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Abstract

Neural table-to-text generation models have
achieved remarkable progress on an array of
tasks. However, due to the data-hungry nature
of neural models, their performances strongly
rely on large-scale training examples, limiting
their applicability in real-world applications.
To address this, we propose a new framework:
Prototype-to-Generate (P2G), for table-to-text
generation under the few-shot scenario. The
proposed framework utilizes the retrieved pro-
totypes, which are jointly selected by an IR
system and a novel prototype selector to help
the model bridging the structural gap between
tables and texts. Experimental results on three
benchmark datasets with three state-of-the-art
models demonstrate that the proposed frame-
work significantly improves the model perfor-
mance across various evaluation metrics.

1 Introduction

Generating natural language from structured ta-
ble (Gatt and Krahmer, 2018), i.e. table-to-text
generation, is an important research problem for
various NLP applications, such as biographical de-
scriptions (Lebret et al., 2016), restaurant informa-
tion (Novikova et al., 2017), basketball game sum-
maries (Wiseman et al., 2017), and open-domain
question answering (Chen et al., 2021).

The main challenge of table-to-text generation
stems from the structural difference between the
table and the natural language text. With recent
advances in neural networks, many sophisticated
neural models (Liu et al., 2018; Gehrmann et al.,
2018; Puduppully et al., 2019a,b; Su et al., 2021b)
have been proposed to address this problem. While
achieving impressive results, such neural models
are data-hungry, i.e. large amounts of training
data are required for them to learn the mapping
between tables and texts. This can prohibit these
models from being applied to real-world applica-
tions due to the huge data curation overhead (Chen

et al., 2020b). This motivates us to investigate few-
shot table-to-text generation (Ma et al., 2019; Chen
et al., 2020b), that allows the model to learn a satis-
factory table-to-text mapping with limited labelled
training data.

In this work, we propose to address this problem
by augmenting data-to-text generation models with
prototype memory acquired from a large unlabelled
corpus. Our motivation is two-fold: (1) Relevant
human-authored texts, termed “prototypes”, are
informative and can teach the model how to bet-
ter describe the table when limited training data is
available. (2) However, traditional lexical-based IR
systems, e.g. BM25, are inaccurate and the quality
of their results are not guaranteed. Therefore, a
BERT-based prototype selector is required to fur-
ther select the prototypes, from the results retrieved
by the IR system, that are closely related to the ta-
ble for better guiding the neural generation model.

Figure 1 illustrates the proposed Prototype-to-
Generate (P2G) framework. Given the table, an IR
system is first applied to retrieve candidates that
are potentially related to the table from a large un-
labelled corpus. Based on the retrieved candidates,
a prototype selector then selects the top n proto-
types based on the table-text pairwise similarity.
Lastly, a sequence generator takes the table and the
selected prototypes as input to produce the output.
To prevent the model from uncritically copying the
information contained in the prototypes that is ir-
relevant to the table, we introduce a content-aware
learning objective when training the generator.

In recent years, retrieval-based (i.e. template-
based) text generation has been studied in different
NLP areas, including machine translation (Gu et al.,
2017), unconditional text generation (Guu et al.,
2018), dialogue systems (Wu et al., 2019; Su et al.,
2021c), paraphrase generation (Kazemnejad et al.,
2020; Su et al., 2021a), and question answering
(Lewis et al., 2020b). Despite their differences, we
identify two major limitations in previous studies
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Figure 1: An overview of the proposed Prototype-to-Generate (P2G) framework.

compared to our approach. Firstly, most previous
research (Gu et al., 2017; Wu et al., 2019; Kazem-
nejad et al., 2020) build their retrieval corpus based
on data consisting of aligned source-target pairs,
which precludes the use of abundant unlabelled
data. Secondly, current retrieval mechanisms are ei-
ther based on lexical similarity (e.g. BM25) where
its accuracy cannot be guaranteed, or large neural
networks (Karpukhin et al., 2020) which require a
large amount of data to train.

Notably, our framework is independent of the
choice of generation model. For a comprehensive
evaluation, we test our approach on three represen-
tative models, including the current state of the art.
The experimental results on three datasets show
that our framework leads to remarkable perfor-
mance improvements across all evaluation metrics.

2 Methodology

Figure 1 depicts an overview of our framework.
Given a linearized table T = {t1, ..., t|T |}, where
ti = {ai, vi} is an attribute-value pair, an IR sys-
tem first retrieves a set of m candidatesR from the
large unlabelled corpus. Then, a prototype selector
f (§2.1) selects the top n prototypes S fromR that
are most related to T . Lastly, a sequence generator
g (§2.2) takes T and S to produce the output y.

2.1 Prototype Selector

As illustrated in Figure 1, given the table T , the IR
system relies on lexical features (e.g., word over-
laps between the table and texts as colored in blue)
to retrieve candidates R. However, such lexical
features are inaccurate and the semantic relevance

between T andR cannot be guaranteed. To remedy
this problem, we utilize a prototype selector f to
select the top n prototypes S fromR based on the
table-text pairwise similarity. Formally, given the
table T and a text r ∈ R, their pairwise similarity
score is defined as f(T, r) and S is then defined as:

S = argmax
R′∈R,|R′|=n

∑
r∈R′

f(T, r). (1)

Figure 1 shows examples of the selected prototypes,
S . We see that S are better related to the table and
being closer to the reference text, i.e., the reference
and S could share similar contexts like the words
in red. Thus, S can be deemed as an guiding signal
which teaches the model how to describe the table.

In this work, we use BERT (Devlin et al., 2019)
to build the prototype selector. The score f(T, r)
is computed by a linear projection over the aver-
age embeddings of BERT([T :r]), where [:] denotes
concatenation operation. During training, given the
table T , the reference text y, and the retrieved can-
didate setR provided by the IR system, the learn-
ing objective of the prototype selector is defined as:

Lf =

k∑
j=1

max{0, 1− f(T, y) + f(T,Rj)}, (2)

where Rj ∈ R and k is the number of neg-
atives sampled from R. After training f , we
can obtain the prototype-augmented dataset D =

{(T,S, y)i}|D|
i=1 for the learning of the generator.

2.2 Sequence Generator
The proposed framework is model-agnostic, thus
the generator g can be any generation model. Given
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Domain Humans Books Songs

Training Size 50 100 200 500 50 100 200 500 50 100 200 500
Retrieval-Based

Retri-Gen 7.4/0.7 10.3/1.6 13.2/2.7 16.5/4.1 12.1/1.8 13.2/2.0 14.7/2.4 15.9/3.3 13.4/2.7 14.3/3.1 16.2/4.3 17.7/4.9
RA-Gen 29.4/15.8 33.6/18.9 40.1/26.7 44.3/30.9 34.7/22.2 35.7/22.9 37.4/24.9 40.9/28.3 34.9/24.8 36.4/26.1 39.0/29.2 42.1/31.7

Struct-Aware‡ 2.9/0.1 5.1/0.4 6.1/0.8 8.3/1.5 7.3/1.7 6.8/ 1.5 7.8/2.1 8.8/2.4 10.4/4.1 12.0/5.1 11.6/4.7 13.1/5.8
Pivot 14.9/3.2 18.7/6.9 25.3/14.1 29.8/17.3 23.1/10.7 24.9/13.3 27.0/15.2 29.8/18.1 26.2/14.7 28.0/16.2 29.2/17.7 31.7/20.0

KGPT 30.2/18.8 35.0/22.8 38.9/26.1 43.7/30.4 35.3/24.2 37.4/25.8 38.4/26.7 42.0/29.2 37.9/28.3 39.8/30.1 40.3/30.5 42.9/33.0
Switch-GPT† 25.7/14.1 29.5/16.2 36.1/22.1 41.7/28.3 34.3/22.5 36.2/23.1 37.9/25.0 40.3/27.6 36.1/26.2 37.2/28.6 39.4/30.1 42.2/32.6
Table-GPT‡ 29.8/16.3 34.5/20.6 40.6/27.6 45.6/32.4 35.1/24.0 37.3/25.4 38.5/26.7 41.6/28.9 36.7/27.1 37.8/29.4 39.3/30.6 42.3/32.8

T5-Prefix 32.6/20.7 37.1/23.1 41.7/28.8 46.3/33.2 34.2/21.2 38.3/26.7 39.4/27.6 42.9/30.0 37.6/28.1 38.7/29.2 40.0/30.3 43.5/33.9
P2G+Switch-GPT 31.4/19.9 36.5/22.7 42.0/30.1 45.8/32.6 38.2/25.4 39.9/27.3 41.7/29.2 44.6/31.7 39.1/29.9 40.3/30.7 41.8/32.0 45.0/35.4
P2G+Table-GPT 34.9/23.2 38.9/25.1 43.1/31.2 48.1/35.0 40.1/29.3 41.0/28.6 43.1/30.4 47.0/34.0 41.2/31.7 42.7/33.6 44.2/34.9 47.9/38.1
P2G+T5-Prefix 39.3/27.9 42.6/30.8 46.2/34.0 50.1/37.3 41.2/28.3 43.4/30.5 46.4/33.8 49.2/36.1 42.8/33.0 45.9/35.7 47.6/37.5 50.7/40.1

Table 1: Results on datasets from three domains. In each entry, x/y denotes the model performance on BLEU-
4/ROUGE-4(F-measure). † and ‡ results are copied from Chen et al. (2020b) and Gong et al. (2020). All results
acquired with the proposed framework outperform the original model with a significance level p-value < 0.01.

a training example (T,S, y) ∈ D, the learning of
g is defined as: LLM = −

∑|y|
i=1 log pθ(yi|y<i;X),

where θ denotes the parameters of the generator,
and X = [T :S]. Moreover, we introduce a new
content-aware learning objective. Our motivation
is that the prototypes S is likely to contain infor-
mation that is irrelevant to the table, thus the gen-
erator should learn to ignore the irrelevant part of
S and only focus on the useful information. To
this end, inspired by Welleck et al. (2020), we
formulate the content-aware learning objective as:
LCA = −

∑|y|
i=1

∑
ỹ∈S,ỹ /∈y log(1 − pθ(ỹ|y<i;X))

which discourages the generation of the irrelevant
tokens contained in S . The generator overall learn-
ing objective is then defined as: Lg = LLM + LCA.

3 Experiment

3.1 Experiment Setup

We conduct experiments on three benchmark few-
shot table-to-text datasets (Chen et al., 2020b) from
different domains: Humans, Books, and Songs.
Following previous studies (Chen et al., 2020b;
Gong et al., 2020), we train our model on dif-
ferent settings by varying the training size from
{50, 100, 200, 500}, and evaluate our model using
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) metrics. Test sets of Humans, Books, and
Songs contain 13587, 5252 and 11879 instances.

To build the IR system, we use Lucene1 to
pre-index all sentences contained in the English
Wikipedia (Dec. 2018 dump). For each table, the
IR system retrieves 100 sentences as the candidates
R. The prototype selector then select the top 3 re-

1https://lucene.apache.org/core/

sults fromR as the prototypes S2. When training
the prototype selector, we set k in Eq. (2) as 5.

We compare our approach with both existing
table-to-text methods that are not retrieval-based
and also with the existing retrieval-based methods
which we adapt for our concerned task. The ex-
isting table-to-text methods include Struct-Aware
(Liu et al., 2018), Pivot (Ma et al., 2019), Switch-
GPT (Chen et al., 2020b), KGPT (Chen et al.,
2020a), Table-GPT (Gong et al., 2020), and T5-
Prefix (Ribeiro et al., 2020). The latter four are
based on pre-trained language models (PLMs). The
retrieval-based approaches include Retri-Gen (Wu
et al., 2019) and RA-Gen (Lewis et al., 2020b),
where RA-Gen is based on PLMs. We select three
representative models (Switch-GPT, Table-GPT,
and T5-Prefix) to test the proposed framework.

3.2 Main Results

Table 1 lists the experiment results, where P2G+X
indicates using model X under our framework. We
can see that the proposed framework consistently
and significantly improves the performance of all
three models on all metrics, showing the robust-
ness and universality of our approach. The notable
performance gains suggest that the incorporation
of retrieved prototypes greatly benefit the model’s
ability in bridging the gap between tables and texts.
It is worth noting that the RA-Gen model applies a
strong BART (Lewis et al., 2020a) as the generator.
However, their retrieval module is purely based on
a large neural models (Karpukhin et al., 2020) that
requires a large amount of data to train, and its
accuracy degenerates when training data is limited,

2To avoid the data leakage problem, when building the dataset,
we make sure the prototypes do not contain the reference.
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Training Size 50 100 200 500
T5-Prefix 32.6/20.7 37.1/23.1 41.7/28.8 46.3/33.2

+Ret 32.9/21.2 37.4/23.5 42.1/29.0 46.7/33.4
+Ret&PS 38.8/27.0 42.0/30.2 45.8/33.5 49.2/36.6

+Ret&PS&CA 39.3/27.9 42.6/30.8 46.2/34.0 50.1/37.3

Table 2: Ablation study results on Humans dataset. In
each entry, x/y denotes the BLEU-4/ROUGE-4 scores.

Figure 2: Effect of the number of prototypes (n).

leading to the reduced generation performance.

3.3 Further Analysis

In this section, we present further discussions and
empirical analysis of the proposed model.

Ablation Study. First, we perform ablation anal-
ysis on the T5-Prefix model by progressively in-
corporating each proposed technique. The +Ret
model directly utilizes the top 3 retrieved results
from the IR system as input. The +Ret&PS model
utilizes the prototypes selected by the prototype
selector as input. Finally, we include the proposed
content-aware objective (+Ret&PS&CA) which re-
sults in the same model as P2G+T5-Prefix. The
experiments are conducted on the Humans dataset
with different training size. Table 2 lists the results
which show that each component positively con-
tributes to the overall performance. By comparing
T5-Prefix with +Ret, we only observe a marginal
improvement, suggesting that the retrieved results
from the IR system are inaccurate (i.e., unrelated
to the table) which brings little help to the gener-
ator. Next, from the results of +Ret&PS model
we see that the incorporation of prototype selector
significantly boosts the performance. This is inline
with our hypothesis that the prototype selector can
select more accurate (i.e., related to the table and
similar to the reference) prototypes that can effec-
tively teach the generator about how to describe
the table. Lastly, the results of +Ret&PS&CA show
that the proposed content-aware learning objective

#Support↑ #Contradict↓ Fluency↑
Agreement 0.64 0.61 0.53
Reference 4.27 0.31 1.85

Switch-GPT 3.23 0.98 1.37
Table-GPT 3.47 0.75 1.42
T5-Prefix 3.59 0.62 1.58

P2G+T5-Prefix 3.98 0.47 1.71

Table 3: Human Evaluation Results. ↑ means the
higher the better and ↓ means the lower the better.

also benefits the model performance.

Effect of the Number of Prototypes. Next, we
examine how the number of prototypes (n in Eq.
(1)) affects the model performance. To this end,
we train P2G+T5-Prefix with 100 instances on the
Humans dataset by varying the size of n. Figure 2
depicts the results of BLEU and ROUGE. We ob-
serve that, when n is small (i.e., n ≤ 3), the model
performances are relatively the same. However, as
n approaching 10, the results drop notably. The
reason is that, as n increases, the top n prototypes
are likely to contain more information that is irrel-
evant to the table (i.e. noisy information), which
leads to the degeneration of model performances.

3.4 Human Evaluation

We also conduct a human evaluation to assess the
P2G+T5-Prefix model against several strong base-
lines, using graders proficient in English from an
internal grading platform. Experiments are con-
ducted on Humans dataset using 100 training in-
stances and we randomly select 300 test cases for
evaluation. All generated results, plus the refer-
ence, are evaluated by three graders on two aspects:
(1) factual correctness; and (2) language fluency.
Firstly, the graders are asked to count how many
facts contained in the output are consistent with the
table (#Support), and are contradicted to the table
(#Contradict). Secondly, the graders are asked to
assess the output in terms of language fluency on a
3-point Likert scale (0, 1, or 2).

Table 3 lists the evaluation results, with the first
row showing strong inter-annotator agreements as
measured by Fleiss′ kappa coefficient (Fleiss et al.,
1971). The results show that our model (P2G+T5-
Prefix) significantly outperforms other baseline
models on all metrics (Sign Test with p-value <
0.05). The performance gains of P2G+T5-Prefix
over T5-Prefix further suggest that the prototypes
help the model to produce not only more syntacti-
cally fluent but also more factually correct outputs.
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Table:

Name[The Absence] Background [Grouporband] Origin[Tampa, Florida, U.S.]
Genre[ melodic death metal, thrash metal] Years Active[2002–present]
Current Members[Jamie Stewart, Patrick Pintavalle, Mike Leon, Jeramie Kling, Per Nilsson]
Past Members[Justin Reynolds, Nicholas Calaci, John Allen, Chris Pistillo, Peter Joseph]

Reference: The Absence is an American melodic death metal band from Tampa, Florida.

T5+Prefix: Jamie Stewart Patrick Pintavalle Mike Leon Jeramie Kling Per Nilsson, current members
is Justin Reynolds Nicholas Calaci John Allen Chris Pistillo Peter Joseph.

P2G+T5-Prefix

Prototypes:

1: One Man Army and the Undead Quartet was a Swedish band, that played a fusion of melodic
death metal and thrash metal.

2: Epoch of Unlight is a melodic death metal band from Memphis, Tennessee.
3: Inactive Messiah is a Greek melodic death metal band, founded in Athens.

Output: The Absence is an American melodic death metal band from Tampa, Florida, U.S.

Table:
Name[Axel Toupane] Position[shooting guard/small forward] Height ft[6] Height in[7] Weight lb[197]
League[NBA] Team[Toronto Raptors] Nationality[French] Draft Year[2014] Birth Date[23 July 1992]
Birth Place[Mulhouse, France] Career Start[2011] Years[2011–2015]

Reference: Axel Toupane (born July 23, 1992) is a French professional basketball player who currently plays for the
Toronto Raptors of the National Basketball Association (NBA).

T5+Prefix: Axel Toupane (born 23 July 1992) is a French professional basketball player.

P2G+T5-Prefix

Prototypes:

1: Shannon Scott (born December 21, 1992) is an American professional basketball player who currently
plays for the Toronto Raptors.

2: Bismack Biyombo Sumba (born August 28, 1992) is a Congolese professional basketball player who
currently plays for the Toronto Raptors of the National Basketball Association.

3: Jama Mahlalela (born in Swaziland) is an assistant coach for the Toronto Raptors of the NBA.

Output: Axel Toupane (born July 23, 1992) is a French professional basketball player in the team of the Toronto
Raptors of the National Basketball Association (NBA).

Table 4: Examples of generated result from Humans dataset. (best viewed in color)

4 Case Study

In Table 4, we present two generated examples
from our model. For comparison, we also show
the results generated by the strongest baseline (T5-
Prefix) along with the reference sentence. As for
our model, we show the selected prototypes along
with the generated output. Both our model and the
baseline model are trained with 100 instances.

As seen in the first case, the T5-Prefix fails to
produce a correct output which describes the band.
Instead, it just elaborates the name of the band
members based on the table. In contrast, by relying
on the prototypes that are related to the table, our
model (P2G+T5-Prefix) produces an output that
properly describes the band. Similarly, in the sec-
ond case, the result of our model is more diverse
and contains more facts that are supported by the
table. These results further demonstrate that the
prototypes can be deemed as effective guiding sig-
nals which teach the model how to describe the
table. For better illustration, we highlight the parts,
with red color, of prototypes on which the model
relies when producing the output.

5 Conclusion

In this study, we introduced a new retrieval-
based framework, Prototype-to-Generate (P2G),

which augments table-to-text models with pro-
totype memory from unlabelled data. Exten-
sive experiments and analysis on three bench-
mark datasets show that our approach can sig-
nificantly improve the performance of various
strong generation models on all evaluation met-
rics. Our code, models and other related resources
can be found in https://github.com/yxuansu/

Few-Shot-Table-to-Text-Generation
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A Related Work

Table-to-Text Generation. Table-to-text gener-
ation is a long-standing problem (Reiter and Dale,
1997) that aims at producing natural language de-
scriptions of structured table. Traditional systems
are primarily built on template-based algorithms
(Oh and Rudnicky, 2000; Stent et al., 2004; Kon-
dadadi et al., 2013). With recent advances in neural
networks, researchers have built different neural
models based on various strategies, e.g. latent-
variables (Wiseman et al., 2018; Ye et al., 2020),
structure awareness (Liu et al., 2018; Colin and
Gardent, 2019), copy mechanism (Gehrmann et al.,
2018; Puduppully et al., 2019a,b), and pre-trained
language models (PLMs) (Chen et al., 2020a; Kale,
2020; Ribeiro et al., 2020). More recently, to al-
leviate the data-hungry nature of neural models,
Ma et al. (2019) applied a pipeline model which
first selects key facts from the table before pro-
ducing the output. Chen et al. (2020a) designed a
knowledge-grounded strategy for language model
pre-training. Chen et al. (2020b) and Gong et al.
(2020) adapted the pre-trained GPT-2 model with
different architectural designs, e.g. switch policy
(Chen et al., 2020b) and content matching (Gong
et al., 2020), to address the few-shot table-to-text
generation problem.

Retrieval-Based Text Generation. In the last
few years, retrieval-based text generation has at-
tracted much attention. Gu et al. (2017) utilized a
search engineer to assist the neural machine trans-
lation model. Guu et al. (2018) addressed uncon-
ditional text generation with a neural editor model
that edits the retrieved prototypes. Wu et al. (2019)
and Su et al. (2021c) incorporated retrieval frame-
works into Seq2seq models to enrich the informa-
tion contained in the dialogue responses. Kazemne-
jad et al. (2020) applied a retrieval model to assist
the generation of paraphrased sentence. Lewis et al.
(2020b) incorporated external knowledge using a
retrieval model for knowledge-intensive question
answering. To the best of our knowledge, our work
is the first one which explores how retrieval-based
approach could benefit neural models for table-to-
text generation task.

B Human Evaluation Guidelines

In the human evaluation, the graders are asked to as-
sess the results from two aspects. Following previ-
ous research (Chen et al., 2020b; Gong et al., 2020),

in the first study, the graders evaluate the factual
correctness of the generated results by counting
how many facts contained in the output are consis-
tent with the table (#Support), and are contradicted
to the table (#Contradict). In the second study, the
graders assess the language fluency of the gener-
ated results following a 3-point Likert scale (0, 1, or
2). The definitions of different scores are provided
as following:

• 2: The result is grammatically fluent and is
easy to understand.

• 1: The result contains small errors but the
errors does not affect your understanding.

• 0: The result does not make sense and it is
unreadable.


