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Abstract

Aspect detection is a fundamental task in opin-
ion mining. Previous works use seed words
either as priors of topic models, as anchors
to guide the learning of aspects, or as fea-
tures of aspect classifiers. This paper presents
a novel weakly-supervised method to exploit
seed words for aspect detection based on an
encoder architecture. The encoder maps seg-
ments and aspects into a low-dimensional em-
bedding space. The goal is approximating sim-
ilarity between segments and aspects in the em-
bedding space and their ground-truth similar-
ity generated from seed words. An objective
function is proposed to capture the uncertainty
of ground-truth similarity. Our method outper-
forms previous works on several benchmarks
in various domains.

1 Introduction

Aspect detection is essential for downstream tasks
in opinion mining such as aspect-based sentiment
analysis and opinion summarization (Zhang and
Liu, 2014; Angelidis and Lapata, 2018). Given an
input review segment, for instance, in the restau-
rant domain, “Nevertheless the food itself is pretty
good.”, we need to detect its aspect category on
which opinions have been expressed (e.g., Loca-
tion, Drinks, Food, Ambience, and Service). The
supervised approach requires a large amount of
examples (Zhang et al., 2018; Poria et al., 2016).
Its unsupervised counterpart learns aspects using
techniques such as topic models and autoencoders.
The learned aspects are then manually mapped to
golden aspects for prediction. Weakly-supervised
methods aim at using minimal supervision in terms
of seed words to learn aspect predictors.

The topic modeling approach assumes that re-
view contents are generated from aspect probability
distributions. Topic models try to learn these distri-
butions using estimators such as maximum likeli-
hood estimation. Seed words are injected into topic

models as prior knowledge to guide the estimation
of aspect distributions (Mukherjee and Liu, 2012;
Chen et al., 2014). The independence assumption
in topic models, i.e., the words in a review segment
are generated independently from each other, leads
to generating incoherent aspects. This phenomenon
is more severe as many review segments only have
a few words. Wang et al. (2015) propose using
a restricted Boltzmann machine for joint aspect
detection and sentiment classification. However,
their model requires various linguistic tools and ex-
ternal resources including part-of-speech tagging,
tf-idf weighting, SentiWordNet, and aspect and
sentiment seed words. The aspect seed words are
acquired by learning a Latent Dirichlet Allocation
on raw segments and manually mapping the learned
topics to golden aspects, while the sentiment seed
words are acquired based on SentiWordNet.

To overcome this shortage, the neural approach
leverages rich representation from contextual lan-
guage models to capture semantic similarity be-
tween words frequently co-occurring in the same
contexts (He et al., 2017). Model parameters are
learned in neural frameworks such as autoencoder,
joint learning or knowledge distillation. Huang
et al. (2020) construct word embeddings and ex-
plicit aspect embeddings by jointly learning a
skip-gram style language model and maximizing
the likelihood of aspects and sentiments given
seed words. Their model is further reinforced by
knowledge distillation based on pseudo-labels from
previously learned aspect embeddings, and later
by self-training, both with a Convolutional Neu-
ral Network (CNN) classifier. In a recent study,
Shi et al. (2020) use a contrastive loss to learn
aspect embeddings and manually map them to
golden aspects. Their model is further enhanced by
knowledge distillation with a contextual language
model encoder (Sanh et al., 2019). Karamanolakis
et al. (2019) co-train student-teacher classifiers in
a knowledge distillation framework. The teacher is
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designed as a bag-of-seed-words classifier with the
weights updated during iterative co-training. An-
other direction is directly using pre-trained embed-
dings of aspect labels as aspect vectors and scoring
against segment vectors with cosine similarity for
prediction (Tulkens and van Cranenburgh, 2020).

In this paper, we propose a novel weakly-
supervised method to exploit seed words for as-
pect detection. Our motivation is from the success
of using uncertainty in matrix factorization-based
collaborative filtering for movie recommendation
from implicit feedback (Hu et al., 2008). The au-
thors show that by adding a confidence score for
each user-item pair, their model could learn bet-
ter from both positive and negative pairs. In our
work, we define a confidence score so that ambiva-
lent segments will have a low score. The proposed
model is now aware of this ambivalence in learn-
ing via a specific designed objective function. Our
contributions are as follows:

• A simple and effective encoder architecture is
proposed for aspect detection. The goal is to
represent segments and aspects in a common
latent space. The encoder strives to learn a
mapping function that approximates similarity
in the latent space and ground-truth similarity
generated from the given seed words.

• Inspired by collaborative filtering from
implicit feedback (Hu et al., 2008), an
uncertainty-aware objective function is pro-
posed to effectively exploit seed words for
weakly-supervised learning.

• A selective mechanism is proposed to learn a
particularly challenging aspect, namely Gen-
eral, based on its seed words.

• The proposed model achieves state-of-the-art
performance on several benchmark datasets
in various domains.

2 Unsupervised and Weakly-supervised
Neural Aspect Detection

Due to its independence assumption, topic models
could generate incoherent aspects. He et al. (2017)
propose an autoencoder that aims at learning co-
herent aspects by leveraging word co-occurrence
in neural word embeddings. Following this line of
research, many works have investigated neural net-
works for unsupervised aspect detection (Angelidis
and Lapata, 2018; Luo et al., 2019; Shi et al., 2020).

However, their unsupervised nature requires addi-
tional human effort for manual aspect mapping.
Weakly-supervised methods have exploited seed
words to overcome this shortage and to enhance as-
pect learning (Karamanolakis et al., 2019; Tulkens
and van Cranenburgh, 2020; Huang et al., 2020). In
this section, we discuss the key ingredients of un-
supervised and weakly-supervised neural models,
focusing on representation, aspect mapping, seed
words, and the General aspect.

2.1 Segment and aspect representation
Segments are input data for learning autoen-
coders and aspect classifiers. In the series of au-
toencoders models, the segments are represented
as the weighted sum of word embeddings with
the weights estimated from an attention mecha-
nism (He et al., 2017; Angelidis and Lapata, 2018;
Shi et al., 2020). In these models, the word em-
beddings are loaded from pre-trained in-domain
word2vec and are fixed during training. In aspect
classifiers, the segments are represented using vari-
ous encoding paradigms, such as the mean of word
embeddings (Huang et al., 2020), word embeddings
with attention (Tulkens and van Cranenburgh,
2020), CNNs (Huang et al., 2020), BERT (De-
vlin et al., 2019; Karamanolakis et al., 2019; Shi
et al., 2020), or bag-of-words (Karamanolakis et al.,
2019).

Previous works represent aspects as explicit pa-
rameterized vectors and learn these vectors during
training (He et al., 2017; Angelidis and Lapata,
2018; Shi et al., 2020; Huang et al., 2020). In an-
other direction, the embeddings of aspect labels
(i.e., ‘food’ or ‘ambience’) could be used to repre-
sent aspects (Tulkens and van Cranenburgh, 2020).

2.2 Exploiting seed words
Unsupervised methods require human effort to
manually map learned aspects to golden aspects
using a many-to-one mapping (He et al., 2017) or
its recent variant (Shi et al., 2020). By leverag-
ing a few seed words, weakly-supervised methods
directly learn golden aspects and require no man-
ual mapping (Angelidis and Lapata, 2018; Huang
et al., 2020). Karamanolakis et al. (2019) propose
a knowledge distillation framework in which the
teacher is a bag-of-seed-words classifier.

2.3 The General aspect
Based on its content, a segment could be classified
into a homogeneous typical aspect (e.g., Food or
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I purchased this case.
My wife is trying to convince me to return it.
We’ll just keep it.
And that’s the most important feature in a case.
I am going to contact Kensington about a refund.

Figure 1: Five examples of General in the Laptop Bags
domain demonstrating the variety of this aspect.

Ambience) or a more heterogeneous General as-
pect. General is an aspect of which contents largely
vary. A segment in this aspect could express an
overall review of a product, background informa-
tion, or even irrelevant contents (see Figure 1 for
examples). Therefore, it is challenging to detect
the segments belonging to this type of aspect. Pre-
vious works simply treat General equally to the
typical aspects (He et al., 2017; Angelidis and Lap-
ata, 2018; Shi et al., 2020). In some cases, General
is ignored in the evaluation (He et al., 2017; Huang
et al., 2020). In (Karamanolakis et al., 2019), a seg-
ment is classified as General if it does not contain
any seed word of the typical aspects.

3 Method

The Aspect Detection problem is defined as assign-
ing a review segment to one of the K pre-defined
aspect categories. In the unsupervised settings, a
corpus of review segments is given. In the weakly-
supervised setting as in this work, the segment
corpus and sets of seed words for aspect categories
are given. As in the literature, we assume that the
seed words have already been acquired manually or
been extracted automatically from a small number
of labeled examples.

Our model is depicted in Figure 2: Firstly, the
encoder maps an input segment and the aspects
into the same embedding space. For General, the
encoder takes all its seed word embeddings as an
embedding matrix. Otherwise, the segment and
the typical aspects are encoded as mean of their
(seed) word embeddings. A similarity function in
the embedding space is defined as the dot product
of a segment vector and an aspect vector. Finally,
the objective function approximates this similar-
ity and the ground-truth similarity generated from
the seed words. For the General aspect, the objec-
tive function performs a global max pooling over
the similarities between the segment and the seed
words of General to select the best seed word for
updating.

The encoder is an embedding-lookup table and

is identical to the word embeddings matrix W ∈
RV×d where V is the vocabulary size and d is the
dimension of word vectors. W is initialized by
pre-trained in-domain word embeddings. For this
task, we used the Skip-gram model (Mikolov et al.,
2013). We are going into the details of our model
in the subsequent sections. Section 3.4 is dedicated
to the generation of ground-truth similarity from
seed words.

3.1 Segment and typical aspect embeddings
A segment is encoded as mean of its word embed-
dings:

x = mean(w1,w2, ..,wn), (1)

in which wi is a d-dimensional vector of the ith

word of the segment and n is the segment length.
Similarly, a typical aspect ai is mean of its seed

word vectors:

ai = mean(w
(a)
i,1 ,w

(a)
i,2 , ..,w

(a)
i,li

), (2)

in which w
(a)
ij is the vector of the jth seed word of

the ith aspect, and li is the number of seed words
in the ith aspect. Our assumption is that an aspect
tends to form a cluster in the embedding space. The
aspect could then be represented as the centroid of
seed words. Those seed words, in turn, will pull
the segments belonging to the aspect closer during
learning, and will make the cluster more coherent.

3.2 The General aspect embeddings
For General, the encoder takes all its seed words to
form an aspect matrix G:

G = [w
(g)
1 w

(g)
2 ..w

(g)
lg

] (3)

where w(g)
j is the jth seed word of General and lg is

the number of seed words for this aspect. Among
the seed words, the closest to the segment is se-
lected, and only the embeddings of this one will be
updated during back propagation (the second term
of the objective function, as shown in Equation 4).

Our intuition: The segments not belonging to
a typical aspect could express anything, either an
overall review of the object, background informa-
tion, or even irrelevant contents. As we group them
into an aspect with an umbrella term General, it is
challenging to define this aspect. Its seed words,
typically acquired by manual inspection or by au-
tomatic extraction from a small set of labeled ex-
amples, tend to be relevant but incoherent. We,
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Loss

Embedding Space

Figure 2: Our Uncertainty-Aware Encoder: Segments are encoded as mean of word embeddings. Aspects are
encoded as a function of seed words depending on the aspect type (i.e. a typical aspect or General). An objective
function is designed to capture the uncertainty of ground-truth similarity generated from the given seed words.

therefore, assume that the aspect contains several
sub-clusters, and more importantly, the number of
sub-clusters is unknown beforehand. In this way,
using the best seed word as representative is a rea-
sonable solution, with a condition that the seed
words also scatter over the sub-clusters. Taking the
best seed word has another advantage in parameter
learning: For a typical aspect, all its seed words
will be updated during back propagation. For Gen-
eral, only the best seed word will be updated while
the other seed words in the same sub-cluster (if
any) and in the other sub-clusters will not be af-
fected. We will later demonstrate in our empirical
experiments that this selection plays an important
role in the model.

3.3 Objective function

The goal is to approximate similarity in the embed-
ding space and ground-truth similarity. Minimiz-
ing mean squared error is a typical choice for this
approximation. Inspired by weighted matrix fac-
torization for collaborative filtering from implicit
feedback (Hu et al., 2008), given the confidence
of ground-truth, our objective function is defined
as a mean weighted squared error loss as follows:

L =
1

|D|
∑
x∈D

(
k∑

i=1

ci(yi − xTai)
2

+c(g)(y(g) − max
1≤j≤lg

xTw
(g)
j )2),

(4)

where D is the training corpus, yi and ci are the
ground-truth similarity and confidence of the ith

aspect, and y(g) and c(g) are the ground-truth simi-
larity and confidence of General.

For convenience, let’s consider General as
the (k+1)th aspect: ak+1 = w

(g)
j∗ , where

j∗ = arg max1≤j≤lg(xTw
(g)
j ), yk+1 = y(g) and

ck+1 = c(g). The objective function could be short-
ened as follows:

L =
1

|D|
∑
x∈D

k+1∑
i=1

ci(yi − xTai)
2 (5)

3.4 Generating ground-truth similarity

Generating ground-truth similarity is basically iden-
tical to predicting an unseen segment. However,
instead of using an optimized encoder, we use a
vanilla version of our encoder of which parameters
are set-up by pre-trained word embeddings and no
optimization is involved. The steps are straightfor-
ward: At first, the encoder maps an input segment
and the aspects into a d-dimensional space. The
similarity between the segment and an individual
aspect is then calculated using the dot product func-
tion:

si = xTai, 1 ≤ i ≤ k + 1. (6)

The ground-truth similarity is finally binarized as
the following:

yi =

{
1 i = argmax

1≤i≤k+1
(si)

0 otherwise
(7)

Estimating the confidence of ground-truth bi-
nary similarity takes more steps. The similarity
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Figure 3: An illustration of the confidence of ground-
truth similarity.

in Equation 6 is first scaled to the range of [0,1]
using min-max normalization, i.e. the minimum
and maximum scaled similarities will be 0 and 1 in
that order:

s̄i =
si − smin

smax − smin
(8)

Later, an evidence term is defined so that: the
most (y = 1) and the least similar (y = 0) aspects
have an absolute evidence value (e = 1); The other
aspects with y = 0 and a similarity value s̄ ≤ 0.5
will have a high evidence value; The rest aspects
with y = 0 and a similarity value s̄ > 0.5 will have
a low evidence value.

ei =

{
1(= s̄i) yi = 1
1− s̄i otherwise

(9)

Let’s explain this intuition by an example (Fig-
ure 3): Suppose that we have to assign a review
segment “Nevertheless the food itself is pretty
good.” to one of the aspects {(L)ocation, (D)rinks,
(F)ood, (A)mbience, (S)ervice}1. Suppose that
s̄L = 1 > s̄D > 0.5 > s̄F > s̄A > s̄S = 0,
the evidence of assigning to Location is eL = 1.
The evidence of not assigning to Service is equally
eS = 1. For Food and Ambience, the evidence of
not assigning to these two aspects should be high
since s̄F < 0.5 and s̄A < 0.5. In the end, not as-
signing to Drinks should have a low evidence value
as s̄D > 0.5.

We finally add a constant term to provide a mini-
mal confidence value for each yi

2:

ci = 1 + ei. (10)

4 Experiments

In this part, we first describe the datasets used in
our experiments in Section 4.1, following by the ex-

1For convenience, we will use L, D, F, A, S to denote
Location, Drinks, Food, Ambience and Service, respectively
in the similarity and evidence values in this example.

2In (Hu et al., 2008), the confidence is defined as ci = 1+
αei, in which α is a hyper-parameter. In in-house experiments,
we found that the choice of α did not have a significant effect
on the model. We thus omitted this hyper-parameter in our
confidence.

perimental settings (Section 4.2). The methods se-
lected for comparison are introduced in Section 4.3.
The evaluation results are finally discussed in Sec-
tion 4.4. In all the experiments, our model is re-
ferred to as UCE, which stands for UnCertainty-
aware Encoder.

4.1 Datasets

We evaluated our method on the following datasets
(see Table 1 for the statistics of the datasets):

OPOSUM: The dataset was first introduced
in (Angelidis and Lapata, 2018). It contains Ama-
zon product reviews across six domains: Laptop
Bags (Bags), Bluetooth Headsets (B/T), Boots, Key-
boards (KBs), Televisions (TVs), Vacuums (VCs).
The dataset was already divided into train/dev/test
sets. Like previous works, we used the dev sets
to extract seed words. On this dataset, General is
a major aspect, its proportion is in the range of
48− 57% across the six domains.

Restaurant/Laptop: We used the same training
and test data as in (Huang et al., 2020). Following
previous works, we only evaluated on subsets of
aspects. To extract seed words, we used Semeval-
2016 (Pontiki et al., 2016) training sets. Only the
examples belonging to an aspect of interest were
taken. For Restaurant, as the number of such exam-
ples is quite large, we randomly selected a subset
of 1/6 data to be compatible with the other dev sets
(the Dev column in Table 1). Note that previous
works ignored the General aspect on these datasets.
For a robust evaluation, we followed this setting in
our experiments.

Dataset Train Dev Test
Restaurant 17,027 792 643
Laptop 14,683 301 307
Bags 584,332 598 641
B/T 1,419,812 661 656
Boots 957,309 548 611
KBs 603,379 675 681
TVs 1,422,192 699 748
VCs 1,453,651 729 725

Table 1: Statistics of the datasets.

4.2 Experiment settings

For pre-processing, seed word extraction, hyper-
parameters settings, and evaluation metrics, we
followed previous works for a fair and robust eval-
uation.
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Pre-processing: OPOSUM and Restau-
rant/Laptop were pre-processed similarly to (Shi
et al., 2020) and (Huang et al., 2020), respectively.
Like previous methods, we only focused on
sentence-level segments. We fixed the sentence
length at 30. Longer segments were truncated,
shorter segments were padded.

Seed words: Unless stated otherwise, seed
words were extracted from the dev sets using the
same extraction method as described in (Angelidis
and Lapata, 2018). Given a small number of la-
beled examples, the method returns ranked lists of
terms that are the most representative of aspects.
For term scoring, they use a clarity function that
measures how likely an individual term is observed
in an aspect (Cronen-Townsend et al., 2002).

Hyper-parameters: The best hyper-parameters
and parameters were selected using the dev sets.
Gensim3 was used to train Skip-gram with the fol-
lowing hyper-parameters: the embedding size to
200, the window size to 10, and the negative sam-
ple size to 5. Skip-gram was learned on the training
data (the Train column in Table 1). To learn our
models, we used the Adam optimizer (Kingma and
Ba, 2017) with a learning rate of 1e − 5, a batch
size of 512, and a weight decay of 1e− 5. Our best
models used five seed words for typical aspects and
30 seed words for General. Section 5.1 discusses
the number of seed words in more detail.

Evaluation metrics: The average performance
over five runs with different random seeds was re-
ported. For comparison with the previous works,
we used micro-averaged F1 for OPOSUM and Ac-
curacy, Precision, Recall and macro-F1 for Restau-
rant/Laptop.

4.3 Model comparison

For a robust assessment, we compared our method
with seven models and baselines on both data sets.

Skip-gram baseline is a variant of our model
without parameter learning. It uses the word em-
beddings from pre-trained Skip-gram to encode
segments and aspects as mean of (seed) words. For
all the aspects, we used five seed words4. Skip-
gram + Max uses the maximum selective mecha-
nism for the General aspect.

ABAE (He et al., 2017) is an autoencoder that
learns aspect embeddings by exploiting pre-trained

3https://radimrehurek.com/gensim/
4Our in-house experiments showed that using 30 seed

words for General in Skip-gram resulted in a poor perfor-
mance.

word2vec. The learned topics were manually
mapped to golden aspects. MATE (Angelidis
and Lapata, 2018) improves ABAE by using seed
words to learn an aspect matrix. ISWD (Kara-
manolakis et al., 2019) is a weakly-supervised
student-teacher co-training framework. The teacher
is a bag-of-seed-words classifier. The student is a
neural classifier that uses word2vec/BERT to en-
code segments. CAt (Tulkens and van Cranen-
burgh, 2020) is a heuristic model that consists
of a contrastive attention mechanism based on
RBF kernels and that uses cosine similarity to as-
sign aspects. JASen (Huang et al., 2020) jointly
learns word embeddings and aspect embeddings us-
ing manually collected aspect and sentiment seed
words. It utilizes a CNN with pseudo labels to
learn to classify aspects. The CNN classifier is fur-
ther strengthened by knowledge distillation. SSCL
(Shi et al., 2020) extends the idea of ABAE to learn
aspect embeddings and uses the so-called High-
Resolution-Selective-Mapping (HRSMap) for as-
pect mapping. Similar to ISWD and JASen, their
model is further strengthened via a BERT encoder
and knowledge distillation.

4.4 Evaluation results
Overall results on all aspects on OPOSUM5 are
reported in Table 2. ABAE reports the lowest F1.
Interestingly, when equipped with HRSMap, it is
dramatically improved. MATE falls behind the
other weakly-supervised methods. Our guess is
that its performance is affected by treating Gen-
eral equally to the other aspects. ISWD takes a
significant step forward by co-training and specific
treatment of General.

The closest to ours is SSCL, which is only 1%
to our best model. Its idea is similar to ABAE,
using a regressive autoencoder. However, it re-
quires manual aspect mapping. Its best performed
version is achieved by using BERT for encoding
input segments. It can be seen from Table 2 that
no individual method performs best across all the
six domains. On average, our model reports the
state-of-the-art on the dataset.

In Table 4 and Table 5, we report the perfor-
mance of UCE, Skip-gram and ISWD on typical
aspects and General for OPOSUM. The results for
typical aspects are calculated using weighted-F1. It
can be seen that UCE outperforms both Skip-gram

5The standard deviations of UCE on the F1 metric over the
5 runs with different random seeds are less than 0.3% in all
the six domains of OPOSUM.
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Method Bags B/T Boots KBs TVs VCs AVG
ABAE 38.1 37.6 35.2 38.6 39.5 38.1 37.9
ABAE+HRSMap 54.9 62.2 54.7 58.9 59.9 54.1 57.5
MATE 46.2 52.2 45.6 43.5 48.8 42.3 46.4
ISWD 61.4 66.5 52.0 57.5 63.0 60.4 60.2
SSCL 65.5 69.5 60.4 62.3 67.0 61.0 64.3
Skip-gram 38.6 36.8 30.8 32.4 31.4 32.4 34.0
Skip-gram + Max 49.2 55.4 45.5 54.4 52.4 48.5 50.9
UCE 63.7 68.1 62.9 67.3 68.0 62.6 65.4

Table 2: Quantitative evaluation of aspect detection on Amazon product reviews. The results of ABAE and MATE
were taken from (Angelidis and Lapata, 2018), ISWD from (Karamanolakis et al., 2019), ABAE+HRSMap and
SSCL from (Shi et al., 2020).

and ISWD on both typical aspects and General.
The results on Restaurant/Laptop6 are reported

in Table 3. The weakly-supervised methods out-
perform their unsupervised counterparts by a large
margin. UCE is superior on Laptop, but on Restau-
rant, it lags behind JASen. Their manual seed
words provide a good testbed for evaluation. We
further trained our model, replacing automatic seed
words by these manual seed words while keeping
the other settings identical (UCE*). This replace-
ment yielded a new state-of-the-art on Laptop and
brought a remarkable improvement on the other.

Despite its simplicity, Skip-gram performs com-
parably on both datasets. As shown in Table 2,
there is a large gap between Skip-gram and the
methods having a specific solution for General. As
General was omitted on Restaurant/Laptop, it per-
forms better. One can see that UCE significantly
outperforms Skip-gram, showing the effectiveness
of uncertainty-aware learning.

When looking at performance on each aspect on
the Restaurant/Laptop datasets, UCE outperforms
Skip-gram on 11 out of 13 aspects, which shows a
consistent improvement. On the OPOSUM dataset,
UCE yields a remarkable improvement on 35 out
of 54 aspects, including General, while it shows
significantly less reduction on the others (mostly
on recall). Our guess is that as a major aspect,
General possibly makes a negative effect on the
other aspects.

Based on error analysis, we found that UCE cor-
rectly predicted some ambiguous examples. For ex-
ample, the true label for the sentence “she replied,
well it would be more convenient for us if you or-
dered now, since you are a larger party, and it

6The standard deviations of UCE on the F1 metric over the
5 runs with different random seeds are less than 0.2% on both
datasets.

might get crowded”. is Service, but Skip-gram
predicted Ambience. Perhaps “larger party” and

“crowded” caused Skip-gram to make incorrect pre-
diction.

5 Analysis

In this section, we conduct an in-depth analysis
of our model on the number of seed words and
embedding space learning.

5.1 Number of seed words

Figure 4: The performance of detecting typical aspects
(square) and General (triangle) when the number of
seed words varies.

Firstly, the effect of the number of seed words
L on typical aspects was investigated. The results
are demonstrated on the dev set of the OPOSUM
Laptop Bags domain. L was chosen in the range
of [1, 50] with an interval of 5. The number of
seed words for General was fixed to 30. As shown
in Figure 4, the performance reaches a peak at 5
seed words. It gradually decreases when more seed
words are added.

The effect of choosing L for General is similarly
studied. Here, the number of seed words for the
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Method Restaurant Laptop
Acc Precision Recall macro-F1 Acc Precision Recall macro-F1

ABAE 67.3 46.6 50.8 45.3 59.8 60.0 59.6 56.2
CAt 66.3 49.2 50.6 46.2 58.0 65.2 59.9 58.6
JASen 83.8 64.7 73.0 66.3 71.0 69.6 71.3 69.7
Skip-gram 67.5 53.7 62.3 53.5 67.8 69.5 70.2 67.4
UCE* 83.1 66.1 67.4 66.1 72.0 72.9 73.9 72.2
UCE 77.5 56.7 64.7 58.8 71.3 72.2 72.7 71.3

Table 3: Quantitative evaluation of aspect detection on Restaurant and Laptop reviews. The results of ABAE, CAt
and JASen were taken from (Huang et al., 2020).

Model Bags B/T Boots Kbs TVs VCs
Skip-gram 48.1 59.5 50.5 67.1 60.2 59.2
ISWD 70.9 78.2 67.9 75.2 75.2 74.5
UCE 72.5 77.5 72.6 79.1 78.1 75.5

Table 4: The performance of UCE on the General aspect on OPOSUM. The performance of ISWD is reported by
running their code available at https://github.com/gkaramanolakis/ISWD.

Model Bags B/T Boots Kbs TVs Vcs
Skip-gram 46.5 47.4 37.2 41.3 42.7 39.1
ISWD 41.2 42.0 31.6 26.9 40.4 40.5
UCE 49.4 48.4 45.7 48.0 47.6 41.2

Table 5: The performance of UCE on typical aspects on OPOSUM.

typical aspects is fixed to 5. As can be seen in Fig-
ure 4, adding more seed words results in a steady
improvement until L reaches 30. After that, the
performance slightly decreases.

5.2 Embedding space learning

Figure 5: The embeddings space before (left) and after
(right) learning. Each data point is a review segment
in the test set of Restaurant. The segments of the same
aspect have the same color (Location: dark blue, Drink:
red, Food: pink, Ambience: light blue, Service: green).

Here, we focus on analyzing the embedding
space before and after parameter learning. T-
SNE (van der Maaten and Hinton, 2008) was used
to project high-dimensional segment vectors into

a two-dimensional space. We used the test set of
Restaurant for this visualization.

Before learning, the two dominant aspects, i.e.
Service and Food, overlap each other as shown
in the right-top region of the left part of Figure 5.
The two less frequent aspects, i.e., Ambience and
Drink, scatter around the space. After learning,
there is a clear distinction between Service and
Food. Both Ambience and Drink are now more
coherent. Since the number of the examples in Lo-
cation is too small, we could not draw a conclusion
on this aspect. Although Service and Food have
been largely improved, one can see that these two
dominant aspects still interfere with the other as-
pects, which could mislead the model in prediction.

6 Conclusions and Future Work

In this paper, we have presented a novel neural en-
coder for aspect detection. Uncertain-aware learn-
ing has been proposed to exploit seed words for
the task. The model has a selective mechanism to
effectively detect the General aspect. Our method
consistently achieves the state-of-the-art on several
benchmarks.
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However, there is still a large room for improve-
ment. Firstly, one should further investigate the
distribution of aspects, possibly taking the many-
to-one mapping, HRSMap and our selective mech-
anism as a starting point. In addition to hetero-
geneity, aspects in related domains typically form
a hierarchical structure. Secondly, more general
settings should be based on. For example, a seg-
ment might belong to multiple aspect categories.
Thirdly, as seed words play a central role in weakly-
supervised methods, more attention should be paid
to the methods to extract this resource. Last but not
least, the multi-task perspective is a potential direc-
tion, by simultaneously resolving aspect detection,
aspect term extraction and sentiment analysis.
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