
Joint abstractive and extractive method for long financial document
summarization

Nadhem Zmandar1 Abhishek Singh2

1Lancaster University, UK 2Samsung R&D Bangalore, India
n.zmandar@lancaster.ac.uk abhishek.s.eee15@iitbhu.ac.in

Mahmoud El-Haj1 Paul Rayson1

Abstract

In this paper we show the results of our par-
ticipation in the FNS 2021 shared task. In our
work we propose an end to end financial nar-
rative summarization system that first selects
salient sentences from the document and then
paraphrases extracted sentences. This method
generates an overall concise summary that
maximises the ROUGE metric with the gold
standard summary. The end to end system
is developed using a hybrid extractive and ab-
stractive architecture followed by joint training
using policy-based reinforcement learning to
bridge together the two networks. Empirically,
we achieve better scores than the proposed
baselines and toplines of FNS 2021 (LexRank,
TextRank, MUSE topline and POLY baseline)
and we were ranked 2nd in the shared task
competition.

Keywords: Summarization, Neural networks,
Reinforcement learning, sequence to sequence
learning; actor-critic methods; policy gradi-
ents.

1 Introduction

The task of text summarization is to condense long
documents into short summaries while preserving
the content and meaning. It can be performed us-
ing two main techniques: extraction and abstrac-
tion. The extractive summarization method directly
chooses and outputs the salient phrases in the origi-
nal document (Jing and McKeown (1999); Knight
and Marcu (2002)). The abstractive summarization
approach involves rewriting the summary (Rush
et al. (2015); Liu et al. (2015)); and has seen sub-
stantial recent gains due to neural sequence-to se-
quence models (Chopra et al. (2016); Nallapati et al.
(2016a); See et al. (2017a); El-Haj et al. (2018);
Paulus et al. (2017)).

In the general case, extractive summarization ap-
proaches usually show a better performance com-
pared to the abstractive approaches especially when
evaluated using ROUGE metrics (Kiyoumarsi,

2015). One of the advantages of the extractive
approaches is that they can summarize source ar-
ticles by extracting salient snippets and sentences
directly from these documents, while abstractive
approaches rely on word-level attention mechanism
to determine the most relevant words to the target
words at each decoding step. Several studies (
(Widyassari et al., 2020) ; (Tretyak and Stepanov,
2020)) proposed to combine extractive and abstrac-
tive techniques in order to improve performance.

Abstractive models can be more concise by gen-
erating summaries from scratch in a context where
the gold summaries were deleted from the origi-
nal annual reports. However, this method suffers
from slow and inaccurate encoding of very long
documents which is the case with financial annual
reports (above 50,000 tokens per report). Abstrac-
tive models also suffer from redundancy, especially
when generating summaries of long documents.
(Cohan et al., 2018) .

Therefore, the proposed summarizer follows
a hybrid extractive-abstractive architecture, with
policy-based reinforcement learning (RL) to bridge
together the two networks. The model first uses an
extractor agent to select salient phrases, and then
employs an abstractor network to rewrite (com-
press and paraphrase) each of these extracted sen-
tences. We then use actor critic policy gradient
with sentence-level metric rewards to jointly train
these two summarization models in order to per-
form Reinforcement Learning and learn sentence
saliency.

2 Background

Recurrent models typically take in a sequence in
the order it is written and use that to output a se-
quence. Each element in the sequence is associated
with its step in computation time. These models
generate a sequence of hidden states, as a func-
tion of the previous hidden state and the input for
current position.

The sequential nature of models (RNNs, LSTMs
or GRUs) does not allow for parallelization within
training examples, which becomes critical at longer
sequence lengths, as memory constraints limit
batching across examples. In order to compute cur-
rent outputs, the model needs to process previous
outputs and inputs, therefore outputs cannot be cal-
culated using parallel computation. This method is
not appropriate if text is too long since it takes long
time to process the outputs and calculate the loss
after several time steps. Therefore, attention mech-
anisms have become critical for sequence modeling
in various tasks, allowing modeling of dependen-
cies without caring too much about their distance
in the input or output sequences (Chen and Bansal,
2018).

Long sequence NLP presents many challenges
for current models. In fact, long range dependen-
cies often require complex reasoning and forces
models to both locate relevant information and
combine it. Models need to ignore a lot of irrele-
vant text. Many popular algorithms are designed to
work in short sequence setting, and have limitations
in long setting. RNN/LSTM: process input sequen-
tially and stores relevant information from previ-
ous states therefore it is slow for long sequences.
Transformers are based on self-attention and can-
not process long input with current hardware. (e.g.
BERT pre-trained Language model is limited to
512 tokens).

3 Data description

The dataset is composed of UK annual reports in
English from the financial summarization shared
task (FNS 2021) (El-Haj, 2019; El-Haj et al., 2020,
2021). The dataset contains 3,863 annual reports
for firms listed on the London Stock Exchange
(LSE) covering the period between 2002 and 2017.
The average length of an annual report is 52,000
tokens. The dataset is randomly split into training
(75%), testing and validation (25%). Data is further
described and analysed in Appendix A.

4 Methodology

4.1 Financial word embeddings
The financial summarization task requires embed-
dings of domain-specific vocabulary that embed-
dings pre-trained on a generic corpus may not be
able to capture.

Financial documents include words that appear
in any general purpose pre-trained word embedding

such as Glove (Pennington et al., 2014). However
the usage of these words will be different and there-
fore the representation in the vector space should be
different as well. The jargon used in financial dis-
closures is different from ‘general’ language. For
example, corporate earnings releases use nuanced
language not fully reflected in GloVE vectors pre-
trained on Wikipedia articles. For all these reasons,
working on training custom word embedding for
financial domain is helpful in our case.

To implement a financial word embedding model
using word2vec model, we used the Gensim1 li-
brary. We perform pre-processing using the NLTK2

library. We deleted non alphanumeric values, and
replaced some special characters by their equiva-
lent (e.g. “m” is replaced “million”. Moreover,
we convert all words into lowercase. Finally, we
extract tokenized sentences of the dataset using the
NLTK tokenizer and created a vocabulary of the
training dataset in the form of dictionary where
keys are words and values are number of occur-
rence. The tokenized sentences were passed as
input to the word2vec model from the Gensim li-
brary which produced the word vectors as output.
We limit the Vocab size to 20,000 (most frequent
words) and the maximum number of words in a
sentence to 60. The parameters we used to train
word2vec model are shown in Table 2:

4.2 Model

We train a reinforcement learning model based on
standard policy gradient method to form an end-to-
end trainable computation graph which is divided
into extraction and abstraction phases. In fact, it is
infeasible to start a randomly initialized neural net-
work to train the whole summarization model. The
extractor would often select sentences that are not
relevant. On the other hand, without a well-trained
abstractor the extractor would get noisy reward
(bad Rouge− 2, which leads to a bad estimate of
the policy gradient and a sub optimal policy.

We should work on optimizing each sub-module
(extractor and abstractor) separately using max-
imum likelihood objectives. Train the extractor
machine learning model to select salient sentences
and the abstractor model to generate shortened sum-
mary. Finally, reinforcement learning is applied to
train the full end to end model.

1https://radimrehurek.com/gensim/
2https://pypi.org/project/nltk/

https://radimrehurek.com/gensim/
https://pypi.org/project/nltk/

4.2.1 Extractor agent:

The extractor agent is designed to model the extrac-
tion function, which can be thought of as extracting
salient sentences from the document. We exploit
a hierarchical neural model to learn the sentence
representations of the document and a ‘selection
network’ to extract sentences based on their repre-
sentations.

In extraction process we assume that for every
summary sentence there is matching sentence in
the annual report. To train extraction model we
need these corresponding sentences in the reports.
Since, annual reports are not marked explicitly
with sentences we followed ROUGE scores to
extract these sentences as done in (Nallapati et al.,
2016b) ; (Chen and Bansal, 2018). For every
summary sentence we calculate ROUGE with
every sentence in the report and then choose the
sentence with maximum ROUGE − 2 value.

jt = argmaxi(ROUGELF1(di, st))

where di represents ith document sentence and
st represents tth summary sentence. We extract
sentences from the annual reports that maximize
ROUGE score with the gold summaries. These
sentences are used as labels for training the ma-
chine learning extractor model.
In fact, for every annual report, we calculate sum-
mary level ROUGE scores for each of the pro-
vided summaries. We greedily match summary sen-
tences to article sentences with higher ROUGE
score (Nallapati et al., 2016a). Selected sentences
should greedily maximise the global summary-
level ROUGE. For each summary sentence ex-
actly one document sentence is matched, based on
the individual sentence-level score to avoid redun-
dancy in the summary, since summary is limited to
1000 words. Eventually summary level ROUGE
scores are calculated and summary with maximum
score is chosen for further processing and training.

Once labels are generated using the above de-
scribed method, extractor model is trained to ex-
tract salient sentences from the reports. The ML ex-
tractor model uses attention mechanism (Bahdanau
et al., 2016) based Pointer Networks (Vinyals et al.,
2015) which is different from the copy mechanism
used in (See et al., 2017a). Given these proxy sen-
tences extracted in the previous step as ground
truths and sentences extracted using pointer net-
work, we train it to minimize cross-entropy loss.

The parameters used to train the ML extractor
model are shown in Table 3 in the appendix section.
The ML model training took 4 hours. The model
converged to the optimal value after 56 Epochs
reducing the loss to 0.779927.

4.2.2 Abstractor agent:
The abstractor network approximates the function
that paraphrases an extracted document sentence to
a concise summary sentence. We use an encoder-
decoder model based on RNN and Attention mech-
anism (Bahdanau et al., 2016) ; (Luong et al., 2015).
Copy mechanism is adopted to help directly copy
some out-of-vocabulary (OOV) words (See et al.,
2017a).

For the abstractor training, training pairs are cre-
ated by taking each summary sentence and pairing
it with its extracted document sentence. The net-
work is trained as an usual sequence-to-sequence
model to minimize the cross-entropy loss. First
sentences are encoded using the financial word em-
bedding vectors and passed to Convolutional Neu-
ral Network layer for encoding and further passed
to Long Short Term Memory layers for sequence
modelling. Final output of the encoder is passed
to LSTM based decoder to generate paraphrased
summary sentences.

4.2.3 Reinforcement Learning
The Markov Decision process property states that
the future depends only on the present and not on
the past. It is a probabilistic model that depends on
the current state to predict the next state. The future
is conditionally independent of the past states. In
other words, we could predict Pt+1 using only Pt.

The goal of reinforcement learning models is to
learn using an agent that interacts with a stochastic
environment. Reinforcement learning optimizes
the agent’s decisions by learning the value of states
and actions from a reward function. The main goal
is to define a policy function that maps states to
actions. Reinforcement learning helps to maximise
ROUGE score by rewarding good sentences that
are extracted and penalising bad sentences.

Once the extractor and abstractor models are
trained individually, final complete model is trained
using policy gradient algorithm with similar pro-
cess as in (Chen and Bansal, 2018). At every ex-
traction step agent samples an action to extract doc-
ument sentence an receive reward r(t+1) which is
ROUGE-2 F1 score between output after abstrac-
tion and ground truth summary sentence.

The reinforcement learning training works as
follow: The extractor starts by choosing a rele-
vant sentence from the report, then the abstractor
rewrites it. If the ROUGE 2 F1 score match would
be high the action is encouraged. If an irrelevant
sentence is chosen and the abstractor still produces
a compressed version of it, the summary would not
match the ground truth and therefore low ROUGE
2 F1 score discourages this action.

In the actor-critic approach, the actor takes the
state of the environment as the input, then returns
the best action, or a policy that refers to a probabil-
ity distribution over the actions. In our case we use
Pointer Network to perform the actor job.

On the other hand, the critic evaluates the actions
returned by the actor neural network and returns a
score representing the value of taking that action
given the state.

The figure 1 gives a concise description of the
end to end summarizer system.

Figure 1: The end to end summarizer

5 Experimental setup

In order to train our extractor, abstractor and RL
models, we use a Tesla P100-PCIE GPU with ac-
celerated high RAM of gigabytes with batch size
of 16 and check point frequency of 16 batches.

Please refer to appendix for full training setup.
Hyperparameters details are shown in Table 3, Ta-
ble 4 and Table 5.

6 Results

6.1 Metrics

The ROUGE measure finds the common unigram
(ROUGE-1), bigram (ROUGE-2), and largest
common substring (LCS) (ROUGE−L) between
the ground-truth text and the output generated by

the model and calculates respective precision, re-
call, and F1-score for each measure.3 For the
entire dataset, we evaluate standard ROUGE1,
ROUGE-2, and ROUGE-L and ROUGE-SU4
(Lin, 2004) on full length F1 (with stemming) fol-
lowing previous works (See et al. (2017a); Nal-
lapati et al. (2016a)). The ROUGE 2.0 package
Ganesan (2015) is used for calculations.

6.2 Scores
In this section, we present results from our ex-
periments and compare with different baselines
MUSE (Litvak et al., 2010), Text-rank (Mihalcea
and Tarau, 2004), Lex-Rank (Erkan and Radev,
2004), and Polynomial Summarisation (Litvak and
Vanetik, 2013).

Overall, our model achieves better results than
all the proposed baselines with ROUGE1 :
0.52, ROUGE-2 : 0.30, ROUGE-L : 0.46 and
ROUGE-SU4 : 0.32

Metric R-1/F R-2/F R-L/F R-SU/F
TextRank 0.17 0.07 0.21 0.08
LexRank 0.26 0.12 0.22 0.14
Polynomial 0.37 0.12 0.26 0.18
MUSE 0.5 0.28 0.45 0.32
rnn-ext + abs + RL 0.52 0.3 0.46 0.32

Table 1: FNS shared task results

7 Conclusion and Future Work

In this paper, we have reported on our solution for
the Financial Narrative Summarisation (FNS2021)
shared task using actor critic reinforcement learn-
ing approach. It is a combination of both extractive
and abstractive methods using Pointer Network.
With these methods we are able to achieve the sec-
ond highest F1 score in every evaluation metric and
were able to beat the baseline and topline models.

In our future work we would like to address sev-
eral limitations of our method such as factual cor-
rectness in summaries which is very important in
financial domain as done in Zhang et al. (2020b) in
summarizing radiology reports. To improve preci-
sion of our generated summaries under 1000 words
we would formulate a penalty if system generates
more than 1,000 words during training of RL al-
gorithm rather than restricting algorithm to fixed
number of words.

3https://github.com/google-research/
google-research/tree/master/rouge

https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2016. Neural machine translation by jointly
learning to align and translate.

Ahsaas Bajaj, Pavitra Dangati, Kalpesh Krishna, Prad-
hiksha Ashok Kumar, Rheeya Uppaal, Bradford
Windsor, Eliot Brenner, Dominic Dotterrer, Rajarshi
Das, and Andrew McCallum. 2021. Long document
summarization in a low resource setting using pre-
trained language models.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In Proceedings of ACL.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 93–98, San
Diego, California. Association for Computational
Linguistics.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Na-
zli Goharian. 2018. A discourse-aware attention
model for abstractive summarization of long docu-
ments. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 615–621,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Mahmoud El-Haj. 2019. Multiling 2019: Financial nar-
rative summarisation. In Proceedings of the Work-
shop MultiLing 2019: Summarization Across Lan-
guages, Genres and Sources, pages 6–10.

Mahmoud El-Haj, Ahmed AbuRa’ed, Marina Lit-
vak, Nikiforos Pittaras, and George Giannakopou-
los. 2020. The Financial Narrative Summarisation
Shared Task (FNS 2020). In The 1st Joint Work-
shop on Financial Narrative Processing and Mul-
tiLing Financial Summarisation (FNP-FNS 2020),
Barcelona, Spain.

Mahmoud El-Haj, Paul Rayson, Paulo Alves, Carlos
Herrero-Zorita, and Steven Young. 2019a. Mul-
tilingual financial narrative processing: Analyzing
annual reports in english, spanish, and portuguese.
In Multilingual Text Analysis: Challenges, Models,
And Approaches, pages 441–463. World Scientific.

Mahmoud El-Haj, Paul Rayson, Paulo Alves, and
Steven Eric Young. 2018. Towards a multilingual
financial narrative processing system.

Mahmoud El-Haj, Paul Rayson, Martin Walker, Steven
Young, and Vasiliki Simaki. 2019b. In search of
meaning: Lessons, resources and next steps for com-
putational analysis of financial discourse. Journal of
Business Finance & Accounting, 46(3-4):265–306.

Mahmoud El-Haj, Nadhem Zmandar, Paul Rayson,
Ahmed AbuRa’ed, Marina Litvak, Nikiforos Pit-
taras, and George Giannakopoulos. 2021. The Fi-
nancial Narrative Summarisation Shared Task (FNS
2021). In The Third Financial Narrative Processing
Workshop (FNP 2021), Lancaster, UK.

G. Erkan and D. R. Radev. 2004. Lexrank: Graph-
based lexical centrality as salience in text summa-
rization. Journal of Artificial Intelligence Research,
22:457–479.

Kavita Ganesan. 2015. Rouge 2.0: Updated and im-
proved measures for evaluation of summarization
tasks.

Alexios Gidiotis and Grigorios Tsoumakas. 2020. A
divide-and-conquer approach to the summarization
of long documents.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
Ji, and Lu Wang. 2021. Efficient attentions for long
document summarization.

Hongyan Jing and Kathleen R. McKeown. 1999.
The decomposition of human-written summary sen-
tences. In Proceedings of the 22nd Annual Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’99,
page 129–136, New York, NY, USA. Association for
Computing Machinery.

Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, and
Chandan K. Reddy. 2019. Deep reinforcement learn-
ing for sequence to sequence models.

Farshad Kiyoumarsi. 2015. Evaluation of automatic
text summarizations based on human summaries.
Procedia - Social and Behavioral Sciences, 192:83–
91. The Proceedings of 2nd Global Conference on
Conference on Linguistics and Foreign Language
Teaching.

Kevin Knight and Daniel Marcu. 2002. Summariza-
tion beyond sentence extraction: A probabilistic
approach to sentence compression. Artif. Intell.,
139(1):91–107.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Marina Litvak, Mark Last, M. Friedman, S. Kisilevich,
and Sami Shamoon. 2010. Muse – a multilingual
sentence extractor.

Marina Litvak and Natalia Vanetik. 2013. Mining the
gaps: Towards polynomial summarization. In Pro-
ceedings of the Sixth International Joint Conference
on Natural Language Processing, pages 655–660,
Nagoya, Japan. Asian Federation of Natural Lan-
guage Processing.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/2103.00751
http://arxiv.org/abs/2103.00751
http://arxiv.org/abs/2103.00751
https://doi.org/10.18653/v1/N16-1012
https://doi.org/10.18653/v1/N16-1012
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.1613/jair.1523
https://doi.org/10.1613/jair.1523
https://doi.org/10.1613/jair.1523
http://arxiv.org/abs/2004.06190
http://arxiv.org/abs/2004.06190
http://arxiv.org/abs/2004.06190
http://arxiv.org/abs/2104.02112
http://arxiv.org/abs/2104.02112
https://doi.org/10.1145/312624.312666
https://doi.org/10.1145/312624.312666
http://arxiv.org/abs/1805.09461
http://arxiv.org/abs/1805.09461
https://doi.org/https://doi.org/10.1016/j.sbspro.2015.06.013
https://doi.org/https://doi.org/10.1016/j.sbspro.2015.06.013
https://doi.org/10.1016/S0004-3702(02)00222-9
https://doi.org/10.1016/S0004-3702(02)00222-9
https://doi.org/10.1016/S0004-3702(02)00222-9
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/I13-1075
https://aclanthology.org/I13-1075

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman
Sadeh, and Noah A. Smith. 2015. Toward abstrac-
tive summarization using semantic representations.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1077–1086, Denver, Colorado. Association
for Computational Linguistics.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing order into text. In Proceedings of the 2004
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 404–411, Barcelona, Spain.
Association for Computational Linguistics.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou.
2016a. Summarunner: A recurrent neural network
based sequence model for extractive summarization
of documents.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Guchere, and Bing Xiang. 2016b. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos
santos, Caglar Gulcehre, and Bing Xiang. 2016c.
Abstractive text summarization using sequence-to-
sequence rnns and beyond.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389, Lisbon, Portugal.
Association for Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Man-
ning. 2017a. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1073–1083, Vancouver, Canada. Association
for Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Man-
ning. 2017b. Get to the point: Summarization with
pointer-generator networks.

Tian Shi, Yaser Keneshloo, Naren Ramakrishnan, and
Chandan K. Reddy. 2020. Neural abstractive text
summarization with sequence-to-sequence models.

Vladislav Tretyak and Denis Stepanov. 2020. Combi-
nation of abstractive and extractive approaches for
summarization of long scientific texts.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural
Information Processing Systems, volume 28. Curran
Associates, Inc.

Adhika Pramita Widyassari, Supriadi Rustad, Gu-
ruh Fajar Shidik, Edi Noersasongko, Abdul Syukur,
Affandy Affandy, and De Rosal Ignatius Moses Se-
tiadi. 2020. Review of automatic text summarization
techniques methods. Journal of King Saud Univer-
sity - Computer and Information Sciences.

Wen Xiao and Giuseppe Carenini. 2019. Extractive
summarization of long documents by combining
global and local context.

Senci Ying, Zheng Yan Zhao, and Wuhe Zou. 2021.
LongSumm 2021: Session based automatic summa-
rization model for scientific document. In Proceed-
ings of the Second Workshop on Scholarly Document
Processing, pages 97–102, Online. Association for
Computational Linguistics.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2021. Big bird: Transformers for
longer sequences.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020a. Pegasus: Pre-training with ex-
tracted gap-sentences for abstractive summarization.

Yuhao Zhang, Derek Merck, Emily Bao Tsai, Christo-
pher D. Manning, and Curtis P. Langlotz. 2020b.
Optimizing the factual correctness of a summary: A
study of summarizing radiology reports.

https://doi.org/10.3115/v1/N15-1114
https://doi.org/10.3115/v1/N15-1114
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
https://aclanthology.org/W04-3252
https://aclanthology.org/W04-3252
http://arxiv.org/abs/1611.04230
http://arxiv.org/abs/1611.04230
http://arxiv.org/abs/1611.04230
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
http://arxiv.org/abs/1602.06023
http://arxiv.org/abs/1602.06023
http://arxiv.org/abs/1705.04304
http://arxiv.org/abs/1705.04304
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1812.02303
http://arxiv.org/abs/1812.02303
http://arxiv.org/abs/2006.05354
http://arxiv.org/abs/2006.05354
http://arxiv.org/abs/2006.05354
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.jksuci.2020.05.006
https://doi.org/https://doi.org/10.1016/j.jksuci.2020.05.006
http://arxiv.org/abs/1909.08089
http://arxiv.org/abs/1909.08089
http://arxiv.org/abs/1909.08089
https://doi.org/10.18653/v1/2021.sdp-1.12
https://doi.org/10.18653/v1/2021.sdp-1.12
http://arxiv.org/abs/2007.14062
http://arxiv.org/abs/2007.14062
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1911.02541
http://arxiv.org/abs/1911.02541

Appendices

sg min_count window size sample
1 3 2 300 6e-5

alpha negative workers epochs —
0.05 20 16 15 —

Table 2: Word2Vec Parameters

Parameter Value Description
lr 1e-3 learning rate
decay 0.5 learning rate decay ratio
clip 2.0 gradient clipping rate
batch 16 training batch size
net_type rnn network type
vsize 20000 vocabulary size

n_hidden 256
number of hidden
units of LSTM size

emb_dim 300
dimension of word
embedding

n_layer 2
the number of layers
of LSTM

conv_hidden 100
number of hidden
units of LSTM size

lstm_hidden 256
Number of hidden
layers in LSTM network

max_art 100
maximun words in a
single article sentence

max_abs 50
maximun words in a
single abstract sentence

Table 3: Hyperparameters for the ML extractor

Parameter Value Description
vsize 20000 vocabulary size
emb_dim 300 dimension of word embedding

n_hidden 256
number of hidden units
of LSTM size

lr 1e-3 learning rate
decay 0.5 learning rate decay ratio
clip 2.0 gradient clipping rate
batch 16 training batch size
n_layer 2 the number of layers of LSTM

max_art 100
maximun words in a
single article sentence

max_abs 50
maximun words in a
single abstract sentence

Table 4: Hyperparameters for the abstractor

Parameter Value Description
lr 1e-4 learning rate
decay 0.5 learning rate decay ratio
clip 2.0 gradient clipping rate
batch 1 training batch size

lr_p 0
patience for learning
rate decay

gamma 0.95 discount factor of RL
reward ROUGE-2 reward function

stop 1.0
stop coefficient for
ROUGE-2

patience 5 patience for early stopping

Table 5: Hyperparameters for the RL extractor

