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Abstract
Recent developments in neural networks have
led to the advance in data-to-text generation.
However, the lack of ability of neural mod-
els to control the structure of generated out-
put can be limiting in certain real-world ap-
plications. In this study, we propose a novel
Plan-then-Generate (PlanGen) framework to
improve the controllability of neural data-to-
text models. Extensive experiments and analy-
ses are conducted on two benchmark datasets,
ToTTo and WebNLG. The results show that
our model is able to control both the intra-
sentence and inter-sentence structure of the
generated output. Furthermore, empirical com-
parisons against previous state-of-the-art meth-
ods show that our model improves the genera-
tion quality as well as the output diversity as
judged by human and automatic evaluations.

1 Introduction

Generating natural language from structured data
(Gatt and Krahmer, 2018), i.e. data-to-text genera-
tion, is a research problem that is crucial to many
downstream NLP applications. Some examples are
dialogue systems (Wen et al., 2016), restaurant as-
sistant (Novikova et al., 2017), and open domain
question answering (Chen et al., 2021).

To address this task, many researchers have de-
signed sophisticated neural models based on vari-
ous methods, such as soft-template (Wiseman et al.,
2018), copy mechanism (Gehrmann et al., 2018),
and pre-trained language models (Kale and Rastogi,
2020; Ribeiro et al., 2020). While achieving im-
pressive results, most existing studies only focused
on producing results that are close to the references.
On the other hand, the controllability of such mod-
els is still under-explored, i.e. what to generate and
in what order (the output structure) in their outputs
cannot be explicitly controlled by the users.

We argue that the model’s ability to control the
structure of its output is highly desirable for at least
∗Work done while the author was an intern at Apple.

Table 1: An Example of Knowledge Table

two reasons. (1) Arranging the structure of the
output in a certain form enables it to have greater
naturalness, as the structure of the sentence often
reflects the salience of the entities it contains (Poe-
sio et al., 2004). Suppose we have a digital assis-
tant which replies to user queries based on knowl-
edge tables like Table 1. Then, for a user query
“Who played Evelyn in Kids in Love?”, a natural
response is “Evelyn in Kids in Love was played
by Alma Jodorowsky.”. In contrast, to a different
query “What role did Alma Jodorowsky play in
Kids in Love?”, a natural response would be “Alma
Jodorowsky played Evelyn in Kids in Love.”. While
both answers are semantically equivalent, produc-
ing the answer with the most appropriate structure
allows the system to sound less robotic and be eas-
ily understood. (2) It allows the model to generate
outputs with diverse structures by simply changing
the input planning information (i.e. a content plan),
which could potentially benefit other applications
such as paraphrasing and data augmentation.

To control the output structure, we need an in-
termediate “planning” signal (i.e. a content plan)
which informs the model what to generate and in
what order. To this end, we propose a Plan-then-
Generate (PlanGen) framework which consists of
two components: a content planner and a sequence
generator. Given the input data, the content planner
first predicts the most plausible content plan that
the output should follow. Then, the sequence gen-
erator takes the data and the content plan as input
to generate the result. To further ensure the control-
lability of our model, we propose a structure-aware
reinforcement learning (RL) objective that encour-
ages the generated output to adhere to the given
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Figure 1: Plot illustrating the relationship between the structured data, the content plan, and the reference text for
examples from (a) ToTTo dataset (tabular data) and (b) WebNLG dataset (graphical data with RDF structure).

content plan. In this work, we formulate the inter-
mediate content plan as an ordered list of tokens for
its simplicity and wide applicability to data with
different structures. For tabular data, each token
in the content plan is a slot key from the table. As
for graphical data with RDF structure, each token
represents the predicate from an RDF triple. In
Figure 1, we provide examples for both cases.

To fully evaluate our approach, we test the pro-
posed model on two benchmarks with different data
structures: (i) ToTTo dataset (Parikh et al., 2020)
with tabular data, and (ii) WebNLG dataset (Colin
et al., 2016; Gardent et al., 2017) with graphical
data. Compared with previous state-of-the-art ap-
proaches, our model achieves better performance
in terms of generation quality as judged by both
human and automatic evaluations. In particular, the
results also show that the outputs of our model are
highly controllable and contain diverse structures.

In summary, our contributions are: (1) A novel
Plan-then-Generate (PlanGen) framework that con-
sists of a content planner and a sequence generator
for data-to-text generation. (2) Extensive automatic
and human evaluations reporting state-of-the-art re-
sults on two benchmark datasets. (3) In-depth anal-
ysis revealing the merits of the proposed approach
in terms of controllability and diversity.

2 Related Work

Data-to-text generation is a long-standing problem
(Reiter and Dale, 1997) that aims at producing nat-
ural language descriptions of structured data. Tra-
ditional systems are primarily built on template-
based algorithms (Oh and Rudnicky, 2000; Stent
et al., 2004; Kondadadi et al., 2013). With recent
advances in deep learning, researchers have shifted
their attention to neural generation models that can
be summarized into two categories.

End-to-End Models. Many existing studies are
dedicated to building end-to-end neural models

with different strategies like soft-templates (Wise-
man et al., 2018; Ye et al., 2020), attention aware-
ness (Liu et al., 2018; Colin and Gardent, 2019),
and retrieved prototypes (Li et al., 2020; Su et al.,
2021b). Gehrmann et al. (2018), Puduppully et al.
(2019a,b), and Chen et al. (2020b) adopted copy
mechanism for content selection to improve the
information coverage of the outputs. With recent
advance in pre-trained language models (PLMs)
(Devlin et al., 2019; Liu et al., 2019; Raffel et al.,
2020; Lewis et al., 2020), several researchers (Chen
et al., 2020a,b; Kale and Rastogi, 2020; Ribeiro
et al., 2020) have studied the ways to adapt PLMs
into the data-to-text generation task.

Pipeline Models. Another line of research inves-
tigates ways to tackle the generation problem in a
pipeline framework. Ma et al. (2019) proposed to
first use a classifier to select the key contents. The
planning and surface realisation of the selected con-
tents are then addressed by a subsequent Seq2seq
model. More related to our work, some researchers
studied how neural models can benefit from tradi-
tional NLG steps (Kukich, 1983; McKeown, 1992),
that is, (i) content planning and (ii) surface reali-
sation. To simultaneously select the key contents
and arrange their orderings (i.e. content planning),
different strategies are proposed such as the most
probable traversal of graph trees (Moryossef et al.,
2019), the ordering of graph nodes (Zhao et al.,
2020), and the multi-step pipeline that includes
discourse ordering, lexicalization, and regular ex-
pression generation (Ferreira et al., 2019). While
achieving satisfactory results, these approaches can
only be applied to data with graphical structure.
Compared with previous studies, we show that our
content planning approach is more accurate and
less dependent on the data structure. In addition,
by providing the desired content plan, our model
can control the output structure on both the intra-
sentence and inter-sentence levels (§7.3).
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Figure 2: PlanGen Framework: Given the structured data (T ), a content plan (C) is first predicted by the content
planner (left). The sequence generator (right) then takes the structured data and the predicted content plan as input
to generate the output (S). Note that, the content plan can also be specified by the user for a controlled generation.

3 Preliminaries

Dataset. In this study, our training dataset is de-
fined as D = {(T,C, S)i}|D|i=1. (1) T is the lin-
earized structured data and it is defined as T =
{t1, ..., t|T |}. For data with tabular structure, each
item ti = {ki, vi} is a pair of slot key ki and slot
value vi (e.g., (Date, 1956) in Figure 1(a)). As
for graphical data with RDF structure, each item
ti = {si, pi, oi} represents a RDF triple, where si,
pi, and oi are subject, predicate, and object, respec-
tively. For instance, in Figure 1(b), (“Alan Bean”,
“status”, “Retired”) is a RDF triple. (2) The refer-
ence content planC is defined asC = {c1, .., c|C|},
where each token ci either denotes a slot key (for
tabular data) or a predicate (for graphical data). The
content plan is thus a selection of the content from
the structured data that should appear in the out-
put, in a particular order. (3) The S = {s1, .., s|S|}
denotes the reference text.

Content Plan Construction. Note that the orig-
inal ToTTo and WebNLG datasets only consist of
pairs of structured data and reference text. Thus,
we use a heuristic delexicalizer F to construct the
reference content plan. For a tabular data T , given
the reference text S, the content plan C = F(T, S)
is built by replacing the parts of the reference text
that comes from the table slot values with the corre-
sponding slot keys. For instance, suppose we have
a text “Alma Jodorowsky played Evelyn in Kids in
Love.” and Table 1, then the resulting content plan
is {“Name”→“Role”→“Title”}. For graphical data
with RDF structure, we apply a similar procedure

to build the reference content plan by replacing
the parts of the reference text that comes from the
objects of the RDF triples with the corresponding
predicates. In Figure 1, we show examples of refer-
ence content plan for both cases.

4 Methodology

Figure 2 depicts the proposed Plan-then-Generate
(P2G) framework. Given the input data, the con-
tent planner (§4.1) first predicts the most probable
content plan. The sequence generator (§4.2) then
takes the structured data and the predicted content
plan to generate the output. In the following, we
elaborate the details of the proposed framework.

4.1 Content Planner

Our content planner consists of two components.
The first part is a content encoder which takes the
data T as input and produces its representation
HT ∈ R|T |×n, where n is the output size. We
construct our content encoder with a pre-trained
BERT-base model (Devlin et al., 2019).

After getting the data representation, we select
the hidden states from HT that corresponds to the
tokens1 that might appear in the content plan. Here,
we denote the selected hidden states HC ∈ R|C|×n
as HC = {hc1, ..., hc|C|}, where |C| is the number
of selected tokens from the input data. Next, HC is
fed into the ordering predictor which predicts the
orderings of the selected tokens in the predicted

1For tabular data, the selected tokens correspond to all slot
keys from the table. Similarly, for graphical data, the selected
tokens correspond to the predicates of all input RDF triples.
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content plan. Inspired by Su et al. (2021a), we
model the ordering predictor as a linear-chain con-
ditional random field (CRF) (Lafferty et al., 2001)
for its ability to compute the global optimal order-
ing sequence. When predicting the ordering, the
ordering predictor is allowed to emit an empty label
∅ which indicates the omission of the correspond-
ing token in the content plan.

During training, the likelihood of the ordering
sequence Y defined by the content plan is

PCRF(Y |HC) =
ef(Y,HC)∑
Y ′ e

f(Y ′,HC)

=
1

Z
exp(

|C|∑
i=1

Φyi(h
c
i ) +

|C|∑
i=2

Myi−1,yi).

(1)

Here, Φyi(h
c
i ) is the label score of yi at step i,

where label yi indicates the position of the token in
the final content plan. Taking Figure 2 as an exam-
ple, the position of the “Name” key is 1, meaning
that “Name” should appear in the front of the con-
tent plan. By predicting the positions instead of the
actual slot keys, at test time, our model can han-
dle tables with out-of-vocabulary slot keys that did
not appear in the training set. In practice, Φ is pa-
rameterized by a feed-forward layer. The Myi−1,yi

denotes the transition score from position yi−1 to
position yi, and M is a learnable transition matrix.

During inference, the ordering sequence is pre-
dicted as Ỹ as Ỹ = arg maxY ′ PCRF(Y ′|HC). As
shown in the example of Figure 2, given all the slot
keys {“Year”, “Name”, “Role”, “Notes”, “Title”}
from the table, the predicted ordering sequence
is {3, 1, 2, ∅, 4}. The content plan {“Name” →
“Role”→ “Year”→ “Title”} can then be predicted
by omitting the “Notes” key and re-arranging other
keys following the predicted ordering sequence.

4.2 Sequence Generator
Our sequence generator is built on a BART-base
model (Lewis et al., 2020) which consists of a trans-
former based encoder-decoder architecture.

Given the structured data T , the reference con-
tent plan C, and the reference text S, the learning
objective of the sequence generator is defined as

LLM = −
|S|∑
i=1

logPG(Si|S<i;E([T : C])), (2)

where E, G are the encoder and decoder, and [· : ·]
denotes the concatenation operation.

4.3 Structure-Aware RL Training
We note that the structure of the generated sequence
can only be accurately measured on the sequence-
level, which is not directly optimized by the token-
level objective (Eq. (2)). Therefore, to encourage
the generator to follow the sequence-level struc-
ture defined by the content plan, we incorporate
reinforcement learning into our training process.

Formally, in training, given the structured data T
and the reference content plan C, the generator first
samples an output sequence S′ = (S′1, ..., S

′
|S′|),

where S′t is the token sampled at time step t. The
generator parameters θ are then updated using the
REINFORCE algorithm (Williams, 1992) as

LRL = −ES′∼Pθ(T,C)[R(S, S′, T, C)] = (3)

−R(S, S′, T, C)

|S′|∑
i=1

logPG(S′i|S′<i;E([T : C])).

The reward function R(S, S′, T, C) measures the
structure of the sampled sequence S′ against the
input content plan C, and its surface form against
the reference text S as

R(S, S′, T, C) = B(S, S′) +B(C,C ′), (4)

where B(·, ·) is the BLEU score (Papineni et al.,
2002). C ′ = F(T, S′), and F is described in §3.
By optimizing Eq. (3), the structure of the output
is encouraged to follow the content plan.

4.4 Learning
The learning objective of the content planner is
LCRF = − logPCRF and PCRF is defined in Eq. (1).
For the sequence generator, at the first 10k steps,
we train it with LLM as described in Eq. (2). Then,
we incorporate the structure-aware RL objective
(Eq. (3)) and further train the sequence generator
with LLM + LRL for 5k more steps.

5 Experiment Setup

5.1 Datasets and Evaluation Metrics
ToTTo Dataset (Parikh et al., 2020) consists of
Wikipedia tables paired with human-written de-
scriptions. Each input is a full table with high-
lighted cells and the model is required to generate
the text that describes the highlighted cells. Similar
to previous studies (Parikh et al., 2020; Kale and
Rastogi, 2020), we only use the highlighted cells
2https://github.com/
google-research-datasets/ToTTo

https://github.com/google-research-datasets/ToTTo
https://github.com/google-research-datasets/ToTTo
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Model Overall Overlap Non-Overlap

BLEU PARENT BLEURT BLEU PARENT BLEURT BLEU PARENT BLEURT
NCP 19.2 29.2 -0.576 24.5 32.5 -0.491 13.9 25.8 -0.662

Pointer-Generator 41.6 51.6 0.076 50.6 58.0 0.244 32.2 45.2 -0.092
BERT-to-BERT 44.0 52.6 0.121 52.7 58.4 0.259 35.1 46.8 -0.017

T5-3B 49.5 58.4 0.230 57.5 62.6 0.351 41.4 54.2 0.108
Ours 49.2 58.7 0.249 56.9 62.8 0.371 41.5 54.6 0.126

Table 2: ToTTo test set results: All reported results, including ours, can be found in the official Leaderboard.2

as the model input. We report the automatic re-
sult of BLEU-4, PARENT3 (Dhingra et al., 2019),
and a learnt metric BLEURT (Sellam et al., 2020).
Note that ToTTo features a hidden test set with
two splits: Overlap and Non-Overlap. The Non-
Overlap set contains out-of-domain examples. To
get the test set result, a submission must be made
to the leaderboard.

WebNLG Dataset is used in the WebNLG chal-
lenge (Gardent et al., 2017). For each data instance,
the input is a set of RDF triples from DBPedia
and the output is their textual description. The test
set of WebNLG features a Seen and Unseen sub-
set. The Unseen subset contains out-of-domain
instances. Following previous studies, we report
the the automatic result of BLEU and METEOR
(Banerjee and Lavie, 2005).

5.2 Implementation Details

Our implementation is based on the Huggingface
Library (Wolf et al., 2019). We optimize the model
using Adam (Kingma and Ba, 2015) with a learning
rate of 2e−5 and a batch size of 64.

6 Results

In this section, we report the experimental results.

6.1 ToTTo Results

We compare our model with the latest models on
ToTTo dataset, including NCP (Puduppully et al.,
2019a), Pointer-Generator (See et al., 2017), BERT-
to-BERT (Rothe et al., 2020) and T5-3B (Kale and
Rastogi, 2020). Similar to our model, the later two
are also based on pre-trained language models.

Table 2 lists the results on ToTTo test set. For
most of the metrics, our model with 140M parame-
ters outperforms the current state-of-the-art T5-3B
model which has over 2.8B parameters. The results

3PARENT is a word-overlap based metric that reflects the
factual accuracy of the generated text in relation to both the
input table and the reference sentence.

on the PARENT metric suggest that our model can
generate more factually accurate text. Moreover,
in the Non-Overlap subset, our model achieves the
best result on all metrics, showing its robustness to
out-of-domain examples.

6.2 WebNLG Results

We compare our approach with two types of mod-
els on WebNLG dataset. The first type of models
does not use pre-trained language models (PLMs),
including GTR-LSTM (Trisedya et al., 2018),
Transformer (Ferreira et al., 2019), Step-by-Step
(Moryossef et al., 2019), and PLANENC (Zhao
et al., 2020). Similar to ours, the latter three are
pipeline models that utilize different methods to
decide the output planning before generating the
result. The second line of research utilizes PLMs,
including Switch-GPT (Chen et al., 2020b), T5
(Kale and Rastogi, 2020), and T5+Prefix (Ribeiro
et al., 2020). The Switch-GPT model applies a
copy mechanism to copy content from the source
to the output. We also include the top systems of
the WebNLG challenge, including ADAPT, TILB-
SMT, and MELBOURNE.

Evaluation on Text Generation. Table 3 lists
the results of different methods in terms of text
generation. We see that our approach outperforms
all prior works. Compared with previous models
that utilize PLMs, our performance improvements
suggest that the incorporation of an explicit content
plan can provide effective guiding signal for the
model to achieve better generation results.

Evaluation on Content Planning. Next, we
compare our content planner with other pipeline
models in terms of content planning performance.
Following Zhao et al. (2020), we report the results
on planning accuracy (P-A) and planning BLEU-2
score (B-2) against the human-generated plans4. In
addition, we examine two ablated variants of our
4The human-generated plans are provided in the enriched
WebNLG dataset (Ferreira et al., 2018).
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Model Seen Unseen Overall

B. M. B. M. B. M.
ADAPT† 60.59 0.44 10.53 0.19 31.06 0.31

TILB-SMT† 54.29 0.42 29.88 0.33 44.28 0.38
MELBOURNE† 54.52 0.41 33.27 0.33 45.13 0.37

GTR-LSTM† 54.00 0.37 29.20 0.28 37.10 0.31
Transformer† 56.28 0.42 23.04 0.21 47.24 0.39
Step-by-Step† 53.30 0.44 38.23 0.34 47.24 0.39
PLANENC† 64.42 0.45 38.23 0.37 52.78 0.41

Based on PLMs
Switch-GPT 60.98 0.43 40.67 0.34 52.17 0.40

T5‡ 63.90 0.46 52.80 0.41 57.10 0.44
T5+Prefix‡ 64.71 0.45 53.67 0.42 59.70 0.44

Ours 65.42 0.48 54.52 0.44 60.51 0.46

Table 3: Text generation results on WebNLG datasets,
where B. and M. represent BLEU and METEOR met-
rics. † and ‡ results are cited from Zhao et al. (2020)
and Ribeiro et al. (2020), respectively.

Model Seen Unseen Overall

Acc. B-2 Acc. B-2 Acc. B-2
Transformer† 0.56 74.30 0.09 20.90 0.34 49.30

GRU† 0.56 75.80 0.10 25.40 0.35 52.20
Step-by-Step† 0.49 73.20 0.44 68.00 0.47 70.80
PLANENC† 0.63 80.80 0.61 79.30 0.62 80.10

Ours 0.74 86.01 0.70 83.79 0.72 84.97
w/o CRF 0.67 82.92 0.63 80.65 0.65 81.73

w/o PLMs 0.70 84.05 0.65 81.98 0.68 83.02

Table 4: Evaluation results on content planning. † re-
sults are copied from Zhao et al. (2020).

content planner by either removing the CRF layer
(w/o CRF) or using randomly initialized parame-
ters instead of the pre-trained BERT (w/o PLMs).
Table 4 lists the results. We see that our content
planner outperforms all the baselines on both mea-
sures. Moreover, the results show that both the CRF
layer and the pre-trained parameters positively con-
tribute to the overall performance which further
justifies our design of the content planner.

6.3 Human Evaluation

We also conduct a human evaluation to assess our
model, using graders proficient in English from an
internal grading platform. We randomly selected
200 samples from the ToTTo validation set. For
each sample, we first use our sequence generator to
produce the result with the content plan (CP) pre-
dicted by the content planner. Next, we randomly
shuffle the predicted content plan and generate five
different results (Shuffled CP). For comparison,
we also include results of BERT-to-BERT and T5-
3B using greedy decoding. All generated results,
plus the reference sentence, are evaluated by three
graders on a 3-point Likert scale (0, 1, or 2) for

Faithfulness Fluency Accuracy
Agreement 0.663 0.617 0.518
Reference 1.819 1.762 1.753

BERT-to-BERT 1.589 1.593 -
T5-3B 1.701 1.696 -

Ours(CP) 1.794 1.753 1.742
Ours(Shuffled CP) 1.778 1.746 1.552

Table 5: Human Evaluation Results

each of the following features5:

• Faithfulness: Whether the sentence is factu-
ally consistent with the input data.

• Fluency: Whether the sentence is fluent and
easy to understand.

• Accuracy: How accurately the sentence fol-
lows the input content plans6.

Table 5 lists the results, with the first row show-
ing strong inter-annotator agreements as measured
by Fleiss′ kappa coefficient (Fleiss et al., 1971).
Comparing with BERT-to-BERT and T5-3B, our
model achieves best results on both measures. Fur-
thermore, on the faithfulness and fluency metrics,
our model with both CP and Shuffled CP performs
comparably with the reference sentence (Sign Test
with p-value > 0.4). On the accuracy metric, our
CP model also performs comparably with the ref-
erence as judged by the Sign Test. However, with
randomly shuffled content plan, our model (Shuf-
fled CP) fails to match the accuracy of the reference
(p-value < 0.05). Our analysis is that the random
content plans could contain patterns that are rare or
unseen during training. In such cases, our model
might fail to produce results that precisely follow
the content plan, resulting in a lower accuracy score.
Nonetheless, the human results suggest that, while
being able to produce fluent and correct sentences,
our model is also highly controllable. Finally, we
note that on the accuracy metric, even the reference
sentence does not score a perfect 2.0. This suggests
that our simple heuristic delexicalizerF introduced
in §3 still lapses behind human performance. We
leave to future work of designing better F .

7 Further Analysis

In this section, we present and discuss more empir-
ical analyses of the proposed model.

5More evaluation details are provided in the Appendix A.
6As BERT-to-BERT and T5-3B do not take the content plan
as input, thus we do not report their accuracy score.
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Model Quality Diversity

BLEU PARENT Self-BLEU↓ iBLEU

B2B

Greedy 44.15 53.08 100.00 15.32
Beam 41.58 49.87 75.04 18.26
Top-k 42.47 50.43 82.20 17.54

Nucleus 42.92 50.91 84.26 17.48

T5-3B

Greedy 48.43 57.80 100.00 18.74
Beam 45.12 55.20 83.68 19.36
Top-k 46.31 55.90 88.86 19.28

Nucleus 46.53 56.30 90.11 19.20
Ours

Predict
CP 49.10 58.27 100.00 19.28

Shuffled CP 40.75 51.96 25.91 27.42

Oracle
CP 54.43 62.75 100.00 23.54

Shuffled CP 42.99 56.17 26.90 29.01

Table 6: Experimental results on the overall ToTTo val-
idation set, where ↓ means lower is better.

7.1 Evaluation on Generation Diversity

Setup. We first evaluate the ability of different
models in generating diverse results on the overall
ToTTo validation set. We compare our model with
two strong baselines, BERT-to-BERT (B2B) and
T5-3B. Given the input data, the baseline models
generate the results with different decoding strate-
gies7, including greedy search, beam search (beam
size of 10), top-k sampling (k = 50) (Fan et al.,
2018), and Nucleus sampling (p = 0.9) (Holtzman
et al., 2020). For our model, to generate diverse
results, we simply vary the input content plan and
use greedy decoding. We use two variants of the in-
put content plan: (1) the content plan predicted by
the content planner (Predict), or (2) the reference
content plan (Oracle). For each variant, five re-
sults are generated by either using the input content
plan (CP), or using five randomly shuffled forms
of the content plan (Shuffled CP). The outputs are
expected to vary in the latter case only.

Metric. To measure the output quality, BLEU
and PARENT scores are reported. To evaluate the
generation diversity, we use Self-BLEU (Zhu et al.,
2018) and iBLEU (Sun and Zhou, 2012) metrics8.

Results. Table 6 lists the results in which our
model ranks best on all metrics. On the quality
metrics, we observe notable performance improve-
ments from our model by using the reference con-
tent plan (Oracle), suggesting that the choice of
content plan has a significant impact on the outputs.
By shuffling the content plan, our model shows the
largest decrease in BLEU and PARENT, showing

7For each decoding strategy, five results are generated.
8For all evaluation metrics, we use the same hyper-parameters
as in the original works that proposed the metric.

Model CP RL Type BLEU PARENT S-BLEU
1 × × - 47.50 56.92 43.87
2 × X - 48.10 57.34 48.93

3 X × Predict 48.53 57.87 57.92
Oracle 53.82 61.99 75.59

Ours X X
Predict 49.10 58.27 62.27
Oracle 54.43 62.75 80.32

Table 7: Ablation Studies on the overall ToTTo valida-
tion set. Model 1 gives a baseline for the BART model.

that the variation of content plan encourages our
model to produce diverse results that have different
structures than the reference.

Furthermore, we see that, even with different de-
coding strategies, the baseline models still generate
results that are very similar to the ones acquired
from greedy search, with their BLEU and PAR-
ENT scores relatively unchanged. The results on
the diversity metrics also verify the superiority of
our model which outperforms the strong T5-3B
model by over 57 and 8 points on Self-BLEU and
iBLEU9. The performance gains suggest that the
controllable property of our model is beneficial in
producing high-quality as well as diverse results.

7.2 Ablation Study

In this part, we evaluate the importance of each
component of our model on the overall ToTTo val-
idation set. Specifically, we study the effect of
content plan (CP) and the RL training by removing
them iteratively. In addition to BLEU and PAR-
ENT, we measure the structure of the model output
against the reference content plan with a S-BLEU
metric. Given the data T , the reference content plan
C, and the model output S′, S-BLEU is defined as
B(C,C ′), where B(·, ·) measures the BLEU score,
C ′ = F(T, S′), and F is the heuristic delexicalizer
described in §3. The results are listed in Table 7
with the first row showing the baseline results of
BART model.

Necessity of Content Plan. By comparing mod-
els with and without the content plan (model 1 vs.
3 and model 2 vs. ours), we observe that the con-
tent plan is an effective guiding signal that leads
to better results. Moreover, we see that the Ora-
cle results outperform the Predict results by a large
margin, showing that the quality of the content plan
is an important factor of the model performance
and future research can focus more on this aspect.

9By definition, models using greedy search get 100 Self-BLEU
as the generated results are always the same.
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Table: Title[George Washington Colonials football] Date[1956] Game[Sun Bowl] Result[W 13-0] Opponent[Texas Western] Notes[Bowl Games]
Reference: In 1956, George Washington Colonials scored 13–0 against Texas Western at the Sun Bowl.

T5-3B: Greedy Search Ours: CP

George Washington Colonials football won the Sun Bowl (1956)
over Texas Western.

ICP: Date→ Title→ Result→ Opponent→ Game
In 1956, George Washington Colonials football team scored 13–0 against Texas
Western in the Sun Bowl.

T5-3B: Beam Search Ours: Shuffled CP

1: George Washington Colonials football won the 1956 Sun Bowl
against Texas Western.

ICP: Date→ Result→ Opponent→ Title→ Game
In 1956, with a 13–0 victory over Texas Western, the Colonials football team
won the Sun Bowl.

2: George Washington Colonials won the 1956 Sun Bowl against
Texas Western.

ICP: Title→ Game→ Date→ Result→ Opponent
George Washington Colonials football won the Sun Bowl in 1956 with a 13–0
victory over Texas Western.

3: In 1956, George Washington Colonials won the Sun Bowl against
Texas Western.

ICP: Game→ Result→ Title→ Opponent→ Date
In the Sun Bowl, a 13–0 victory for George Washington Colonials over Texas
Western in 1956.

4: George Washington Colonials won the Sun Bowl against Texas
Western in 1956.

ICP: Title→ Opponent→ Game→ Result→ Date
George Washington Colonials football team defeated Texas Western in the Sun
Bowl, with 13–0, in 1956.

5: George Washington Colonials football won the 1956 Sun Bowl
over Texas Western.

ICP: Opponent→ Game→ Date→ Result→ Title
The Colonials defeated Texas Western in the Sun Bowl 1956, with a 13–0 score,
by George Washington Colonials.

Table 8: Case study on ToTTo dataset. Given the input data, we present the generated results from various models
using different decoding strategies. ICP denotes the “input content plan". (Best viewed in color)

Tripleset (Alan Bean | nationality | United States), (Alan Bean | occupation | Test pilot), (Alan Bean | birthPlace | Wheeler , Texas),
(Alan Bean | selectedByNASA | 1963), (Alan Bean | status | "Retired")

Reference Alan Bean is a US national born in Wheeler, Texas. He is a retired test pilot who joined NASA in 1963.

Ours
(Shuffled CP)

ICP: nationality→ birthPlace→ selectedByNASA→ status→ occupation
Alan Bean is a US national who was born in Wheeler, Texas. He was selected by NASA in 1963 and is now retired. He was a test pilot.
ICP: nationality→ occupation→ selectedByNASA→ birthPlace→ status
Alan Bean is a US national who served as a test pilot and was selected by NASA in 1963. He was born in Wheeler, Texas and is now retired.
ICP: selectedByNASA→ occupation→ status→ birthPlace→ nationality
Alan Bean was selected by NASA in 1963 as a test pilot. He is now retired. He was born in Wheeler, Texas and is a United States national.

Table 9: Case study of our model’s results on WebNLG dataset. (best viewed in color)

Effect of RL. By comparing the models trained
with and without RL (model 1 vs. 2 and model 3 vs.
ours), we see that training with our proposed RL
objective consistently improves the model perfor-
mance. The most notable improvement is observed
in S-BLEU which means that the generated outputs
better follow the input content plan. This is in line
with our hypothesis that our reward function in Eq.
(4) helps to improve the model’s adherence to the
output structure defined by the content plan.

7.3 Case Study

To gain more insights into our model, we present
generated examples from ToTTo and WebNLG
datasets10 in Table 8 and Table 9, respectively.

Quality. In Table 8, we compare our model with
predicted content plan against T5-3B. We see that
T5-3B fails to produce the key game result (i.e.
13-0) in its outputs. In contrast, by following the
content plan, our model is able to maintain all key
information in its generated results.

10More examples are shown in the Appendix B.

Diversity and Controllability. Next, we exam-
ine the output diversity and controllability. For the
T5-3B model, when using beam search, only the
position of the term “1956” varies, showing its
reduced ability to generate diverse outputs. For
our model, the variation of content plan leads to
outputs with diverse structures. Furthermore, the
results show that our model is not only able to con-
trol the intra-sentence output structure as shown in
Table 8 but also to control the inter-sentence output
structure as shown in Table 9.

Error Analysis. We show one failure case in the
bottom right cell of Table 8, in which it repeats
the Title key twice in the output. Our analysis for
such error is that the randomly shuffled content
plan might contain patterns that are rarely seen in
training. One possible solution is filtering out rare
content plan patterns via statistical approaches such
as bigram statistics.

8 Conclusion

In this study, we propose a new Plan-then-Generate
(PlanGen) framework for data-to-text generation
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which can be easily applied to data with different
structures. Extensive experiments and analyses
are conducted on two benchmark datasets. Both
automatic and human evaluation results demon-
strate that our model is highly controllable. Fur-
thermore, compared with previous studies, our
model achieves better results both in terms of
the generation quality as well as the output diver-
sity. Our code, models and other related resources
can be found in https://github.com/yxuansu/

PlanGen/

Acknowledgments

The authors wish to thank Ehsan Shareghi, Zaiqiao
Meng, Piji Li, and Benjamin Muller for their in-
sightful discussions and support. Many thanks to
our anonymous reviewers for their suggestions and
comments.

References
Satanjeev Banerjee and Alon Lavie. 2005. METEOR:

an automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization@ACL 2005, Ann Arbor,
Michigan, USA, June 29, 2005, pages 65–72. Asso-
ciation for Computational Linguistics.

Wenhu Chen, Ming-Wei Chang, Eva Schlinger,
William Yang Wang, and William W. Cohen. 2021.
Open question answering over tables and text. In
9th International Conference on Learning Represen-
tations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net.

Wenhu Chen, Yu Su, Xifeng Yan, and William Yang
Wang. 2020a. KGPT: knowledge-grounded pre-
training for data-to-text generation. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, On-
line, November 16-20, 2020, pages 8635–8648. As-
sociation for Computational Linguistics.

Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu,
and William Yang Wang. 2020b. Few-shot NLG
with pre-trained language model. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July
5-10, 2020, pages 183–190. Association for Compu-
tational Linguistics.

Émilie Colin and Claire Gardent. 2019. Generating
text from anonymised structures. In Proceedings of
the 12th International Conference on Natural Lan-
guage Generation, INLG 2019, Tokyo, Japan, Octo-
ber 29 - November 1, 2019, pages 112–117. Associ-
ation for Computational Linguistics.

Émilie Colin, Claire Gardent, Yassine Mrabet, Shashi
Narayan, and Laura Perez-Beltrachini. 2016. The
webnlg challenge: Generating text from dbpedia
data. In INLG 2016 - Proceedings of the Ninth Inter-
national Natural Language Generation Conference,
September 5-8, 2016, Edinburgh, UK, pages 163–
167. The Association for Computer Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Bhuwan Dhingra, Manaal Faruqui, Ankur P. Parikh,
Ming-Wei Chang, Dipanjan Das, and William W.
Cohen. 2019. Handling divergent reference texts
when evaluating table-to-text generation. In Pro-
ceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Pa-
pers, pages 4884–4895. Association for Computa-
tional Linguistics.

Angela Fan, Mike Lewis, and Yann N. Dauphin. 2018.
Hierarchical neural story generation. In Proceed-
ings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2018, Mel-
bourne, Australia, July 15-20, 2018, Volume 1: Long
Papers, pages 889–898. Association for Computa-
tional Linguistics.

Thiago Castro Ferreira, Diego Moussallem, Emiel
Krahmer, and Sander Wubben. 2018. Enriching the
webnlg corpus. In Proceedings of the 11th Interna-
tional Conference on Natural Language Generation,
Tilburg University, The Netherlands, November 5-
8, 2018, pages 171–176. Association for Computa-
tional Linguistics.

Thiago Castro Ferreira, Chris van der Lee, Emiel van
Miltenburg, and Emiel Krahmer. 2019. Neural data-
to-text generation: A comparison between pipeline
and end-to-end architectures. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 552–562. Association for Com-
putational Linguistics.

J.L. Fleiss et al. 1971. Measuring nominal scale agree-
ment among many raters. Psychological Bulletin,
76(5):378–382.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The webnlg
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on

https://github.com/yxuansu/PlanGen/
https://github.com/yxuansu/PlanGen/
https://www.aclweb.org/anthology/W05-0909/
https://www.aclweb.org/anthology/W05-0909/
https://www.aclweb.org/anthology/W05-0909/
https://openreview.net/forum?id=MmCRswl1UYl
https://www.aclweb.org/anthology/2020.emnlp-main.697/
https://www.aclweb.org/anthology/2020.emnlp-main.697/
https://www.aclweb.org/anthology/2020.acl-main.18/
https://www.aclweb.org/anthology/2020.acl-main.18/
https://doi.org/10.18653/v1/W19-8614
https://doi.org/10.18653/v1/W19-8614
https://doi.org/10.18653/v1/w16-6626
https://doi.org/10.18653/v1/w16-6626
https://doi.org/10.18653/v1/w16-6626
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/p19-1483
https://doi.org/10.18653/v1/p19-1483
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/w18-6521
https://doi.org/10.18653/v1/w18-6521
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/w17-3518
https://doi.org/10.18653/v1/w17-3518


904

Natural Language Generation, INLG 2017, Santi-
ago de Compostela, Spain, September 4-7, 2017,
pages 124–133. Association for Computational Lin-
guistics.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. J. Artif. Intell.
Res., 61:65–170.

Sebastian Gehrmann, Falcon Z. Dai, Henry Elder, and
Alexander M. Rush. 2018. End-to-end content and
plan selection for data-to-text generation. In Pro-
ceedings of the 11th International Conference on
Natural Language Generation, Tilburg University,
The Netherlands, November 5-8, 2018, pages 46–56.
Association for Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Mihir Kale and Abhinav Rastogi. 2020. Text-to-text
pre-training for data-to-text tasks. In Proceedings of
the 13th International Conference on Natural Lan-
guage Generation, INLG 2020, Dublin, Ireland, De-
cember 15-18, 2020, pages 97–102. Association for
Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Ravi Kondadadi, Blake Howald, and Frank Schilder.
2013. A statistical NLG framework for aggregated
planning and realization. In Proceedings of the
51st Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2013, 4-9 August 2013, Sofia,
Bulgaria, Volume 1: Long Papers, pages 1406–1415.
The Association for Computer Linguistics.

Karen Kukich. 1983. Design of a knowledge-based re-
port generator. In 21st Annual Meeting of the Associ-
ation for Computational Linguistics, Massachusetts
Institute of Technology, Cambridge, Massachusetts,
USA, June 15-17, 1983, pages 145–150. ACL.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML
2001), Williams College, Williamstown, MA, USA,
June 28 - July 1, 2001, pages 282–289.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational

Linguistics, ACL 2020, Online, July 5-10, 2020,
pages 7871–7880. Association for Computational
Linguistics.

Ziran Li, Zibo Lin, Ning Ding, Hai-Tao Zheng, and
Ying Shen. 2020. Triple-to-text generation with
an anchor-to-prototype framework. In Proceedings
of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, pages 3780–
3786. ijcai.org.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang,
and Zhifang Sui. 2018. Table-to-text generation
by structure-aware seq2seq learning. In Proceed-
ings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 4881–
4888. AAAI Press.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Shuming Ma, Pengcheng Yang, Tianyu Liu, Peng Li,
Jie Zhou, and Xu Sun. 2019. Key fact as pivot: A
two-stage model for low resource table-to-text gen-
eration. In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 2047–2057. Association
for Computational Linguistics.

Kathleen R. McKeown. 1992. Text generation - using
discourse strategies and focus constraints to gener-
ate natural language text. Studies in natural lan-
guage processing. Cambridge University Press.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 2267–2277. Associ-
ation for Computational Linguistics.

Jekaterina Novikova, Ondrej Dusek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-to-
end generation. In Proceedings of the 18th Annual
SIGdial Meeting on Discourse and Dialogue, Saar-
brücken, Germany, August 15-17, 2017, pages 201–
206. Association for Computational Linguistics.

Alice H. Oh and Alexander I. Rudnicky. 2000. Stochas-
tic language generation for spoken dialogue systems.
In ANLP-NAACL 2000 Workshop: Conversational
Systems.

https://doi.org/10.1613/jair.5477
https://doi.org/10.1613/jair.5477
https://doi.org/10.1613/jair.5477
https://doi.org/10.18653/v1/w18-6505
https://doi.org/10.18653/v1/w18-6505
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://www.aclweb.org/anthology/2020.inlg-1.14/
https://www.aclweb.org/anthology/2020.inlg-1.14/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/P13-1138/
https://www.aclweb.org/anthology/P13-1138/
https://doi.org/10.3115/981311.981340
https://doi.org/10.3115/981311.981340
https://www.aclweb.org/anthology/2020.acl-main.703/
https://www.aclweb.org/anthology/2020.acl-main.703/
https://www.aclweb.org/anthology/2020.acl-main.703/
https://doi.org/10.24963/ijcai.2020/523
https://doi.org/10.24963/ijcai.2020/523
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16599
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16599
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/p19-1197
https://doi.org/10.18653/v1/p19-1197
https://doi.org/10.18653/v1/p19-1197
https://doi.org/10.18653/v1/n19-1236
https://doi.org/10.18653/v1/n19-1236
https://doi.org/10.18653/v1/w17-5525
https://doi.org/10.18653/v1/w17-5525
https://www.aclweb.org/anthology/W00-0306
https://www.aclweb.org/anthology/W00-0306


905

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318. ACL.

Ankur P. Parikh, Xuezhi Wang, Sebastian Gehrmann,
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and
Dipanjan Das. 2020. Totto: A controlled table-to-
text generation dataset. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2020, Online, Novem-
ber 16-20, 2020, pages 1173–1186. Association for
Computational Linguistics.

Massimo Poesio, Rosemary Stevenson, Barbara Di Eu-
genio, and Janet Hitzeman. 2004. Centering: A para-
metric theory and its instantiations. Comput. Lin-
guistics, 30(3):309–363.

Ratish Puduppully, Li Dong, and Mirella Lapata.
2019a. Data-to-text generation with content selec-
tion and planning. In The Thirty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 6908–6915.
AAAI Press.

Ratish Puduppully, Li Dong, and Mirella Lapata.
2019b. Data-to-text generation with entity model-
ing. In Proceedings of the 57th Conference of the As-
sociation for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume
1: Long Papers, pages 2023–2035. Association for
Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Nat. Lang.
Eng., 3(1):57–87.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich
Schütze, and Iryna Gurevych. 2020. Investigating
pretrained language models for graph-to-text gener-
ation. CoRR, abs/2007.08426.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging pre-trained checkpoints for se-
quence generation tasks. Trans. Assoc. Comput. Lin-
guistics, 8:264–280.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 -

August 4, Volume 1: Long Papers, pages 1073–1083.
Association for Computational Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh.
2020. BLEURT: learning robust metrics for text
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7881–
7892. Association for Computational Linguistics.

Amanda Stent, Rashmi Prasad, and Marilyn Walker.
2004. Trainable sentence planning for complex in-
formation presentations in spoken dialog systems.
In Proceedings of the 42nd Annual Meeting of
the Association for Computational Linguistics (ACL-
04), pages 79–86, Barcelona, Spain.

Yixuan Su, Deng Cai, Yan Wang, David Vandyke, Si-
mon Baker, Piji Li, and Nigel Collier. 2021a. Non-
autoregressive text generation with pre-trained lan-
guage models. In Proceedings of the 16th Confer-
ence of the European Chapter of the Association
for Computational Linguistics: Main Volume, EACL
2021, Online, April 19 - 23, 2021, pages 234–243.
Association for Computational Linguistics.

Yixuan Su, Zaiqiao Meng, Simon Baker, and Nigel Col-
lier. 2021b. Few-shot table-to-text generation with
prototype memory. In Findings of the Association
for Computational Linguistics: EMNLP 2021. Asso-
ciation for Computational Linguistics.

Hong Sun and Ming Zhou. 2012. Joint learning of a
dual SMT system for paraphrase generation. In The
50th Annual Meeting of the Association for Com-
putational Linguistics, Proceedings of the Confer-
ence, July 8-14, 2012, Jeju Island, Korea - Volume
2: Short Papers, pages 38–42. The Association for
Computer Linguistics.

Bayu Distiawan Trisedya, Jianzhong Qi, Rui Zhang,
and Wei Wang. 2018. GTR-LSTM: A triple encoder
for sentence generation from RDF data. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2018, Mel-
bourne, Australia, July 15-20, 2018, Volume 1: Long
Papers, pages 1627–1637. Association for Computa-
tional Linguistics.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic,
Lina Maria Rojas-Barahona, Pei-Hao Su, David
Vandyke, and Steve J. Young. 2016. Multi-domain
neural network language generation for spoken di-
alogue systems. In NAACL HLT 2016, The 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, San Diego California, USA,
June 12-17, 2016, pages 120–129. The Association
for Computational Linguistics.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229–256.

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://www.aclweb.org/anthology/2020.emnlp-main.89/
https://www.aclweb.org/anthology/2020.emnlp-main.89/
https://doi.org/10.1162/0891201041850911
https://doi.org/10.1162/0891201041850911
https://doi.org/10.1609/aaai.v33i01.33016908
https://doi.org/10.1609/aaai.v33i01.33016908
https://doi.org/10.18653/v1/p19-1195
https://doi.org/10.18653/v1/p19-1195
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.1017/S1351324997001502
http://arxiv.org/abs/2007.08426
http://arxiv.org/abs/2007.08426
http://arxiv.org/abs/2007.08426
https://transacl.org/ojs/index.php/tacl/article/view/1849
https://transacl.org/ojs/index.php/tacl/article/view/1849
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://www.aclweb.org/anthology/2020.acl-main.704/
https://www.aclweb.org/anthology/2020.acl-main.704/
https://doi.org/10.3115/1218955.1218966
https://doi.org/10.3115/1218955.1218966
https://aclanthology.org/2021.eacl-main.18/
https://aclanthology.org/2021.eacl-main.18/
https://aclanthology.org/2021.eacl-main.18/
https://www.aclweb.org/anthology/P12-2008/
https://www.aclweb.org/anthology/P12-2008/
https://doi.org/10.18653/v1/P18-1151
https://doi.org/10.18653/v1/P18-1151
https://doi.org/10.18653/v1/n16-1015
https://doi.org/10.18653/v1/n16-1015
https://doi.org/10.18653/v1/n16-1015


906

Sam Wiseman, Stuart M. Shieber, and Alexander M.
Rush. 2018. Learning neural templates for text gen-
eration. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, Brussels, Belgium, October 31 - November 4,
2018, pages 3174–3187. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. CoRR, abs/1910.03771.

Rong Ye, Wenxian Shi, Hao Zhou, Zhongyu Wei, and
Lei Li. 2020. Variational template machine for
data-to-text generation. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Chao Zhao, Marilyn A. Walker, and Snigdha
Chaturvedi. 2020. Bridging the structural gap be-
tween encoding and decoding for data-to-text gener-
ation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 2481–2491.
Association for Computational Linguistics.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo,
Weinan Zhang, Jun Wang, and Yong Yu. 2018. Texy-
gen: A benchmarking platform for text generation
models. In The 41st International ACM SIGIR Con-
ference on Research & Development in Information
Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-
12, 2018, pages 1097–1100. ACM.

https://doi.org/10.18653/v1/d18-1356
https://doi.org/10.18653/v1/d18-1356
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://openreview.net/forum?id=HkejNgBtPB
https://openreview.net/forum?id=HkejNgBtPB
https://doi.org/10.18653/v1/2020.acl-main.224
https://doi.org/10.18653/v1/2020.acl-main.224
https://doi.org/10.18653/v1/2020.acl-main.224
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080


907

A Details of Human Evaluation Setup

To perform human evaluation, we randomly sample 200 samples from the ToTTo validation set. For each
sampled data, we use each baseline model (BERT-to-BERT and T5-3B) to produce one result. As for
our model, we produce 6 different results (one with the predicted content plan, the other five with five
randomly shuffled versions of the predicted content plan). Therefore, for each case, we have 9 different
results (1 from BERT-to-BERT, 1 from T5-3B, 6 from our model, and 1 reference). To reduce human bias,
we randomly shuffle these 1800 data points before presenting them to three annotators. Each annotator is
asked to assess all these 1800 data points. Because BERT-to-BERT and T5-3B do not take the content plan
as input, thus we only measure the accuracy score for the results generated by our model and the reference
sentence. Note that the accuracy score of the reference sentence is measured against the reference content
plan. In Figure 3, we show an example of the human evaluation interface.

Figure 3: Example of Human Evaluation Interface
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B More Examples of Generated Result

In this part, we provide more generated examples of our model. The generated results on samples from
WebNLG and ToTTo datasets are shown in Table 10 and 11, respectively. From the results, we can see
that our model is able to generate fluent and diverse sentence while maintaining the structure defined
by the desired content plan. In particular, our model is able to control the output structure both on
the inter-sentence level (i.e. the structure across multiple sentences) as shown in Table 9 and on the
intra-sentence level (i.e. the structure within a single sentence) as shown in Table 11. These results further
demonstrate the applicability and generalization ability of our model.

Tripleset

(Allama Iqbal International Airport | location | Pakistan),
(Allama Iqbal International Airport | runwayLength | 2900.0),
(Allama Iqbal International Airport | cityServed | Lahore),
(Allama Iqbal International Airport | operatingOrganisation | Pakistan Civil Aviation Authority)

Reference Allama Iqbal International Airport is located in Lahore at Pakistan. It has a runway length of 2900
and is operated by the Pakistan Civil Aviation Authority.

Ours
(Shuffled CP)

ICP: cityServed→ location→ runwayLength→ operatingOrganisation
Allama Iqbal International Airport serves the city of Lahore and is located in Pakistan. The runway
length is 2900.0 and the airport is operated by the Pakistan Civil Aviation Authority.
ICP: operatingOrganisation→ cityServed→ location→ runwayLength
The Pakistan Civil Aviation Authority is the operating organisation of the Allama Iqbal International
Airport which serves the city of Lahore in Pakistan. The airport has a runway length of 2900.0.
ICP: runwayLength→ cityServed→ location→ operatingOrganisation
Allama Iqbal International Airport has a runway length of 2900.0 and serves the city of Lahore in
Pakistan. The airport is operated by the Pakistan Civil Aviation Authority.
ICP: location→ operatingOrganisation→ cityServed→ runwayLength
Allama Iqbal International Airport is located in Pakistan and is operated by the Pakistan Civil Aviation
Authority. The airport serves the city of Lahore and has a runway length of 2900.0.
ICP: runwayLength→ operatingOrganisation→ cityServed→ location
Allama Iqbal International Airport has a runway length of 2900.0 and is operated by the Pakistan Civil
Aviation Authority. The airport serves the city of Lahore and is located in Pakistan.

Tripleset (Turkey | leaderTitle | president of Turkey), (Turkey | leader | Ahmet Davutoglu), (Turkey | capital | Ankara),
(Turkey | largestCity | Istanbul), (Atatürk Monument (Izmir) | location | Turkey)

Reference The Ataturk Monument (Izmir) is located in Turkey, whose largest city is Istanbul and whose capital is
Ankara. President of Turkey is the official title of the Turkish leader and his name is Ahmet Davutoglu.

Ours
(Shuffled CP)

ICP: location→ leaderTitle→ capital→ leader→ largestCity
The Atatürk Monument (Izmir) is located in Turkey, where the leader is known as the president and the
capital city is Ankara. Ahmet Davutoglu is the leader of Turkey and the largest city is Istanbul.
ICP: capital→ leaderTitle→ leader→ largestCity→ location
Ankara is the capital of Turkey, which is lead by president Ahmet Davutoglu. The largest city is Istanbul
and the Atatürk Monument is located in Turkey.
ICP: largestCity→ location→ capital→ leaderTitle→ leader
Istanbul is the largest city in Turkey, where the Ataturk Monument is located and the capital is Ankara.
The leader of Turkey is known as the president and Ahmet Davutoglu is the leader.
ICP: location→ capital→ leader→ largestCity→ leaderTitle
The Atatürk Monument (Izmir) is located in Turkey, where the capital is Ankara, the leader is Ahmet
Davutoglu and the largest city is Istanbul. The leader of Turkey is known as the president of Turkey.
ICP: location→ largestCity→ capital→ leaderTitle→ leader
The Atatürk Monument (Izmir) is located in Turkey, where the largest city is Istanbul and the capital
is Ankara. The leader of Turkey is known as the president and Ahmet Davutoglu is the leader.

Table 10: Examples of generated result from WebNLG dataset, where ICP denotes “input content plan". The
expressions correspond to different contents are highlighted with different colors. (best viewed in color)
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Input Table
Page_Title[List of New Zealand records in swimming] Event[400m freestyle] Time[4:03.63] Name[Lauren Boyle]

Club[New Zealand] Date[29 July 2012] Meet[Olympic Games] Location[London, United Kingdom] Section_Title[Women]
Reference Sentence

At the 2012 Olympics in London, Boyle was fourth fastest in the heats of the 400m freestyle in a New Zealand record 4:03.63.
Controlled Data-to-Text Generation

ICP: Date→ Name→ Event→ Time→ Location→Meet→ Page_Title
On 29 July 2012, New Zealand’s Lauren Boyle finished the 400 metre freestyle in 4:03.63 at London Olympics, which was a
New Zealand record.
ICP: Page_Title→ Location→Meet→ Name→ Event→ Time→ Date
The New Zealand swimming record was set in London at the 2012 London Olympics, where Lauren Boyle finished the 400 metre
freestyle in 4:03.63, in July 2012
ICP: Meet→ Location→ Date→ Name→ Time→ Event→ Page_Title
At the Olympic Games in London in July 2012, Lauren Boyle finished in 4:03.63 in the 400 metre freestyle, setting a New Zealand
record.
ICP: Name→ Event→ Date→Meet→ Location→ Page_Title→ Time
Lauren Boyle competed in the 400 metre freestyle at the 2012 Olympic Games in London, finishing with a New Zealand record
time of 4:03.63.
ICP: Location→ Event→ Name→ Time→ Page_Title→ Date→Meet
In London, in the 400m freestyle, Lauren Boyle finished in 4:03.63, setting a New Zealand record at the 2012 Olympic Games.

Input Table
Page_Title[Kazunari Murakami] Result[Loss] Opponent[Akihiro Gono] Method[KO (head kick)]

Date[October 13, 1995] Event[Lumax Cup: Tournament of J ’95] Section_Title[Mixed martial arts record]
Reference Sentence

Murakami began his career fighting in the Lumax Cup: Tournament of J ’95 on October 13, 1995, where he lost his first fight to
Akihiro Gono by knockout.

Controlled Data-to-Text Generation
ICP: Page_Title→ Date→ Event→ Opponent
Kazunari Murakami made his debut on October 13, 1995 at Lumax Cup: Tournament of J ’95, losing to Akihiro Gono by KO.
ICP: Event→ Date→ Page_Title→ Opponent
At Lumax Cup: Tournament of J ’95 on October 13, 1995, Kazunari Murakami lost to Akihiro Gono by KO.
ICP: Opponent→ Page_Tilte→ Event→ Date
Akihiro Gono defeated Kazunari Murakami at Lumax Cup: Tournament of J ’95 on October 13, 1995.
ICP: Date→ Opponent→ Page_Title→ Event
On October 13, 1995, Akihiro Gono defeated Kazunari Murakami at Lumax Cup: Tournament of J ’95.
ICP: Event→ Page_Title→ Opponent→ Date
At Lumax Cup: Tournament of J ’95, Kazunari Murakami lost to Akihiro Gono by KO on October 13, 1995.

Input Table
Page_Title[Reform Party of the United States of America] Year[2008]

Name[Frank McEnulty] Home_state[California] Section_Title[Presidential tickets]
Reference Sentence

Frank McEnulty of California, was nominated to be the Reform Party’s 2008 presidential candidate.
Controlled Data-to-Text Generation

ICP: Year→ Page_Title→ Name→ Home_state→ Section_Title
In 2008, the Reform Party of the United States of America nominated Frank McEnulty of California as its presidential candidate.
ICP: Page_Title→ Section_Title→ Home_state→ Year→ Name
Reform Party of the United States of America nominated its first presidential nominee from California in 2008, Frank McEnulty.
ICP: Home_state→ Name→ Section_Title→ Year→ Page_Title
California’s Frank McEnulty was nominated as presidential candidate in 2008 by the Reform Party of the United States of America.
ICP: Page_Title→ Name→ Home_state→ Section_Title→ Year
Reform Party of the United States of America nominated Frank McEnulty of California as its presidential candidate in 2008.
ICP: Year→ Name→ Page_Title→ Home_state→ Section_Title
In 2008, Frank McEnulty of Reform Party of the United States of America from California ran for the presidential election.

Table 11: Examples of generated result from ToTTo dataset, where ICP denotes “input content plan". The expres-
sions correspond to different contents are highlighted with different colors. (best viewed in color)


