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Abstract
While neural networks are ubiquitous in
state-of-the-art semantic parsers, it has been
shown that most standard models suffer
from dramatic performance losses when
faced with compositionally out-of-distribution
(OOD) data. Recently several methods have
been proposed to improve compositional gen-
eralization in semantic parsing. In this work
we instead focus on the problem of detecting
compositionally OOD examples with neural
semantic parsers, which, to the best of our
knowledge, has not been investigated before.
We investigate several strong yet simple meth-
ods for OOD detection based on predictive
uncertainty. The experimental results demon-
strate that these techniques perform well on the
standard SCAN and CFQ datasets. Moreover,
we show that OOD detection can be further im-
proved by using a heterogeneous ensemble.

1 Introduction

Neural network (NN) based models are ubiqui-
tous in natural language processing (NLP). In par-
ticular, sequence-to-sequence models have found
adoption in neural machine translation (NMT (Bah-
danau et al., 2014; Luong et al., 2015)), neural
semantic parsing (NSP (Dong and Lapata, 2016)),
and beyond. While basic sequence-to-sequence
models have shown impressive results on these
tasks, recent work (Lake and Baroni, 2018; Key-
sers et al., 2019; Kim and Linzen, 2020) have pre-
sented the disconcerting finding that these models
fail to generalize to novel combinations of elements
observed in the training set (see Section 2). There-
fore, several models and methods with improved
compositional generalization have recently been
proposed (Liu et al., 2020; Li et al., 2019; Russin
et al., 2020; Guo et al., 2020a; Gordon et al., 2019;
Herzig and Berant, 2020; Furrer et al., 2020; An-
dreas, 2020; Guo et al., 2020b; Herzig et al., 2021)

In this work, we consider the task of detecting
compositionally out-of-distribution (OOD) exam-

ples, which, to the best of our knowledge has not
been investigated before. The ability to detect OOD
inputs is important, as it helps us to decide whether
the model’s prediction on the input can be trusted,
which is crucial for safe deployment of the model
and could be useful to build more efficient systems.

To this end, we analyse the OOD detection per-
formance of recurrent neural network (RNN) and
transformer-based models using methods relying
on predictive uncertainty. In addition, we propose
to use a heterogeneous ensemble of transformer and
RNN-based models that combines the strengths of
both to improve the detection of compositionally
OOD examples.

2 Background

Several recent works have investigated the general-
ization properties of commonly used sequence-to-
sequence models, in particular their ability to learn
to process and produce novel combinations of ele-
ments observed during training (Lake and Baroni,
2018; Keysers et al., 2019; Kim and Linzen, 2020).

Lake and Baroni (2018) propose the SCAN
dataset, which consists of natural language utter-
ances (input) and action sequences (output), and
perform an analysis of the generalization perfor-
mance of sequence-to-sequence models on differ-
ent splits of the dataset. The different splits are
aimed at testing the ability of networks to (1) gen-
eralize to novel combinations of tokens observed
only in isolation during training (the JUMP and
TURN_LEFT settings) and (2) generalize to longer
sequence lengths (the LENGTH setting). For the
JUMP setting, the training set consists of the ba-
sic example “jump”→ [JUMP] as well as all other
simple and composed examples (e.g. “run twice”)
while the test set contains all composed examples
with “jump” (e.g. “jump twice”). They observe
that standard sequence-to-sequence models fail on
the JUMP and LENGTH splits (accuracy below 10%)
while they perform well (near 100%) on a random
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test split.
Keysers et al. (2019) performed their analysis on

the CFQ dataset that provides tens of thousands of
automatically generated question/SPARQL-query
pairs and provides maximum compound divergence
(MCD) splits. The MCD splits are generated such
that the distributions over compounds (phrases
combining atomic elements) are maximally dif-
ferent between the train and test sets while the
distributions over the atomic elements (entities, re-
lations, question patterns) are kept similar. Key-
sers et al. (2019) also provide MCD splits for the
SCAN dataset. Experiments using standard neu-
ral sequence-to-sequence models (transformers and
RNN+attention) reveal that while the random splits
result in near-perfect accuracy, the MCD splits suf-
fer dramatic losses in performance (< 20% accu-
racy for CFQ’s MCD splits and < 10% for SCAN’s
MCD splits).

3 Detecting OOD examples

In this work, we focus on OOD detection methods
that build on the predictive distributions of discrim-
inative task-specific models (extending the work
of Hendrycks and Gimpel (2017)). These meth-
ods have the advantage that they are easy to use
in existing models and do not require additional
models or additional training (unlike for example
generative modeling (Nalisnick et al., 2018; Ren
et al., 2019)). Previous work has shown that neural
network models can produce incorrect predictions
with high confidence on OOD inputs (Nguyen et al.,
2015), which can be detrimental for detecting such
inputs. We investigate whether this is the case for
compositionally OOD examples in semantic pars-
ing models as well.

We compare the following measures quantify-
ing the uncertainty of the prediction based on the
output distributions of a trained model: (1) the
average negative log-likelihood (NLL) for the gen-
erated sequence, (2) the sum of the NLLs, and
(3) the average entropy of the output distributions.
More specifically, our approach for measuring un-
certainty proceeds as outlined: First, the input x is
encoded and an output sequence ŷ is generated by
the decoder. The model’s output probability distri-
butions p(ŷi|ŷ<i, x) for every decoding step i are
then used to compute the sum of NLL as

− log p(ŷi|ŷ<i, x) . (1)

The average entropy is given by

− 1

T

T∑
i=1

∑
yi∈V

p(yi|ŷ<i, x) log p(yi|ŷ<i, x) , (2)

where V is the set of all output tokens.

3.1 MC Dropout

To take model uncertainty into account, Bayesian
approaches can be used (Louizos and Welling,
2017; Maddox et al., 2019; Malinin and Gales,
2018). A simple method for approximating the
predictive uncertainty under a Bayesian poste-
rior distribution over model parameters, is MC
Dropout (Gal and Ghahramani, 2016).

In our work, we use MC dropout as follows:
First, we encode the input x and run the decoder
to generate an output sequence ŷ. Then, we obtain
K output probability distributions pk(yi|ŷ<i, x),
k = 1, . . .K, for each decoding step by feeding
x and the generated ŷ through the model K times
while randomly dropping neurons with the same
probability as during training. Finally, the pos-
terior predictive distribution is approximated by
1
K

∑K
k=1 pk(yi|ŷ<i, x) and is used with the met-

rics described previously.

3.2 Homogeneous ensemble

Another method often used for uncertainty quan-
tification are deep ensembles (Lakshminarayanan
et al., 2017), where K models with the same archi-
tecture and hyperparameters are trained in parallel
starting with different initalizations. The final pre-
diction is given as the average over the single pre-
dictions. For our sequence models, we average the
predictive distributions of the ensembled models at
every decoding step.

3.3 Heterogeneous ensemble

In our experiments, we found that different under-
lying architectures are better at detecting different
types of OOD examples. To further improve de-
tection performance, we propose to use a hetero-
geneous ensemble of different models for compo-
sitional OOD detection in semantic parsing. Con-
cretely, given M different architectures (in our case
M = 2), we first train an ensemble (in our case of
size 3) of each architecture, and during prediction,
analogously to the regular ensemble, we average
the predictive distributions of all the models at ev-
ery time step.
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TM+avgENT No No 99.5 99.9 1.4 86.7 82.3 40.8 79.8 91.2 61.5 88.1 91.4 43.5
TM+sumNLL No No 99.5 99.9 1.4 82.5 78.7 58.8 88.4 94.8 32.7 91.5 93.6 29.0
GRU+avgENT No No 89.9 98.2 38.9 84.5 84.6 51.5 93.6 96.9 20.0 91.0 92.8 25.9
GRU+sumNLL No No 85.9 97.0 40.3 81.6 81.3 59.8 97.7 98.9 6.6 91.2 92.4 23.0

TM+avgENT 5 No 99.5 99.9 1.2 92.4 88.8 22.3 78.5 89.2 62.1 92.8 94.0 19.0
TM+sumNLL 5 No 99.5 99.9 0.6 91.1 87.2 26.5 85.3 93.6 43.1 94.4 95.6 16.8
GRU+avgENT 5 No 90.1 98.2 34.3 87.2 86.5 47.7 88.8 93.8 29.0 93.5 94.5 17.7
GRU+sumNLL 5 No 85.6 96.6 39.5 84.8 83.1 55.5 93.0 96.4 18.3 92.8 93.9 17.7

TM+avgENT No 5 99.9 100 0.2 98.5 97.2 4.2 93.0 96.8 22.8 96.8 97.7 7.2
TM+sumNLL No 5 100 100 0.0 98.5 97.7 4.6 96.0 98.4 14.9 98.3 98.6 5.3
GRU+avgENT No 5 91.4 98.4 29.7 97.4 96.6 7.0 94.6 96.8 14.0 97.7 97.9 7.6
GRU+sumNLL No 5 86.6 97.1 34.9 96.5 95.7 12.8 97.0 98.5 7.9 95.2 93.4 12.4

HE+avgENT 5 1+1 99.2 99.9 2.0 95.2 91.5 11.8 89.3 94.6 29.5 98.6 98.9 2.9
HE+sumNLL 5 1+1 98.7 99.8 2.8 94.1 89.4 13.5 92.7 96.5 21.8 98.7 98.9 2.6
HE+avgENT No 3+3 100 100 0.1 97.1 96.2 6.2 97.3 98.6 5.7 99.5 99.6 0.8
HE+sumNLL No 3+3 99.9 100 0.1 96.0 94.7 10.4 98.3 99.2 4.4 99.5 99.6 0.4

Table 1: OOD Detection performance on SCAN’s splits for the transformer (TM), the GRU-based sequence-to-
sequence model with attention (GRU), and heteogenous ensembles (HE). The results for MCD correspond to the
average over the three MCD splits. If “MC Drop” is “No”, MC dropout is not used during prediction, otherwise
the value of “MC Drop” specifies the number of samples (K in Section 3.1). If “Ensemble” is “No”, homogeneous
ensemble is not used, otherwise, its value specifies the number of models in the ensemble. 3+3 specifies that we
use ensembles of 3 transformer models and 3 GRU models in the heterogenous ensemble. Best result is shown in
bold, close to best are underlined.

We also combine heterogeneous ensembles and
MC dropout, the approach for which is described
in Appendix C.

4 Experiments1

Datasets: We experiment with the SCAN (Lake
and Baroni, 2018) and CFQ (Keysers et al., 2019)
datasets mentioned in Section 2. Table 4 in Ap-
pendix A provides some statistics on the number
of examples in each split.
Models: We consider both a trans-
former based (Vaswani et al., 2017) and a
GRU+attention (Cho et al., 2014) based sequence-
to-sequence model in our experiments. Both are
randomly initialized. For transformers, we use six
layers with six heads, learned position embeddigns,
dimension 384 and dropout rate 0.25. For the
GRU-based model, we use two-layers, dimension
384 hidden layers and dropout probability 0.12.
The models are trained using Adam (Kingma and
Ba, 2015), with an initial learning rate of 5 ∗ 10−4.
For more details, see Appendix B. We ran all

1Code is available at https://github.com/
lukovnikov/parseq/tree/emnlpcr/

20.25 for homogeneous ensemble.

experiments with three3 different seeds and report
the average.
Evaluation: To evaluate the ability of the tech-
niques presented in Section 3 to detect OOD
examples, the following metrics are computed:
(1) AUROC↑4, (2) AUPRC↑5, and (3) FPR90↓6.
These metrics are commonly used to measure the
performance in OOD detection as well as for binary
classifiers in general.
Data splits: The experiments are conducted on a
slightly different data split compared to previous
work and thus the obtained accuracies might not
be directly comparable. To evaluate OOD detec-
tion performance, the test set must contain both
in-distribution (ID) and out-of-distribution (OOD)
examples. The ID test examples must be similar to
the training data but must not have been seen dur-
ing training. Due to the lack of a predefined ID test
set (that does not overlap with the validation set),
we randomly split off 10% of the training examples

3We used only one or two seeds for each of the three MCD
splits of CFQ experiments because of the long training times.

4Area under the receiver operating characteristic.
5Area under the precision-recall curve.
6FPR90 is the false positive rate at 90% true positive rate.

https://github.com/lukovnikov/parseq/tree/emnlpcr/
https://github.com/lukovnikov/parseq/tree/emnlpcr/
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Method
SCAN

CFQ
JUMP T._LEFT LEN. MCD

TM 0.4 90.0 0.0 1.7 17.0
GRU 0.2 62.8 12.1 20.9 9.4

Table 2: Logical form accuracy of the considered mod-
els on the OOD test sets.

as the ID test set and train only on the remaining
90%. The reported AUROC, AUPRC, and FPR90
metrics are then computed by taking the original
test set (which is assumed to be OOD) as examples
of the positive class and the ID test examples as the
negative class. Note that OOD data are not used in
any way during training.
Prediction accuracy: The accuracy of the mod-
els is evaluated using a tree-based logical form
accuracy. See Appendix B for details. The results
reported in Table 2 verify that the query accuracy is
similar to previously reported numbers. They show
that the standard sequence-to-sequence models fail
on all compositional generalization scenarios ex-
cept on the TURN_LEFT split from SCAN. In con-
trast, the ID test accuracy was near 100% for both
datasets.

5 Results

The OOD detection performance for the different
splits of the SCAN dataset are reported in Table 1,
and for the CFQ dataset in Table 3. SCAN’s ran-
dom split obtains 50% AUROC, which is expected
since it does not contain OOD data.7

The effect of MC-dropout: The method described
in Section 3.1 leads to improvements across differ-
ent settings and architectures, with the exception
of SCAN’s length-based split.
The effect of architecture: Different architectures
appear to produce markedly different results for
different types of splits on SCAN. The transformer
performs better than the GRU-based model on the
primitive generalization splits (SCAN’s JUMP and
TURN_LEFT splits), slightly underperforms on the
MCD splits of both SCAN and CFQ and is worse
on the length-based SCAN split.
How difficult are the different splits? Some of
the splits are more challenging to detect than oth-
ers. The JUMP split appears the easiest to detect
(see Table 1). The TURN_LEFT split is more chal-

7Note that 50% AUROC corresponds to a random classi-
fier. We leave these results out of the tables because of space
constraints.

lenging. The high query accuracy on this test set in
Table 2 might indicate that it is closer to the training
distribution than the others. Nevertheless, several
methods are able to achieve high detection per-
formance for TURN_LEFT. The transformer fails
to produce any correct output on the length-based
split of SCAN and is also bad at detecting when it
encounters such examples.
The effect of homogeneous ensemble: The reg-
ular (homogeneous) deep ensemble (Lakshmi-
narayanan et al., 2017) leads to significant improve-
ments of the OOD detection ability across all tested
architectures and datasets. However, using an en-
semble is not always sufficient to close the per-
formance gap to the best performing architecture
on a certain split (e.g. GRU on the length-based
split). Note that a disadvantage of using ensembles
is the increased computational requirements, which
can be especially prohibitive for large transformer-
based models.
The effect of heterogeneous ensemble: Using the
heterogeneous ensemble of a transformer and a
GRU-based sequence-to-sequence model to detect
OOD examples yields the best overall results. The
heterogeneous ensemble leads to an overall im-
provement both in combination with MC dropout
and with regular ensemble. Most notable are the
gains on SCAN’s MCD splits, reaching an FPR90
of less than 5% with MC Dropout and below 1%
with regular ensemble. It also appears to improve
results on the TURN_LEFT split and beats the de-
tection performance of the ensembled GRU-based
model on the length-based SCAN split.

6 Analysis and Discussion

In the results obtained in Table 1, two things stand
out: (1) the gap in OOD detection performance
between the transformer and the GRU-based model
on the length-based split and (2) the extremely high
OOD detection performance of the transformer on
the JUMP split. In this section, we perform a further
analysis to try to better understand these findings.
Length-based split: To analyse what may have
caused the poor performance of the transformer on
the length-based split, we investigate the lengths of
the generated outputs (see Figure 1). We found that
the transformer with absolute position encodings
(PE) that produced the results in Table 1 and 3 is
more biased towards generating shorter sequences
than a transformer with relative PE or the GRU.
However, the transformer with relative PE, which
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(c) GRU-based model.

Figure 1: Histograms of lengths for outputs generated by two different transformer models for SCAN’s length-
based split. Blue is on ID inputs, red is on OOD inputs. Note that here we also count the tokens added at the
beginning and end of the sequences.
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TM+avgENT No No 92.9 94.8 18.7
TM+sumNLL No No 91.5 93.5 21.3
GRU+avgENT No No 93.3 95.1 16.4
GRU+sumNLL No No 91.9 93.7 19.6

TM+avgENT 5 No 95.0 96.5 11.9
TM+sumNLL 5 No 93.7 95.2 15.6
GRU+avgENT 5 No 94.5 96.0 12.7
GRU+sumNLL 5 No 93.1 94.7 16.3

TM+avgENT No 5 95.9 97.2 8.0
TM+sumNLL No 5 95.0 96.3 10.5
GRU+avgENT No 5 96.3 97.5 6.1
GRU+sumNLL No 5 95.6 96.9 8.1

HE+avgENT 5 1+1 95.0 96.4 11.4
HE+sumNLL 5 1+1 93.9 95.3 13.7
HE+avgENT No 3+3 96.7 97.8 4.8
HE+sumNLL No 3+3 95.9 97.2 6.9

Table 3: OOD Detection performance on CFQ’s MCD
splits, averaged over the three provided MCD splits.
The table is structured similarly to Table 1.

reaches 86.0 AUROC and 41.1 FPR90, still per-
forms poorly compared to the GRU-based model
(AUROC: 93.6, FPR90: 20.0).

SumNLL sums over the entire sequence and sim-
ply producing longer sequences, even with similar
per-timestep entropies to ID data, would lead to
better distinguishable examples. However, for Av-
gENT, which is averaged over time steps and there-
fore not influenced by the length, the GRU-based
model still performs better than the transformer.

Thus, we believe that while the length of the
generated sequences can be an important signal
for detection, and may give a slight benefit to the
GRU-based model, it is not the only reason of the

high performance of the GRU-based model.
Transformer on JUMP split: To ensure that the
high performance of the transformer on JUMP is not
just due to the exploitation of trivial input features
we experimented with additional JUMP examples
that put the word “jump” in all other positions to
avoid correlation with the position vectors. This
indeed resulted in slightly worse OOD detection
ability. However, with an FPR90 of 4.6, the trans-
former was still better than the GRU-based model.

7 Conclusion

In this work, we investigate how easy it is for neural
semantic parsers to detect out-of-distribution exam-
ples in the context of compositional generalization.
While some recent works (Fomicheva et al., 2020;
Malinin and Gales, 2021) investigate similar meth-
ods for structured prediction (for NMT and auto-
mated speech recognition), to the best of our knowl-
edge, our work is the first to investigate composi-
tional OOD detection for NSP. Our analysis shows
that relatively simple uncertainty based methods
perform well for RNN as well as transformer-based
models in most settings. Ensemble provide the best
results, while MC dropout leads to improvements
at no extra training cost. OOD detection can fur-
ther be improved by using an ensemble of RNN
and transformer-based models.
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A Dataset statistics

See Table 4 for statistics of the used datasets and
our splits. Note that the datasets come with three
predefined MCD-based splits, which are referred
to by MCD-{X} for X ∈ {1, 2, 3} in the table.

Table 4: Number of examples per dataset and split.

Dataset Split #Train # Dev
#Test

ID OOD

SCAN JUMP 12.0k 1.5k 1.3k 7.7k
TURN_LEFT 18.0k 2.2k 2.0k 1.2k

LENGTH 14.0k 1.7k 1.5k 3.9k
MCD-{X} 7.5k 1.0k 0.8k 1.1k

CFQ MCD-{X} 86.0k 12.0k 9.6k 12.0k

B Experimental details

Early stopping: We initially applied early stop-
ping based on the original validation set for all
splits. While for SCAN’s original splits (JUMP,
LENGTH and TURN_LEFT) these validation sets
contain ID examples, SCAN’s and CFQ’s MCD
splits have a validation set consisting out of OOD
examples. In early experiments we found that early
stopping based on OOD examples results in poorer
OOD performance with high variance because the
resulting model is often retained from very early
training steps. For this reason, we do not use early
stopping for the two MCD splits and instead train
for a fixed number of epochs (25 for transformer on
SCAN, 40 for GRU on SCAN, 20 for transformer
on CFQ and 40 for GRU on CFQ.

Preprocessing: The CFQ dataset is prepro-
cessed using a simple reversible transformation
of SPARQL queries into LISP-style s-expressions.
This includes converting the set of triple patterns
of the form “?x :rel ?y. ?a :r ?b” to s-expressions
of the form “(AND (COND ?x :rel ?y) (COND ?x
: rel ?y))”, where the order of the arguments of
“AND” does not matter during evaluation.

Accuracy: The logical form accuracy considers
an example correct if the logical form is equivalent
to the target logical form, and which is invariant
to the effects of linearization order. In the case
of CFQ, which uses SPARQL, this means that the
order of conditions does not affect the accuracy of
the obtained results and is therefore ignored. In the
case of SCAN, whose outputs are action sequences,
this simply becomes the sequence-level accuracy.

C MC dropout with heterogeneous
ensemble

When we apply MC dropout to the heterogeneous
ensemble, we train only one model for each of
the two different architectures. These models are
used to independently predict a sequence ŷm with
m ∈ {1, 2} given x with dropout disabled. Next,
we feed x and ŷm through both models K times
with dropout enabled, leading to two averaged out-
puts ȳm over K ∗ 2 distributions. Finally, we
perform max-pooling over the NLL-based met-
rics computed for each ȳm such that the most pes-
simistic score is retained.


