
words at each decoding step. Several studies (
(Widyassari et al., 2020) ; (Tretyak and Stepanov,
2020) ) proposed to combine extractive and abstrac-
tive techniques in order to improve performance.

Abstractive models can be more concise by gen-
erating summaries from scratch in a context where
the gold summaries were deleted from the origi-
nal annual reports. However, this method suffers
from slow and inaccurate encoding of very long
documents which is the case with financial annual
reports (above 50,000 tokens per report). Abstrac-
tive models also suffer from redundancy, especially
when generating summaries of long documents.
(Cohan et al., 2018) .

Therefore, the proposed summarizer follows
a hybrid extractive-abstractive architecture, with
policy-based reinforcement learning (RL) to bridge
together the two networks. The model first uses an
extractor agent to select salient phrases, and then
employs an abstractor network to rewrite (com-
press and paraphrase) each of these extracted sen-
tences. We then use actor critic policy gradient
with sentence-level metric rewards to jointly train
these two summarization models in order to per-
form Reinforcement Learning and learn sentence
saliency.

2 Background

Recurrent models typically take in a sequence in
the order it is written and use that to output a se-
quence. Each element in the sequence is associated
with its step in computation time. These models
generate a sequence of hidden states, as a func-
tion of the previous hidden state and the input for
current position.



The sequential nature of models (RNNs, LSTMs
or GRUs) does not allow for parallelization within
training examples, which becomes critical at longer
sequence lengths, as memory constraints limit
batching across examples. In order to compute cur-
rent outputs, the model needs to process previous
outputs and inputs, therefore outputs cannot be cal-
culated using parallel computation. This method is
not appropriate if text is too long since it takes long
time to process the outputs and calculate the loss
after several time steps. Therefore, attention mech-
anisms have become critical for sequence modeling
in various tasks, allowing modeling of dependen-
cies without caring too much about their distance
in the input or output sequences (Chen and Bansal,
2018).

Long sequence NLP presents many challenges
for current models. In fact, long range dependen-
cies often require complex reasoning and forces
models to both locate relevant information and
combine it. Models need to ignore a lot of irrele-
vant text. Many popular algorithms are designed to
work in short sequence setting, and have limitations
in long setting. RNN/LSTM: process input sequen-
tially and stores relevant information from previ-
ous states therefore it is slow for long sequences.
Transformers are based on self-attention and can-
not process long input with current hardware. (e.g.
BERT pre-trained Language model is limited to
512 tokens).

3 Data description

The dataset is composed of UK annual reports in
English from the financial summarization shared
task (FNS 2021) (El-Haj, 2019; El-Haj et al., 2020,
2021). The dataset contains 3,863 annual reports
for firms listed on the London Stock Exchange
(LSE) covering the period between 2002 and 2017.
The average length of an annual report is 52,000
tokens. The dataset is randomly split into training
(75%), testing and validation (25%). Data is further
described and analysed in Appendix A.

4 Methodology

4.1 Financial word embeddings
The financial summarization task requires embed-
dings of domain-specific vocabulary that embed-
dings pre-trained on a generic corpus may not be
able to capture.

Financial documents include words that appear
in any general purpose pre-trained word embedding

such as Glove (Pennington et al., 2014). However
the usage of these words will be different and there-
fore the representation in the vector space should be
different as well. The jargon used in financial dis-
closures is different from ‘general’ language. For
example, corporate earnings releases use nuanced
language not fully reflected in GloVE vectors pre-
trained on Wikipedia articles. For all these reasons,
working on training custom word embedding for
financial domain is helpful in our case.

To implement a financial word embedding model
using word2vec model, we used the Gensim1 li-
brary. We perform pre-processing using the NLTK2

library. We deleted non alphanumeric values, and
replaced some special characters by their equiva-
lent (e.g. “m” is replaced “million”. Moreover,
we convert all words into lowercase. Finally, we
extract tokenized sentences of the dataset using the
NLTK tokenizer and created a vocabulary of the
training dataset in the form of dictionary where
keys are words and values are number of occur-
rence. The tokenized sentences were passed as
input to the word2vec model from the Gensim li-
brary which produced the word vectors as output.
We limit the Vocab size to 20,000 (most frequent
words) and the maximum number of words in a
sentence to 60. The parameters we used to train
word2vec model are shown in Table 2:

4.2 Model

We train a reinforcement learning model based on
standard policy gradient method to form an end-to-
end trainable computation graph which is divided
into extraction and abstraction phases. In fact, it is
infeasible to start a randomly initialized neural net-
work to train the whole summarization model. The
extractor would often select sentences that are not
relevant. On the other hand, without a well-trained
abstractor the extractor would get noisy reward
(bad Rouge− 2, which leads to a bad estimate of
the policy gradient and a sub optimal policy.

We should work on optimizing each sub-module
(extractor and abstractor) separately using max-
imum likelihood objectives. Train the extractor
machine learning model to select salient sentences
and the abstractor model to generate shortened sum-
mary. Finally, reinforcement learning is applied to
train the full end to end model.

1https://radimrehurek.com/gensim/
2https://pypi.org/project/nltk/

https://radimrehurek.com/gensim/
https://pypi.org/project/nltk/


4.2.1 Extractor agent:

The extractor agent is designed to model the extrac-
tion function, which can be thought of as extracting
salient sentences from the document. We exploit
a hierarchical neural model to learn the sentence
representations of the document and a ‘selection
network’ to extract sentences based on their repre-
sentations.

In extraction process we assume that for every
summary sentence there is matching sentence in
the annual report. To train extraction model we
need these corresponding sentences in the reports.
Since, annual reports are not marked explicitly
with sentences we followed ROUGE scores to
extract these sentences as done in (Nallapati et al.,
2016b) ; (Chen and Bansal, 2018). For every
summary sentence we calculate ROUGE with
every sentence in the report and then choose the
sentence with maximum ROUGE − 2 value.

jt = argmaxi(ROUGELF1(di, st))

where di represents ith document sentence and
st represents tth summary sentence. We extract
sentences from the annual reports that maximize
ROUGE score with the gold summaries. These
sentences are used as labels for training the ma-
chine learning extractor model.
In fact, for every annual report, we calculate sum-
mary level ROUGE scores for each of the pro-
vided summaries. We greedily match summary sen-
tences to article sentences with higher ROUGE
score (Nallapati et al., 2016a). Selected sentences
should greedily maximise the global summary-
level ROUGE. For each summary sentence ex-
actly one document sentence is matched, based on
the individual sentence-level score to avoid redun-
dancy in the summary, since summary is limited to
1000 words. Eventually summary level ROUGE
scores are calculated and summary with maximum
score is chosen for further processing and training.

Once labels are generated using the above de-
scribed method, extractor model is trained to ex-
tract salient sentences from the reports. The ML ex-
tractor model uses attention mechanism (Bahdanau
et al., 2016) based Pointer Networks (Vinyals et al.,
2015) which is different from the copy mechanism
used in (See et al., 2017a). Given these proxy sen-
tences extracted in the previous step as ground
truths and sentences extracted using pointer net-
work, we train it to minimize cross-entropy loss.

The parameters used to train the ML extractor
model are shown in Table 3 in the appendix section.
The ML model training took 4 hours. The model
converged to the optimal value after 56 Epochs
reducing the loss to 0.779927.

4.2.2 Abstractor agent:
The abstractor network approximates the function
that paraphrases an extracted document sentence to
a concise summary sentence. We use an encoder-
decoder model based on RNN and Attention mech-
anism (Bahdanau et al., 2016) ; (Luong et al., 2015).
Copy mechanism is adopted to help directly copy
some out-of-vocabulary (OOV) words (See et al.,
2017a).

For the abstractor training, training pairs are cre-
ated by taking each summary sentence and pairing
it with its extracted document sentence. The net-
work is trained as an usual sequence-to-sequence
model to minimize the cross-entropy loss. First
sentences are encoded using the financial word em-
bedding vectors and passed to Convolutional Neu-
ral Network layer for encoding and further passed
to Long Short Term Memory layers for sequence
modelling. Final output of the encoder is passed
to LSTM based decoder to generate paraphrased
summary sentences.

4.2.3 Reinforcement Learning
The Markov Decision process property states that
the future depends only on the present and not on
the past. It is a probabilistic model that depends on
the current state to predict the next state. The future
is conditionally independent of the past states. In
other words, we could predict Pt+1 using only Pt.

The goal of reinforcement learning models is to
learn using an agent that interacts with a stochastic
environment. Reinforcement learning optimizes
the agent’s decisions by learning the value of states
and actions from a reward function. The main goal
is to define a policy function that maps states to
actions. Reinforcement learning helps to maximise
ROUGE score by rewarding good sentences that
are extracted and penalising bad sentences.

Once the extractor and abstractor models are
trained individually, final complete model is trained
using policy gradient algorithm with similar pro-
cess as in (Chen and Bansal, 2018). At every ex-
traction step agent samples an action to extract doc-
ument sentence an receive reward r(t+1) which is
ROUGE-2 F1 score between output after abstrac-
tion and ground truth summary sentence.



The reinforcement learning training works as
follow: The extractor starts by choosing a rele-
vant sentence from the report, then the abstractor
rewrites it. If the ROUGE 2 F1 score match would
be high the action is encouraged. If an irrelevant
sentence is chosen and the abstractor still produces
a compressed version of it, the summary would not
match the ground truth and therefore low ROUGE
2 F1 score discourages this action.

In the actor-critic approach, the actor takes the
state of the environment as the input, then returns
the best action, or a policy that refers to a probabil-
ity distribution over the actions. In our case we use
Pointer Network to perform the actor job.

On the other hand, the critic evaluates the actions
returned by the actor neural network and returns a
score representing the value of taking that action
given the state.

The figure 1 gives a concise description of the
end to end summarizer system.

Figure 1: The end to end summarizer

5 Experimental setup

In order to train our extractor, abstractor and RL
models, we use a Tesla P100-PCIE GPU with ac-
celerated high RAM of gigabytes with batch size
of 16 and check point frequency of 16 batches.

Please refer to appendix for full training setup.
Hyperparameters details are shown in Table 3, Ta-
ble 4 and Table 5.

6 Results

6.1 Metrics

The ROUGE measure finds the common unigram
(ROUGE-1), bigram (ROUGE-2), and largest
common substring (LCS) (ROUGE−L) between
the ground-truth text and the output generated by

the model and calculates respective precision, re-
call, and F1-score for each measure.3 For the
entire dataset, we evaluate standard ROUGE1,
ROUGE-2, and ROUGE-L and ROUGE-SU4
(Lin, 2004) on full length F1 (with stemming) fol-
lowing previous works ( See et al. (2017a); Nal-
lapati et al. (2016a) ). The ROUGE 2.0 package
Ganesan (2015) is used for calculations.

6.2 Scores
In this section, we present results from our ex-
periments and compare with different baselines
MUSE (Litvak et al., 2010), Text-rank (Mihalcea
and Tarau, 2004), Lex-Rank (Erkan and Radev,
2004), and Polynomial Summarisation (Litvak and
Vanetik, 2013).

Overall, our model achieves better results than
all the proposed baselines with ROUGE1 :
0.52, ROUGE-2 : 0.30, ROUGE-L : 0.46 and
ROUGE-SU4 : 0.32

Metric R-1/F R-2/F R-L/F R-SU/F
TextRank 0.17 0.07 0.21 0.08
LexRank 0.26 0.12 0.22 0.14
Polynomial 0.37 0.12 0.26 0.18
MUSE 0.5 0.28 0.45 0.32
rnn-ext + abs + RL 0.52 0.3 0.46 0.32

Table 1: FNS shared task results

7 Conclusion and Future Work

In this paper, we have reported on our solution for
the Financial Narrative Summarisation (FNS2021)
shared task using actor critic reinforcement learn-
ing approach. It is a combination of both extractive
and abstractive methods using Pointer Network.
With these methods we are able to achieve the sec-
ond highest F1 score in every evaluation metric and
were able to beat the baseline and topline models.

In our future work we would like to address sev-
eral limitations of our method such as factual cor-
rectness in summaries which is very important in
financial domain as done in Zhang et al. (2020b) in
summarizing radiology reports. To improve preci-
sion of our generated summaries under 1000 words
we would formulate a penalty if system generates
more than 1,000 words during training of RL al-
gorithm rather than restricting algorithm to fixed
number of words.

3https://github.com/google-research/
google-research/tree/master/rouge

https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
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Appendices

sg min_count window size sample
1 3 2 300 6e-5

alpha negative workers epochs —
0.05 20 16 15 —

Table 2: Word2Vec Parameters

Parameter Value Description
lr 1e-3 learning rate
decay 0.5 learning rate decay ratio
clip 2.0 gradient clipping rate
batch 16 training batch size
net_type rnn network type
vsize 20000 vocabulary size

n_hidden 256
number of hidden
units of LSTM size

emb_dim 300
dimension of word
embedding

n_layer 2
the number of layers
of LSTM

conv_hidden 100
number of hidden
units of LSTM size

lstm_hidden 256
Number of hidden
layers in LSTM network

max_art 100
maximun words in a
single article sentence

max_abs 50
maximun words in a
single abstract sentence

Table 3: Hyperparameters for the ML extractor

Parameter Value Description
vsize 20000 vocabulary size
emb_dim 300 dimension of word embedding

n_hidden 256
number of hidden units
of LSTM size

lr 1e-3 learning rate
decay 0.5 learning rate decay ratio
clip 2.0 gradient clipping rate
batch 16 training batch size
n_layer 2 the number of layers of LSTM

max_art 100
maximun words in a
single article sentence

max_abs 50
maximun words in a
single abstract sentence

Table 4: Hyperparameters for the abstractor

Parameter Value Description
lr 1e-4 learning rate
decay 0.5 learning rate decay ratio
clip 2.0 gradient clipping rate
batch 1 training batch size

lr_p 0
patience for learning
rate decay

gamma 0.95 discount factor of RL
reward ROUGE-2 reward function

stop 1.0
stop coefficient for
ROUGE-2

patience 5 patience for early stopping

Table 5: Hyperparameters for the RL extractor


