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Abstract

Despite considerable progress, most machine
reading comprehension (MRC) tasks still lack
sufficient training data to fully exploit pow-
erful deep neural network models with mil-
lions of parameters, and it is laborious, ex-
pensive, and time-consuming to create large-
scale, high-quality MRC data through crowd-
sourcing. This paper focuses on generating
more training data for MRC tasks by lever-
aging existing question-answering (QA) data.
We first collect a large-scale multi-subject
multiple-choice QA dataset for Chinese, Ex-
amQA. We next use incomplete, yet relevant
snippets returned by a web search engine as
the context for each QA instance to convert
it into a weakly-labeled MRC instance. To
better use the weakly-labeled data to improve
a target MRC task, we evaluate and com-
pare several methods and further propose a
self-teaching paradigm. Experimental results
show that, upon state-of-the-art MRC base-
lines, we can obtain +5.1% in accuracy on
a multiple-choice Chinese MRC dataset, C3,
and +3.8% in exact match on an extractive
Chinese MRC dataset, CMRC 2018, demon-
strating the usefulness of the generated QA-
based weakly-labeled data for different types
of MRC tasks as well as the effectiveness of
self-teaching. ExamQA will be available at
https://dataset.org/examqa/.

1 Introduction

Constructing high-quality, large-scale data remains
a major challenge for machine reading compre-
hension (MRC) tasks, which aim to answer ques-
tions derived from a given document (Richardson
et al., 2013; Hermann et al., 2015; Rodrigo et al.,
2015). And it is laborious, expensive, and time-
consuming to create large-scale MRC data through
crowdsourcing, considering factors such as ensur-
ing a high degree of difficulty for the questions
and strong relevance between the designed ques-
tions and their associated documents. Therefore,

crowdsourced MRC datasets, especially those re-
quiring external knowledge beyond the given text
(e.g., (Richardson et al., 2013; Ostermann et al.,
2018; Huang et al., 2019a)), are usually small-scale,
making it difficult to fully exploit prevailing MRC
approaches based on pre-trained language models
with millions of parameters (Devlin et al., 2019).

To alleviate this problem, most previous studies
utilize the data of a target MRC task (Yang et al.,
2017; Yu et al., 2018; Asai and Hajishirzi, 2020) or
other MRC datasets of the same task type (Alberti
et al., 2019) for data augmentation. In contrast, we
examine the potential of using subject-area ques-
tion answering data to generate additional MRC
training data, motivated by the following two con-
siderations. First, at some level, MRC and ques-
tion answering (QA), which standardly requires
retrieval of snippets of text from a large corpus that
answer a given question (Voorhees and Tice, 2000;
Burger et al., 2001; Fukumoto and Kato, 2001),
seem to be quite related, and it has been demon-
strated that medium-scale MRC datasets can be
employed to improve performance of QA systems
on small-scale subject-area QA datasets (Sun et al.,
2019b; Pan et al., 2019). Second, there exists an
enormous amount of real-world QA data across
various subjects created by subject-matter experts,
which is relatively easy and cheap to acquire but
seldom used to help other tasks such as MRC.

As most of the existing multi-subject QA
datasets are relatively small-scale, we first col-
lect a large-scale Question-Answering dataset from
Exams (ExamQA) covering a wide range of sub-
jects (e.g., sociology, education, and psychology),
which contains 638k multiple-choice instances. We
then present a method to convert QA instances in
ExamQA into training instances for a target MRC
task to benefit from knowledge transfer (Ruder
et al., 2019). Unlike previous studies that aug-
ment each QA instance with relevant sentences re-
trieved from offline corpora, we rely on a standard

https://dataset.org/examqa/
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information-seeking protocol enabled by modern
search engines: users type their questions into a
web search engine and read through the snippets
from a variety of sources returned by the search
engine to seek potential answers. Imitating this pro-
tocol, we use relevant snippets retrieved by a web
search engine as the context of each QA instance.
We regard such an MRC instance as weakly-labeled
as the context is a form of distant supervision:
while it might contain the answer to the question
as required for MRC, it is also likely to be noisy,
incomplete, and/or irrelevant (Section 3). Never-
theless, we find that this method for adding context
to QA instances outperforms an approach that uses
information from a single source such as Wikipedia
as context for QA instances (Section 5.7).

There is also a challenge of using the large-
scale QA-based weakly-labeled MRC data to im-
prove a small-scale MRC task. We implement
and compare several methods that use weakly-
labeled data, such as classical sequential transfer
learning (Ruder et al., 2019) and a very recent
teacher-student paradigm with multiple teachers
trained with different subsets of weakly-labeled
data (Sun et al., 2020a) to generate soft-labeled
MRC data for students. Furthermore, inspired by
self-training (Yarowsky, 1995; Riloff, 1996) that
iteratively regards the student as a teacher to relabel
the unlabeled data for training a new student, we
propose a paradigm, called self-teaching, to itera-
tively train a single teacher to provide soft labels of
weakly-labeled or target MRC data. We always use
the ground-truth hard labels of ExamQA to obtain
more reliable soft labels of weakly-labeled data
(Section 4). The “naturally” injected noise caused
by context retrieval of our approach seems to help
models learn better from weakly-labeled MRC data,
playing a similar role as the noise (e.g., dropout
and stochastic depth) that is intentionally injected
into student models in previous studies (e.g., (He
et al., 2020; Xie et al., 2020b)) (Section 5.7).

We study the effect of our large-scale weakly-
labeled MRC data on representative MRC datasets
for Chinese: a multiple-choice dataset, C3 (Sun
et al., 2020b), in which most questions cannot be
solved solely by matching or paraphrasing, and an
extractive dataset, CMRC 2018 (Cui et al., 2019),
in which all answers are spans in the given docu-
ments. Experimental results show that soft-label
paradigms such as multi-teacher and self-teaching
achieve better performance than hard-label base-

lines. In particular, self-teaching does not need to
carefully divide data for training several teachers
at one stage as multi-teacher, yet performs equally
well or better than multi-teacher. Based on state-of-
the-art baselines (Xu et al., 2020; Cui et al., 2020),
self-teaching leads to an +5.1% in accuracy on
C3 and +3.8% in exact match on CMRC 2018
over the same baselines without using any extra
training data. We also demonstrate that our QA-
based MRC data can be easily combined with other
types of weakly-labeled MRC data in which noise
is introduced by different factors (e.g., machine
translation and knowledge extraction) for further
gains (e.g., up to +2.5% in accuracy on C3). As the
proposed paradigm is language-independent and
knowledge in many subjects (e.g., Mathematics
and Physics) can also be culture-independent, we
hope this work will benefit other tasks in different
languages, perhaps through powerful multi-lingual
language models or machine translation.

The contributions of this paper are as follows.

• We collect the largest multi-subject QA
dataset to date to facilitate MRC/QA studies.

• Our study is the first to investigate the poten-
tial of using large-scale multi-subject QA data
for MRC data augmentation.

• We evaluate and compare several methods to
use the generated QA-based weakly-labeled
MRC data. We further propose a simple yet ef-
fective self-teaching paradigm to better utilize
large-scale weakly-labeled data.

• We show that our QA-based weakly-labeled
MRC data can be easily used along with other
types of weakly-labeled data for further gains.

2 Related Work

2.1 From Question Answering to Machine
Reading Comprehension

This work is related to data augmentation in
semi-supervised MRC studies, which partially
or fully rely on the document-question-answer
triples (Yang et al., 2017; Yuan et al., 2017; Yu
et al., 2018; Zhang and Bansal, 2019; Zhu et al.,
2019; Dong et al., 2019; Sun et al., 2019b; Alberti
et al., 2019; Asai and Hajishirzi, 2020; Rennie et al.,
2020) of target MRC tasks or at least similar do-
main corpora (Dhingra et al., 2018). We focus
on leveraging multi-domain QA data to improve
different types of general-domain MRC tasks.
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2.2 Teacher-Student Paradigms
Teacher-student paradigms are widely used for
knowledge distillation (Ba and Caruana, 2014; Li
et al., 2014; Hinton et al., 2015). We aim to let
a student model outperform its teacher model for
performance improvements and thus use the same
architecture for all teacher and student models.

Our work is related to self-training (Yarowsky,
1995; Riloff, 1996). The main differences are (i)
noise is introduced by retrieved context instead
of noisy answers, (ii) we generate weakly-labeled
data based on existing large-scale QA data cover-
ing a wide range of domains, instead of the same
domain (He et al., 2020; Xie et al., 2020a; Zhao
et al., 2020; Chen et al., 2020) or at least approx-
imately in-domain (Du et al., 2020) as the target
MRC task, and (iii) ground-truth labels of weakly-
labeled data are used directly or indirectly to train
teacher models. Note that we use teacher models to
generate new soft labels for fixed weakly-labeled
data instead of new pseudo data with noisy labels
from unlabeled data (e.g., (Wang et al., 2020a)).

Compared with previous multi-teacher student
paradigms (You et al., 2019; Wang et al., 2020b;
Yang et al., 2020), to train models to be strong
teachers, we conduct iterative training and leverage
large-scale weakly-labeled data rather than using
clean, human-labeled data of similar tasks.

3 Weakly-Labeled Data Generation

3.1 Question-Answering Data Collection
We collect large-scale QA instances from freely ac-
cessible exams (including mock exams) designed
for a variety of subjects such as programming, jour-
nalism, and ecology. We only keep multiple-choice
single-answer instances written in Chinese. After
deduplication, we obtain 638,436 QA instances.

To assess the subject coverage of ExamQA, we
follow the subject list from China national standard
(GB/T 13745-2009) (Standardization Administra-
tion of China, 2009) and check for each subject
in the list if the name of the subject appears in
the title of any exam to estimate the lower bound
of subject coverage. The estimation shows that
ExamQA covers at least 48 out of 62 first-level
subjects and 187 out of 676 second-level subjects.
Note that the actual subject coverage of ExamQA
may be greatly underestimated, as only 24.2%
of titles contain a subject name. Based on ques-
tions in ExamQA that could be linked to a subject,
the top ten most frequent first-level subjects are

Clinical Medicine (17.3%), Management (11.4%),
Pharmacy (10.0%), Chinese Medicine and Chinese
Materia Medica (8.0%), Psychology (7.3%), Law
(5.2%), Economics (4.8%), Education (4.4%), Bi-
ology (3.6%), and Sociology (3.2%). See complete
subject-wise frequencies in Appendix A.5.

We do not annotate a small subset of questions
for human performance, as most of the subject-
area questions are from higher education exams
that require advanced domain knowledge.

3.2 Comparisons with Existing Subject-Area
Question-Answering Datasets

Subject-area QA is an increasingly popular direc-
tion focusing on closing the performance gap be-
tween humans and machines in answering ques-
tions collected from real-world exams that are care-
fully designed by subject-matter experts. These
tasks are mostly in multiple-choice forms. In
Table 1, we list several representative subject-
area multiple-choice QA datasets: NTCIR-11 QA-
Lab (Shibuki et al., 2014), QS (Cheng et al., 2016),
MCQA (Guo et al., 2017), ARC (Clark et al.,
2018), GeoSQA (Huang et al., 2019b), HEAD-
QA (Vilares and Gómez-Rodríguez, 2019), EX-
AMS (Hardalov et al., 2020), JEC-QA (Zhong
et al., 2020), and MEDQA (Jin et al., 2020).

dataset # of subjects◦ subjects language size

QS 1 history zh 0.6K
GeoSQA 1 geography zh 4.1K
JEC-QA 1 legal zh 26.4K
ARC 1 science en 7.8K
QA-Lab 1 history en/ja 0.3K
HEAD-QA 1 healthcare en/es 6.8K
MEDQA 1 medical en/zh 61.1K
MCQA 6 multi-subject en/zh 14.4K
EXAMS 24 multi-subject ar/bg/... 24.1K

ExamQA 48 multi-subject zh 638.4K

Table 1: Representative subject-area QA datasets col-
lected from exams (◦: we report the number of subjects
stated by previous studies and the number of first-level
subjects in ExamQA; language code: ISO 639-1).

Some multiple-choice MRC datasets for Chinese
such as C3 are collected from language exams de-
signed to test the reading comprehension ability
of a human reader. To prevent data leakage, we
exclude multiple-choice instances that have associ-
ated materials (e.g., a reference document), which
have a setting like that of standard MRC.

3.3 Bringing Context to Question Answering
In this section, we present a method to convert
QA instances into multiple-choice or extractive
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MRC instances to make the resulting data and tar-
get MRC task in a similar format, which may bene-
fit from knowledge transfer (Ruder et al., 2019).

Previous studies attempt to convert a multiple-
choice subject-area QA task to a multiple-choice
MRC task by retrieving relevant sentences for each
question from a clean corpus to form a document.
In contrast to relying on a fixed corpus, we retrieve
the top-ranked snippets using a publicly available
search engine. Specifically, we send each question
to the search engine as the query and collect snip-
pets from the first result page. Typically, we can
collect ten snippets for each QA instance. Since
all instances are freely accessible online, it is likely
that a retrieved snippet merely contains the original
QA instance rather than relevant context sufficient
for answering the question. Therefore, we discard
a snippet if more than one answer option appears
as a substring in the snippet. We concatenate the re-
maining snippets into a document as the context of
each QA instance. See data statistics of ExamQA
and retrieved context in Table 2. Due to this con-
struction method, it is likely that a document is
noisy, incomplete, informal, and/or irrelevant. We
provide sample instances in Table 3.

To convert these multiple-choice MRC instances
into extractive ones, we remove the wrong answer
options of each multiple-choice MRC instance and
append the start offsets of the exact mention of the
correct answer option in its associated document
(we consider the first mention when multiple men-
tions exist). We remove instances in which correct
answers are not mentioned in the documents.

metric value

average # of answer options 4.0
average question length (in characters) 39.5
average answer option length (in characters) 6.7
average context length (in characters) 907.6
non-extractive correct answer option (%) 68.4
character vocabulary size 13,258

Table 2: Data statistics of ExamQA with context.

4 Self-Teaching Paradigm

We will introduce a self-teaching paradigm to bet-
ter leverage large-scale weakly-labeled MRC data
to improve the performance of existing supervised
methods on an MRC task of interest, which is rela-
tively small-scale. Due to limited space, here we
only discuss multiple-choice tasks and we leave the
reformulation (e.g., soft labels and loss functions)
for extractive MRC tasks in Appendix A.

C1: 1. + b / b is equivalent to ((int) a) + (b / b), which can be obtained
according to the priority of the processor. (Int) This is a forced type
conversion. After the forced conversion ((int) a) is generally the
double conversion to the int type, most platforms round to zero...
2./b, both sides of the division sign are doubletype , The result is
also doubleType. That is 1.000000; integer. The first 5 is the int
type, int... 3 .; a = 5.5; b = 2.5; c = (int) a + b / b; printf (.̈. Best
answer: (int) a + b / b = 6, should be (int) a means round a, and
round a is 5 (rounding cannot be used here, rounding is discarded,
then b / b is 2.5 / 2.5, etc... 2019 July 25th, 2016-Analysis: The type
of the value of the mixed expression is determined by the type with
the highest precision in the expression, so it can be seen that option
B can be excluded. Note that the result of b / b should be 1.00000,
and (int) a is 5, and the result of the addition is still double...

Q1: Suppose a and b are double constants, a=5.5, and b=2.5, the value
of the expression (int)a+b/b is ().
A. 5.500000.
B. 6.000000. ?
C. 6.500000.
D. 6.

C2: November 22, 2016 It can be seen that it is not a white box test
case design method, so the correct answer to question (31) is B.
Black box testing is also called functional testing, which is to detect
whether each function can be used normally. At the test site, treat
the program as... November 18, 2016 Black box testing technol-
ogy is also called functional testing, which tests the external char-
acteristics of the software without considering the internal structure
and characteristics of the software. The main purpose of black box
testing is to discover the following types of errors: Are there any
errors... [Answer Analysis]...

Q2: Black box testing is also called functional testing, and black box
testing cannot find ().
A. terminal error.
B. communication error.
C. interface error.
D. code redundancy. ?

C3: July 21, 2014-Friedman believes that the transmission variable of
monetary policy should be (). Please help to give the correct an-
swer and analysis, thank you! Reward: 0 answer bean Questioner:
00***42 Release time: 2014-07-21 View...

Q3: Friedman believes that the transmission variable of monetary policy
should be ().
A. excess reserve.
B. interest rate.
C. currency supply. ?
D. base currency.

Table 3: English translation of sample instances in Ex-
amQA with retrieved context (?: correct option).

4.1 Training a Junior Teacher

In previous teacher-student frameworks for do-
main/knowledge distillation (You et al., 2019;
Wang et al., 2020b; Sun et al., 2020a), multiple
teachers are trained using different data. However,
it is difficult to divide the QA-based weakly-labeled
data into subsets by subjects or fine-grained types
of knowledge needed for answering questions. In-
stead, we simply train a junior teacher model using
the combined human-annotated target MRC data
and the weakly-labeled data, both with hard labels.

Let V denote a set of human-annotated training
instances and W denote a set of weakly-labeled
instances. For each instance t ∈ V ∪ W , we
let mt denote its total number of answer options,
and h(t) be a one-hot (hard-label) vector such that
h
(t)
j = 1 if the j-th answer option is labeled as

correct. We train a single junior teacher model,
denoted by T , and optimize T by minimizing
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Figure 1: Self-teaching framework using large-scale QA data to improve relatively small-scale MRC.

∑
t∈V ∪W L1(t, θT ); L1 is defined as

L1(t, θ) = −
∑

1≤k≤mt

h
(t)
k log pθ(k | t),

where pθ(k | t) denotes the probability that the k-th
answer option of instance t is correct, estimated by
the model with parameters θ.

4.2 Training a Senior Teacher

We then train a senior teacher model S using the
same data as the junior teacher model T while
replacing the hard labels of answer options with
the soft labels predicted by T and the original hard
labels. We define soft-label vector s(t) for t ∈
V ∪W such that

s
(t)
k = λ h

(t)
k + (1− λ)pθT (k | t),

where λ ∈ [0, 1] is a weighting parameter, and
k = 1, . . . ,mt.

We optimize senior teacher S by minimizing∑
t∈V ∪W L2(t, θS), where L2 is defined as

L2(t, θ) = −
∑

1≤k≤mt

s
(t)
k log pθ(k | t).

4.3 Training an Expert Student

As a final step, we initialize an expert student E
with the resulting senior teacher model S, and we
fine-tune E on the target data V to help it achieve
expertise in the task of interest, following most of
the recent MRC methods (Radford et al., 2018; De-
vlin et al., 2019). This step differs from previous
work in that we use the soft labels generated by the
senior teacher model (Section 4.2) based on our
assumption that a student model tends to learn bet-
ter from a stronger teacher model. We will discuss
more details in the experiment section and show
that during self-training a student model tends to
outperform its teacher model that provides soft la-
bels to make itself a stronger teacher (Section 5).

We define new soft-label vector s̃(t) for t ∈ V
such that

s̃
(t)
k = λ h

(t)
k + (1− λ)pθS (k | t),

where λ ∈ [0, 1] is a weighting parameter, and
k = 1, . . . ,mt.

At this stage, we optimize E by minimizing∑
t∈V L3(t, θE), where L3 is defined as

L3(t, θ) = −
∑

1≤k≤mt

s̃
(t)
k log pθ(k | t).

Figure 1 shows an overview of the proposed self-
teaching paradigm.

4.4 Integrating Different Types of
Weakly-Labeled MRC Data

We study the integration of multiple types of
weakly-labeled data during weakly-supervised
training with soft labels to save time and effort
in retraining models on W with hard labels.

Take another weakly-labeled multiple-choice
MRC data extracted automatically from television
show and film scripts (Sun et al., 2020a) as an ex-
ample, denoted as Ws, besides the weakly-labeled
dataW constructed based on existing QA instances.
Following the above three-step procedure, we first
train a junior teacher Ts using Ws to generate soft
labels of Ws and V . We then train a senior teacher
S∗ upon the combination of soft-labeled Ws, W
(Section 4.2), and V . Note that we simply use two
versions of soft-labeled V generated by T and Ts,
respectively. The resulting senior teacher S∗ is used
to generate the final soft labels of V for training an
expert student. In Section 5.6, we will discuss in-
tegration with other types of weakly-labeled MRC
data in which the source of noise varies.

5 Experiments

5.1 Data Statistics

See statistics of two relatively small-scale MRC
datasets (C3and CMRC 2018) and three kinds of
large-scale weakly-labeled MRC data in Table 4.
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For CMRC 2018, we use its publicly available
training and development sets. For weakly-labeled
MRC data, besides the automatically extracted
SCRIPT (Section 4.4), we also consider human-
labeled multiple-choice MRC instances in other
resource-rich languages such as English. We use
Google Translate to translate instances from C3’s
English counterparts RACE (Lai et al., 2017) and
DREAM (Sun et al., 2019a) that are also collected
from language exams into Chinese (referred to as
MRCMT).

MRC data source noise # instances

human-annotated:
C3 language exams – 19,577
CMRC 2018 Wikipedia – 19,071

weakly-labeled:
MRCMT language exams translation 107,884
SCRIPT TV/movie scripts extraction 700,816
ExamQA multi-subject exams retrieval 638,436

Table 4: Human-annotated and weakly-labeled ma-
chine reading comprehension data statistics.

5.2 Implementation Details
We use Baidu Search to form a document for each
QA instance. We follow recent state-of-the-art
MRC methods for the model architecture that con-
sists of a pre-trained language model and a clas-
sification layer. We use the same architecture for
baselines and all teacher or student models. We
use RoBERTa-wwm-ext-large (Cui et al., 2020) as
the pre-trained language model for Chinese, which
reaches state-of-the-art performance on representa-
tive MRC tasks for Chinese such as C3 and CMRC
2018 (Xu et al., 2020). We are aware of the emerg-
ing newly-released pre-trained language models for
Chinese and leave the exploration of them for fu-
ture studies. We train a junior/senior teacher model
for one epoch as large-scale weakly-labeled data
is used. We train baselines and expert students
for eight epochs on C3 and two epochs on CMRC
2018. More epochs do not lead to better results on
both MRC datasets. In all experiments, we set λ
(defined in Section 4.2-4.3) to 0.5 to permit easy
comparisons with the multi-teacher paradigm (Sun
et al., 2020a) (Section 5.5), and we report the aver-
age score of five runs with different random seeds
and standard deviation in brackets. See more set-
ting details in Appendix A.4.

5.3 Main Results
In Table 5, for fair comparisons, we mainly com-
pare methods built on the same pre-trained lan-

guage model on the multiple-choice MRC dataset
C3. Under the zero-shot scenario using ExamQA,
we already see promising results (e.g., 64.9% on
the C3 dev set). With the proposed self-teaching
paradigm, expert student (4) improves baseline (1)
based on the same model architecture by up to
5.1% in accuracy, and it outperforms two-stage
fine-tuning (G) and sequential transfer learning
(D). The two hard-label methods (the only differ-
ence lies in whether or not the target MRC training
data is used at the first stage) are moderately ef-
fective but more efficient as weakly-labeled data is
only used once. We will thoroughly compare self-
teaching and the multi-teacher paradigm (Sun et al.,
2020a) that also uses soft labels and weakly-labeled
MRC data in different settings in Section 5.5.

For an extractive MRC task, we follow the self-
teaching paradigm (Section 4) and introduce how
to apply self-teaching to extractive tasks by redefin-
ing hard and soft labels for probability distributions
of being answer start and end tokens, changing the
loss function for senior teacher and expert student,
etc., in Appendix A. As there are major differences
(e.g., type of questions/answers and required prior
knowledge) between extractive and multiple-choice
MRC tasks, we do not see positive results by adapt-
ing the resulting best-performing expert student
((4) in Table 5) to initialize an extractive model.

As shown in Table 6, similarly, the expert student
also reaches the best performance, outperforming
the baseline model (Cui et al., 2020) implemented
based on the same pre-trained language model by
3.8% in exact match and 2.0% in F1. As each
(question, document) corresponds to two probabil-
ity distributions in a much larger dimension com-
pared to that of soft labels for multiple-choice tasks,
due to memory limitations, we only use one third
of the weakly-labeled extractive MRC data.

5.4 Observations and Discussions

Hereafter, we concentrate on multiple-choice tasks
as we can afford to use more weakly-labeled MRC
data, especially soft-labeled, during training. We
compare our methods and other baselines in Ta-
ble 5, and we have the following observations.
I. Under the self-teaching paradigm, student
models tend to outperform their corresponding
teacher models. For example, on the C3 dataset,
the accuracy of the senior teacher (3) is 1.5% higher
than the result 75.6% achieved by its teacher (2).
II. Using a strong teacher model to provide
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id model init. teacher training data dev testname label (H/S)

A AMBERT (Zhang and Li, 2020) – – ♦ H 69.5 69.6
B ERNIE 2.0 (Sun et al., 2020c; Ding et al., 2021) – – ♦ H 72.3 73.2
C RoBERTa-wwm-ext-large (Cui et al., 2020) – – ♦ H – 73.8
D sequential transfer learning (Ruder et al., 2019)? – – 1st: ExamQA; 2nd: ♦ H; H 76.3 (0.4) 76.1 (0.3)
E two-stage fine-tuning (Sun et al., 2020a) – – 1st: ♦ + SCRIPT; 2nd: ♦ H; H 75.6 75.2
F multi-teacher (Sun et al., 2020a) – – 1st/2nd: ♦ + SCRIPT; 3rd: ♦ H; S; S 77.4 77.7

self-teaching:
1 baseline (our implementation of C) – – ♦ H 73.9 (0.5) 73.4 (0.5)
2 junior teacher – – ♦ + ExamQA H 74.0 (0.8) 75.6 (0.5)
3 senior teacher – 2 ♦ + ExamQA S 75.7 (0.5) 77.1 (0.4)
4 expert student 3 3 ♦ S 78.2 (0.3) 78.5 (0.2)

other expert variants or baselines:
5 expert student (weak teacher) 3 2 ♦ S 77.8 (0.4) 78.0 (0.3)
6 expert student (weak initialization) – 3 ♦ S 74.9 (0.3) 74.8 (0.5)
G two-stage fine-tuning (same as E) 2 – ♦ H 76.5 (0.3) 76.6 (0.8)
H basic teacher-student w/o ExamQA 1 1 ♦ S 73.4 (0.4) 72.6 (0.4)

Table 5: Average accuracy and standard deviation (%) on the dev and test sets of the C3 dataset (H/S: hard/soft; ?:
our implementations). ♦ is the training set of C3 for all experiments; init. means the starting point, and – in this
column means using the pre-trained language model for initialization.

model extra training data EM F1

AMBERT N/A 68.8 87.3
ERNIE 2.0 N/A 71.5 89.9
(Cui et al., 2020) N/A 67.6 87.9

transfer learning � 72.1 (0.6) 90.1 (0.3)
two-stage fine-tuning � 71.4 (0.2) 89.8 (1.0)

baseline N/A 70.3 (1.4) 89.2 (0.2)
junior teacher � 71.8 (0.6) 89.8 (0.4)
senior teacher � 72.5 (0.6) 90.1 (0.5)
expert student N/A 74.1 (0.7) 91.2 (0.3)

Table 6: EM and F1 (%) on the publicly available de-
velopment set of CMRC 2018 (�: subset of ExamQA
used for training junior/senior teacher models).

soft labels helps across settings. We consider
a teacher model to be strong if it achieves good
performance on the target MRC task. Using the
senior teacher (3), which is stronger than the junior
teacher (2), to provide soft labels of C3 to train an
expert student results in +0.5% in accuracy ((4)
vs. (5)). To explore whether this also applies to
expert models, we experiment with a variant of
expert student (4): still starting from the same se-
nior teacher (3), we now put back expert student
(4) as the teacher model to generate soft labels of
C3 to train a new expert student. However, this
variant does not yield further gains (78.2 (0.4)) on
the development set). Seeing more data than the
expert student may make the more “knowledgable”
senior teacher a better teacher to provide soft labels
of the target MRC data. While it is possible to use
the senior teacher itself to obtain a stronger senior
teacher just as traditional self-training, it is much
less efficient to retrain a model upon the large-scale
weakly-labeled data than the above variant, which
could be explored in future work.

III. Large-scale QA-based weakly-labeled data
can be helpful for MRC. Using a basic teacher-
student paradigm over the target MRC task alone
even hurts the performance ((1) vs. (H) in Ta-
ble 5). Under the self-training paradigm, helping
train teacher models, especially the senior teacher
that is further used as a good starting point of the
expert student ((4) vs. (6)), reflects the usefulness
of the large-scale weakly-labeled data. To train an
expert student, we observe that both soft labels pro-
vided by a strong teacher and using the teacher for
model initialization are necessary, as training the
expert student from a pre-trained language model
does not fully leverage the strength of the weakly-
labeled data (e.g., (3) vs. (6)).

IV. Initializing a student with its teacher is not
always useful. Though starting from the junior
teacher slightly boosts (+0.3% in accuracy) a se-
nior teacher’s performance, using the resulting se-
nior teacher to initialize and teach the expert stu-
dent actually hurts performance (−0.7% in accu-
racy on the dev set). It is perhaps due to con-
vergence of the junior teacher and senior teacher,
which are already trained upon the same set of
large-scale training data, although the labels are
hard and soft, respectively. Similar observations
have also been made in previous vision studies.
For example, Xie et al. (2020b) reported that it
is sometimes better to train a student from scratch
than initializing the student with its teacher when
large-scale pseudo-labeled data is consistently in-
volved. Therefore, we do not use the junior teacher
to initialize the senior teacher in our main experi-
ment (3 in Table 5 and senior teacher in Table 6).
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paradigm weakly-labeled data data segmentation criteria # of junior teachers dev test

self-teaching ExamQA – 1 78.2 (0.3) 78.5 (0.2)
multi-teacher (our implementation) ExamQA random 4 77.5 (0.5) 77.9 (0.2)

self-teaching SCRIPT – 1 77.9 (0.4) 77.9 (0.4)
multi-teacher (our implementation) SCRIPT random 4 77.7 (0.2) 77.5 (0.3)
multi-teacher (our implementation) SCRIPT knowledge type 4 77.7 (0.4) 77.9 (0.3)

Table 7: Comparison of self-teaching and multi-teacher using different types of weakly-labeled data in accuracy
(%) on the dev and test sets of the C3 dataset.

5.5 Comparing Self-Teaching and
Multi-Teacher Paradigms

Recent work (Sun et al., 2020a) shows that it is bet-
ter to train multiple teacher models upon different
subsets of weakly-labeled data with hard labels and
then use these teachers to generate soft labels for
both the weakly-labeled data and the small-scale
MRC data for two-stage soft-label fine-tuning, com-
pared against two-stage hard-label fine-tuning (i.e.,
(E) vs. (F) in Table 5). However, herein lies an
unanswered question: whether teacher models’
data diversity or number matters to the result-
ing expert student’s performance.

As it is difficult to divide ExamQA into subsets
by subjects, which can result in hundreds of teach-
ers, we shuffle ExamQA and divide it into four
subsets of similar size and follow the multi-teacher
paradigm mentioned above. We find that self-
teaching provides larger accuracy gains compared
against multi-teacher when knowledge/domain-
based data segmentation is tricky (Table 7).

We also consider the setting when it is easy to
split data into subsets by the type of knowledge: we
compare self-teaching with multi-teacher given the
weakly-labeled data based on SCRIPT, which con-
tains four subsets of verbal-nonverbal knowledge
extracted by different patterns. Results show that
self-teaching has competitive performance com-
pared with multi-teacher that carefully feed dif-
ferent types of knowledge into different teachers,
indicating that the impact of the number of teacher
models may be limited. To further study the impact
of data diversity of teachers, we shuffle SCRIPT
and divide it into four subsets of similar size to train
four teacher models. Using the same multi-teacher
paradigm, we experimentally demonstrate a weak
correlation between the data diversity of teachers
and the final performance of the expert student.

5.6 Using ExamQA along with Other Types
of Weakly-Labeled Data

Using the method mentioned in Section 4.4, intro-
ducing additional weakly-labeled MRC instances
generated based on verbal-nonverbal knowledge
automatically extracted from scripts, we observe
+1.5% in accuracy over the best-performing ex-
pert student (4 in Table 5), which already outper-
forms the expert student obtained when we only
use one-third of weakly-labeled data constructed
based on ExamQA by 0.8% in accuracy (Table 8).
Furthermore, we show it is possible to use the same
procedure to adapt self-teaching to incorporate ex-
tra noisy human-labeled multiple-choice MRC
instances (MRCMT in this work), and we apply
self-teaching to additionally incorporate the data,
leading to +2.5% in accuracy. We do not study
how to further improve machine reading compre-
hension by just using extra clean human-annotated
MRC data, which is not the main focus of this paper.
These results suggest the flexibility and scalability
of self-teaching, and our QA-based weakly-labeled
MRC data can be used with other types of weakly-
labeled MRC data to further boost performance.

weakly-labeled MRC data size dev test

– – 73.9 (0.5) 73.4 (0.5)
subset of ExamQA 0.2M 77.8 (0.2) 77.7 (0.1)
ExamQA 0.6M 78.2 (0.3) 78.5 (0.2)
ExamQA + SCRIPT 1.3M 79.5 (0.2) 80.0 (0.2)

mixed-labeled data
ExamQA + MRCMT 0.7M 80.4 (0.1) 81.0 (0.2)

Table 8: Accuracy comparison of expert students,
which are obtained when different size of weakly-
labeled data is used during self-teaching, on the dev and
test sets of the C3 dataset (size: number of instances).

5.7 The Roles of Noise and Source of Context
in Weakly-Labeled Data

As context returned by a web search engine is likely
to be noisy, we conduct a preliminary experiment
to evaluate the impact of noise in context by re-
moving wrong answer options from the context of
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source of context denoise dev test

search engine × 78.2 (0.3) 78.5 (0.2)
search engine X 77.0 (0.3) 77.5 (0.3)
Wikipedia × 77.1 (0.3) 77.4 (0.2)

Table 9: Accuracy comparison of expert students on
the dev and test sets of the C3 dataset, which are ob-
tained when different types of sources are used to form
context of weakly-labeled data.

each weakly-labeled MRC instance. Surprisingly,
context cleaning hurts accuracy by 1.2% on the
development set of C3. It is possible that noisy con-
text helps improve the generalization ability of both
teacher and student models, just as the noise that
is intentionally added in previous work (e.g., (He
et al., 2020; Xie et al., 2020b)).

Besides using snippets retrieved from a search
engine to form context, we use the default search
engine in Wikipedia to collect relevant snippets
from Wikipedia for each question, leading to de-
creased accuracy (−1.1% on C3), perhaps due to
questions in ExamQA requires fine-grained subject-
specific knowledge that is not always covered in
Wikipedia articles written in Chinese.

6 Conclusions

We focus on using multi-subject QA instances to
construct large-scale weakly-labeled MRC data to
improve a target MRC task, which lacks sufficient
training data. We collect a large-scale multi-subject
multiple-choice QA dataset ExamQA and use in-
complete, yet relevant snippets returned by a search
engine as context of each QA instance to convert it
into a weakly-labeled MRC instance. We evaluate
and compare several methods and further propose
self-teaching to better use these weakly-labeled
MRC instances. Experimental results show that
we can obtain +5.1% in accuracy on a multiple-
choice MRC dataset C3 and +3.8% in exact match
on an extractive MRC dataset CMRC 2018, sup-
porting the effectiveness of self-teaching and the
usefulness of QA-based augmented data for MRC.
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A Appendix

A.1 Training a Junior Teacher
Let V denote a set of human-labeled instances and
W denote a set of weakly-labeled instances. Each
instance contains a document d, a question q, and
an answer span a in d. Let astart and aend denote,
respectively, the start offset and end offset of a,
which appears in d. For each instance t = (d, q, a),
let lt denote the length of the concatenated (q, d)
taken as the input to an MRC model. We train a
junior teacher model, denoted by T , which learns
to predict the probability of each token in the input
to be the start or end token of the correct answer.
Let pstart,θ(k | t) and pend,θ(k | t) denote the proba-
bilities that the k-th token in (q, d) to be the start
and end token respectively, estimated by a model
with parameters θ. We optimize T by minimizing∑

t∈V ∪W L1(t, θT ), where L1 is defined as

L1(t, θ) = − log pstart,θ(astart | t)− log pend,θ(aend | t).

A.2 Training a Senior Teacher
We then train a senior teacher model S using the
same data as the junior teacher model T while re-
placing the hard labels with the soft labels predicted
by T . We define h(t)

start and h
(t)
end to be one-hot hard-

label vectors such that h(t)
start,i = 1 and h

(t)
end,j = 1

if the i-th and j-th tokens in (q, d) are the start
and end token of the correct answer respectively.
We define soft-label vectors sstart

(t) and send
(t) for

t ∈ V ∪W such that

s
(t)
start,k = λ h

(t)
start,k + (1− λ)pstart,θT (k | t)

and

s
(t)
end,k = λ h

(t)
end,k + (1− λ)pend,θT (k | t),

where λ ∈ [0, 1] is a weighting parameter, and
k = 1, . . . , lt. We optimize senior teacher S by
minimizing

∑
t∈V ∪W L2(t, θS), where L2 is de-

fined as

Lstart,2(t, θ) = −
∑

1≤k≤lt

s
(t)
start,k log pstart,θ(k | t)

Lend,2(t, θ) = −
∑

1≤k≤lt

s
(t)
end,k log pend,θ(k | t)

L2(t, θ) =
1

2
(Lstart,2(t, θ) + Lend,2(t, θ)).

A.3 Training an Expert Student
We now introduce the formulation of training ex-
pert student E . For instance t ∈ V , we define new
soft-label vectors s̃(t)start and s̃

(t)
end such that

s̃
(t)
start,k = λ h

(t)
start,k + (1− λ)pstart,θS (k | t)

and

s̃
(t)
end,k = λ h

(t)
end,k + (1− λ)pend,θS (k | t),

where λ ∈ [0, 1] is a weighting parameter, and
k = 1, . . . , lt. We optimize E by minimizing∑

t∈V L3(t, θE), where L3 is defined as

Lstart,3(t, θ) = −
∑

1≤k≤lt

s̃
(t)
start,k log pstart,θ(k | t)

Lend,3(t, θ) = −
∑

1≤k≤lt

s̃
(t)
end,k log pend,θ(k | t)

L3(t, θ) =
1

2
(Lstart(t, θ) + Lend(t, θ)).

A.4 Settings

jt/st es/baseline

training data ExamQA + C3 C3

initial learning rate 2e-5 2e-5
batch size 24 24
# of training epochs 1 8
max sequence length 512 512
training labels hard/soft soft/hard

Table 10: Hyper-parameter settings for training
multiple-choice machine reading comprehension mod-
els (jt: junior teacher; st: senior teacher; es: expert
student).

jt/st es/baseline

training data � + CMRC 2018 CMRC 2018
initial learning rate 3e-5 3e-5
batch size 32 32
# of training epochs 1 2
max sequence length 512 512
training labels hard/soft soft/hard

Table 11: Hyper-parameter settings for training extrac-
tive machine reading comprehension models (�: subset
of ExamQA; jt: junior teacher; st: senior teacher; es:
expert student).

A.5 Subjects in ExamQA
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subject id subject name name translation # of questions

110 数学 Mathematics 2,875
120 信息科学与系统科学 Information Science and System Science 6
130 力学 Mechanics 1,354
140 物理学 Physics 606
150 化学 Chemistry 3,634
170 地球科学 Earth Science 131
180 生物学 Biology 6,554
190 心理学 Psychology 13,317
210 农学 Agronomy 523
230 畜牧、兽医科学 Animal Husbandry and Veterinary Science 98
310 基础医学 Basic Medicine 5,526
320 临床医学 Clinical Medicine 31,412
330 预防医学与公共卫生学 Preventive Medicine and Public Health 1,132
350 药学 Pharmacy 18,171
360 中医学与中药学 Chinese Medicine and Chinese Materia Medica 14,470
413 信息与系统科学相关工程与技术 Information and System Science Related Engineering and Technology 140
416 自然科学相关工程与技术 Natural Science Related Engineering and Technology 14
420 测绘科学技术 Surveying and Mapping Science and Technology 31
430 材料科学 Materials Science 107
460 机械工程 Mechanical Engineering 348
470 动力与电气工程 Power and Electrical Engineering 2,438
510 电子与通信技术 Electronics and Communications Technology 945
520 计算机科学技术 Computer Science and Technology 4,867
530 化学工程 Chemical Engineering 156
550 食品科学技术 Food Science and Technology 28
560 土木建筑工程 Civil Engineering 1,660
570 水利工程 Water Conservancy Engineering 270
580 交通运输工程 Transportation Engineering 833
610 环境科学技术及资源科学技术 Environmental/Resource Science and Technology 23
620 安全科学技术 Safety Science and Technology 49
630 管理学 Management 20,771
710 马克思主义 Marxism 1,225
720 哲学 Philosophy 1,629
730 宗教学 Religious Studies 34
740 语言学 Linguistics 113
750 文学 Literature 3,806
760 艺术学 Art 3,423
770 历史学 History 1,387
790 经济学 Economics 8,784
810 政治学 Political Science 3,996
820 法学 Law 9,442
840 社会学 Sociology 5,802
850 民族学与文化学 Ethnology and Cultural Studies 15
860 新闻学与传播学 Journalism and Communication 858
870 图书馆、情报与文献学 Library, Information, and Documentation 144
880 教育学 Education 8,002
890 体育科学 Sports Science 49
910 统计学 Statistics 546

– – Unclassified 456,692

Table 12: Subject-wise frequencies of questions in ExamQA.


