
Daniel@FinTOC-2021: Taking Advantage of Images and Vectorial
Shapes in Native PDF Document Analysis

Emmanuel Giguet
Normandie Univ, UNICAEN,
ENSICAEN, CNRS, GREYC

14000 Caen, France
emmanuel.giguet@unicaen.fr

Gaël Lejeune
STIH, Sorbonne University

75005 Paris, France
gael.lejeune@sorbonne-universite.fr

Abstract

In this paper, we present our contribution to
the FinTOC-2021 Shared Task “Financial Doc-
ument Structure Extraction”. We participated
in the tracks dedicated to English and French
document processing. We get results for Ti-
tle detection and TOC generation performance
which demonstrates a good precision. We ad-
dress the problem in a fairly unusual but ambi-
tious way which consists in considering simul-
taneously text content, vectorial shapes and im-
ages embedded in the native PDF document,
and to structure the document in its entirety.

1 Introduction

In the Fintoc-2021 Financial Document Structure
Extraction competition (El Maarouf et al., 2021),
two tasks have been proposed by the organizers :
ToC Structure Extraction and Title Detection.

Extracting a table of content (ToC) is a way to
improve information access in large documents,
it can also be a mean to improve the results of
some Natural Language Processing or Document
Analysis tasks, for instance document classifica-
tion and clustering (Doucet and Lehtonen, 2007;
Ait Elhadj et al., 2012), converting a document in
a format in which the structure is important (Mari-
nai et al., 2010) or navigating through electronic
documents(Déjean and Meunier, 2005). A bigger
motivation lies in the fact that having a proper Ta-
ble of Contents is a way to handle documents like
a structured set of paragraphs rather than a simple
sequence of strings or sentences where the logical
structure disappeared. This logical structure often
happens with generic OCR tools whose output is
simply a character string where the only structural
aspect that has been kept is the pages and other
structural properties have disappeared during the
automatic processing (Lecluze and Lejeune, 2014).
Two different subtasks lie behind ToC extraction
: (i) extracting a logical structure that has been
explicitly marked in a ToC and map it to the titles

present in the document, and (ii) creating a ToC
when no one is present in the document by spotting
the titles and their hierarchy. In both cases, systems
need to be able to perform Title Detection in order
to get candidates to populate the ToC. Detecting
titles has also an interest on its own since it has also
been used as a feature for different tasks like text
classification (Lejeune et al., 2013), Terminology
Acquisition (Daille et al., 2016) or Keyphrase Ex-
traction (Florescu and Caragea, 2017). The paper
is organized as follows. In Section 2 we present the
datasets. In Section 3, we describe our method for
both tasks. the method we designed. In Section 4
we present a discussion about our results, and we
draw some perspectives for future work.

2 Data

The training set and test set of the shared tasks
are composed of financial prospectuses written in
French and English. The documents are distributed
as native PDF documents.

The structure of the prospectuses is not stan-
dardized, which helps to have a real-world case
where there is variation in the data. However, we
expect the presence of some particular sections
and an overall structure which will not vary too
much. The format and layout varies greatly from
one document to another and is often complex, with
tables, nested lists of numbered and bulleted items,
framed content, graphs, columns. The majority
of prospectuses are published without a table of
content (ToC), which means you can not rely on a
ToC detection and parsing module to achieve the
tasks. All this makes the challenge interesting. A
comprehensive description of the datasets can be
found in (El Maarouf et al., 2021).

3 Method

The experiment is conducted on native PDF docu-
ments. In line with the work presented in FinSBD-2
task by (Giguet and Lejeune, 2021), we choose to



implement an end-to-end pipeline from the PDF file
itself to a fully structured document. This approach
allows to control the entire process. Titles and
Table of Contents that we generate for the shared
tasks are derivative outputs of the system.

3.1 Document Preprocessing

The document content is extracted using the
pdf2xml command (Déjean, 2007). Three useful
types of content are extracted from the document:
text, vectorial shapes, and images.

Text Preprocessing
Pdf2xml introduces the concepts of token, line
and block, as three computational text units. We
choose to only rely on the “token” unit. In practice,
most output tokens correspond to words or numbers
but they can also correspond to a concatenation of
several interpretable units or to a breakdown of an
interpretable unit, depending on character spacing.
We choose to redefine our own “line” unit in order
to better control the coherence of our hierarchy of
graphical units. We abandon the concept of "block"
whose empirical foundations are too weak.

Vectorial Shapes Preprocessing
Using pdf2xml allows to rely on vectorial in-
formation during document analysis. Text back-
ground, framed content, underline text, table grid
are crucial information that contributes to sense
making. They simplify the reader’s task, and con-
tribute in a positive way to automatic document
analysis.

Most vectorial shapes are basic closed path,
mostly rectangles. Graphical lines or graphical
points do not exist: lines as well as points are rect-
angles interpreted by the cognitive skills of the
reader as lines or points. In order to use vectorial
information in document analysis, we implemented
a preprocessing stage that builds composite vec-
torial shapes and interprets them as background
colors or borders. This preprocessing component
returns shapes that are used by our system to detect
framed content, table grids, and text background. It
improves the detection of titles which are presented
as framed text and it avoids considering table head-
ers as titles.

Images Preprocessing
Pdf2xml extracts images from the pdf. They may
be used in different context such as logos in the
title page, figures in the document body. An other

interesting feature lies in the fact that certain char-
acter symbols are serialized as images, in particular
specific item bullets such as arrows or checkboxes.
They are indistinguishable from a standard symbol
character by the human eye.

We choose to handle images as traditional sym-
bol characters, so that they can be exploited by the
structuration process, in particular by the list identi-
fication module. Identical images are grouped, and
a virtual token containing a fake character glyph
is created. The bounding box attributes are associ-
ated to the token and a fake font name is set. These
virtual tokens are inserted at the right location by
the line builder module thanks to the character x-y
coordinates. This technique significantly improves
the detection of list items and, as a consequence,
the recognition of the global document structure.

3.2 Document Structure Parsing

Page Layout Analysis

Page Layout Analysis (PLA) aims at recognizing
and labeling content areas in a page, e.g., text re-
gions, tables, figures, lists, headers, footers. It is
the subject of abundant research and articles (An-
tonacopoulos et al., 2009).

While PLA is often achieved at page scope and
aims at bounding content regions, we have taken
a model-driven approach at document scope. We
try to directly infer Page Layout Models from the
whole document and we then try to instantiate them
on pages.

Our Page Layout Model (PLM) is hierarchical
and contains 2 positions at top-level: the margin
area and the main content area. The margin area
contains two particular position, the header area
located at the top, and the footer area located at
the bottom. Aside areas may contain particular
data such as vertically-oriented text. The main
content area contains column areas containing text,
figures or tables. Floating areas are defined to
receive content external to column area, such as
large figures, tables or framed texts.

The positions that we try to fill at document
scope are header, footer and main columns. First,
pages are grouped depending on their size and ori-
entation (i.e., portrait or landscape). Then header
area and footer area are detected. Column areas
are in the model but due to time constraints, the
detection module is not fully implemented in this
prototype yet.



Detecting Header and Footer Areas

Header and footer area boundaries are computed
from the repetition of similar tokens located at simi-
lar positions at the top and at the bottom of contigu-
ous pages (Déjean and Meunier, 2006). We take
into account possible odd and even page layouts.
The detection is done on the first twenty pages of
the document. While this number is arbitrary, we
consider it is enough to make reliable decisions in
case of odd and even layouts.

A special process detects page numbering and
computes the shift between the PDF page num-
bering and the document page numbering. Page
numbering is computed from the repetition of to-
kens containing decimals and located at similar
positions at the top or at the bottom of contiguous
pages. These tokens are taken into account when
computing header and footer boundaries.

Detecting the Table of Contents

The TOC is located in the first pages of the doc-
ument. It can spread over a limited number of
contiguous pages. One formal property is common
to all TOCs: the page numbers are right-aligned
and form an increasing sequence of integers.

These characteristics are fully exploited in the
core of our TOC identification process: we consider
the pages of the first third of the document as a
search space. Then, we select the first right-aligned
sequence of lines ending by an integer and that may
spread over contiguous pages.

Linking TOC Entries and Headers

Linking Table of Content Entries to main content is
one of the most important process when structuring
a document (Déjean and Meunier, 2010). Comput-
ing successfully such relations demonstrates the
reliability of header detection and permits to set
hyperlinks from toc entries to document headers.

Once TOC is detected, each TOC Entry is linked
to its corresponding page number in the document.
This page number is converted to the PDF page
number thanks to the page shift (see section 3.2).
Then header is searched in the related PDF page.
When found, the corresponding line is categorized
as header.

Table Detection

Table detection to exclude table content from the
main text stream. It allows to exclude tables when
searching for list items, sentences or titles.

The table detection module analyzes the PDF
vectorial shapes. Our algorithm builds table grids
from adjacent framed table cells. The framed table
cells are built from vectorial shapes that may repre-
sent cell borders. The table grid is defined by the
graph of adjacent framed table cells.

Unordered List Structure Induction
Unordered lists are also called bulleted lists since
the list items are supposed to be marked with bul-
lets. Unordered lists may spread over multiple
pages.

Unordered list items are searched at page scope.
The typographical symbols (glyphs) used to intro-
duce items are not predefined. We infer the sym-
bol by identifying multiple left-aligned lines intro-
duced by the same single-character token. In this
way, the algorithm captures various bullet symbols
such as squares, white bullets. . . Alphabetical or
decimal characters are rejected as possible bullet
style type. Images of character symbols are trans-
parently handled thanks to virtual tokens created
during the preprocessing stage.

The aim of the algorithm is to identify PDF lines
which corresponds to new bulleted list item (i.e.,
list item leading lines). The objective is not to
bound list items which cover multiple lines. Indeed,
the end of list items are computed while computing
paragraph structures: a list item ends when the next
list item starts (i.e., same bullet symbol, same in-
dentation) or when less indented text objects starts.

Ordered List Structure Induction in PDF
Documents
Ordered list items are searched at document scope.
We first select numbered lines thanks to a set of
regular expressions, and we analyse each number-
ing prefix as a tuple 〈P, S, I, C〉 where P refers
to the numbering pattern (string), S refers to the
numbering style type (single character), I refers to
the numbering count written in numbering style
type (single character), and C refers to the decimal
value of the numbering count (integer).

The numbering style types are defined as follows:
Decimal (D), Lower-Latin (L), Upper-Latin (M),
Lower-Greek (G) Upper-Greek (H), Lower-Roman
(R), Upper-Roman (S), Lower-Latin OR Lower-
Roman (?), Upper-Latin OR Upper-Roman (!).

To illustrate, the line “A.2.c) My Header" is anal-
ysed as 〈 A.2.L), L, c, 3 〉.

Lines are grouped in clusters sharing the same
numbering pattern. A disambiguation process as-



signs an unambiguous style type to ambiguous
lines. The underlying strategy is to complement un-
ambiguous yet incomplete series in order to build
coherent, ordered series.

Paragraph Structure Induction
The aim of paragraph structure induction is to in-
fer paragraph models that are later used to detect
paragraph instances. The underlying idea to auto-
matically infer the settings of paragraph styles.

Paragraphs are complex objects: a canonical
paragraph is made of a leading line, multiple body
lines and a trailing line. The leading line can have
positive or negative indentation. In context, para-
graphs may be visually separated from other ob-
jects thanks to above spacing and below spacing.

In order to build paragraph models, we first iden-
tify reliable paragraph bodies: sequences of three
or more lines with same line spacing and compati-
ble left and right coordinates. Then, leading lines
and trailing lines are identified considering same
line spacing, compatible left and/or right coordi-
nates (to detect left and right alignments), same
style. Paragraph lines are categorized as follows:
L for leading line, B for body lines, T for trailing
line. Header lines are categorized H. Other lines
are categorized as ? for undefined.

In order to fill paragraph models, paragraph set-
tings are derived from the reliable paragraphs that
are detected. When derived, leading lines of un-
ordered and ordered list items are considered to
create list item models.

Once paragraph models and list item models are
built, the models are used to detect less reliable
paragraphs and list items (i.e., containing less than
three body lines). Compatible models are applied
and lines are categorized L, B (if exists) or T (if
exists). Remaining undefined lines are categorized
considering line-spacing.

4 Results and discussion

The document-wise approach we presented was
evaluated on both tasks of FinTOC 2021 : Title
Detection and Table of Content extraction.

In table 1 and 2 we present the results we ob-
tained respetively on the Title Detection and the
ToC Extraction tasks. The results we obtain shows
an overall good precision on both languages but
a quite low recall. These results are encouraging
when we consider all the structures that we want
to handle, though our system gives too much False

Negatives for title detection and consequently for
ToC extraction.

Table 1: Results for Title Detection

Prec Rec F1
fr 0.842 0.485 0.606
en 0.913 0.338 0.465

Table 2: Results for ToC Extraction

Prec Rec F1
fr 49.7 28.6 35.8
en 52.8 18.6 25.1

The rationale of our method is to have an end-
to-end pipeline from the PDF file itself to a fully
structured document, it seems that this is a good
way to avoid false positives. The steps comprised
in our method (layout analysis, header/footer detec-
tion, list detection and paragraph induction) seem
to act as filters to avoid an over structuration of the
document. The consequence is that the results we
obtain are very encouraging in terms of precision,
but the recall remains quite low. Still, we believe
there is a great interest in representing a fairly un-
usual but ambitious way to deal with the document
structure as a whole.

References
Ali Ait Elhadj, Mohand Boughanem, Mohamed

Mezghiche, and Fatiha Souam. 2012. Using
structural similarity for clustering XML documents.
Knowledge and Information Systems, 32(1):109–
139.

Apostolos Antonacopoulos, David Bridson, Christos
Papadopoulos, and Stefan Pletschacher. 2009. A re-
alistic dataset for performance evaluation of docu-
ment layout analysis. In Proceedings of the Interna-
tional Conference on Document Analysis and Recog-
nition, ICDAR, pages 296–300.

Béatrice Daille, Evelyne Jacquey, Gaël Lejeune,
Luis Felipe Melo, and Yannick Toussaint. 2016.
Ambiguity Diagnosis for Terms in Digital Human-
ities. In Language Resources and Evaluation Con-
ference, Portorož, Slovenia.

Hervé Déjean. 2007. pdf2xml open source software.
Last access on July 31, 2019.

Hervé Déjean and Jean-Luc Meunier. 2005. Structur-
ing documents according to their table of contents.
In Proceedings of the 2005 ACM symposium on Doc-
ument engineering, pages 2–9.

http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10115-011-0421-5
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10115-011-0421-5
https://doi.org/10.1109/ICDAR.2009.271
https://doi.org/10.1109/ICDAR.2009.271
https://doi.org/10.1109/ICDAR.2009.271
https://hal.inria.fr/hal-01423650
https://hal.inria.fr/hal-01423650
https://sourceforge.net/projects/pdf2xml/


Hervé Déjean and Jean-Luc Meunier. 2006. A system
for converting pdf documents into structured xml for-
mat. In Document Analysis Systems VII, pages 129–
140, Berlin, Heidelberg. Springer Berlin Heidelberg.

Hervé Déjean and Jean-Luc Meunier. 2010. Reflec-
tions on the inex structure extraction competition.
In Proceedings of the 9th IAPR International Work-
shop on Document Analysis Systems, DAS ’10, page
301–308, New York, NY, USA. Association for
Computing Machinery.

Antoine Doucet and Miro Lehtonen. 2007. Unsuper-
vised classification of text-centric xml document col-
lections. In Comparative Evaluation of XML Infor-
mation Retrieval Systems, Fifth International Work-
shop of the Initiative for the Evaluation of XML Re-
trieval, INEX 2006, volume 4518 of Lecture Notes
in Computer Science, pages 497–509. Springer.

Ismail El Maarouf, Juyeon Kang, Abderrahim Aitazzi,
Sandra Bellato, Mei Gan, and Mahmoud El-Haj.
2021. The Financial Document Structure Extraction
Shared Task (FinToc 2021). In The Third Financial
Narrative Processing Workshop (FNP 2021), Lan-
caster, UK.

Corina Florescu and Cornelia Caragea. 2017. Position-
Rank: An unsupervised approach to keyphrase ex-
traction from scholarly documents. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1105–1115, Vancouver, Canada. Association
for Computational Linguistics.

Emmanuel Giguet and Gaël Lejeune. 2021. Daniel
at the FinSBD-2 task : Extracting Lists and Sen-
tences from PDF Documents: a model-driven end-
to-end approach to PDF document analysis. In Sec-
ond Workshop on Financial Technology and Natu-
ral Language Processing in conjunction with IJCAI-
PRICAI 2020, Proceedings of the Second Workshop
on Financial Technology and Natural Language Pro-
cessing, pages 67–74, Kyoto, Japan.

Charlotte Lecluze and Gaël Lejeune. 2014. Deft2014,
automatic analysis of literary and scientific texts in
french (deft 2014, analyse automatique de textes
littéraires et scientifiques en langue française)[in
french]. In TALN-RECITAL 2014 Workshop DEFT
2014: DÉfi Fouille de Textes (DEFT 2014 Workshop:
Text Mining Challenge), pages 11–19.

Gaël Lejeune, Romain Brixtel, Charlotte Lecluze, An-
toine Doucet, and Nadine Lucas. 2013. Added-
value of automatic multilingual text analysis for
epidemic surveillance. In Artificial Intelligence in
Medicine (AIME), pages 284–294.

Simone Marinai, Emanuele Marino, and Giovanni
Soda. 2010. Table of contents recognition for con-
verting pdf documents in e-book formats. In Pro-
ceedings of the 10th ACM symposium on Document
engineering, pages 73–76.

https://doi.org/10.1145/1815330.1815369
https://doi.org/10.1145/1815330.1815369
https://doi.org/10.18653/v1/P17-1102
https://doi.org/10.18653/v1/P17-1102
https://doi.org/10.18653/v1/P17-1102
https://hal.archives-ouvertes.fr/hal-03097523
https://hal.archives-ouvertes.fr/hal-03097523
https://hal.archives-ouvertes.fr/hal-03097523
https://hal.archives-ouvertes.fr/hal-03097523

