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Abstract

In this study, we propose a self-supervised
learning method that distils representations of
word meaning in context from a pre-trained
masked language model. Word representa-
tions are the basis for context-aware lexical
semantics and unsupervised semantic textual
similarity (STS) estimation. A previous study
transforms contextualised representations em-
ploying static word embeddings to weaken ex-
cessive effects of contextual information. In
contrast, the proposed method derives repre-
sentations of word meaning in context while
preserving useful context information intact.
Specifically, our method learns to combine
outputs of different hidden layers using self-
attention through self-supervised learning with
an automatically generated training corpus.
To evaluate the performance of the proposed
approach, we performed comparative experi-
ments using a range of benchmark tasks. The
results confirm that our representations ex-
hibited a competitive performance compared
to that of the state-of-the-art method trans-
forming contextualised representations for the
context-aware lexical semantic tasks and out-
performed it for STS estimation.

1 Introduction

Word representations are the basis for various nat-
ural language processing tasks. Particularly, they
are crucial as a component in context-aware lexical
semantics and in the estimation of unsupervised se-
mantic textual similarity (STS) (Arora et al., 2017;
Ethayarajh, 2018; Yokoi et al., 2020). Word rep-
resentations are desired to represent word mean-
ing in context to improve these downstream tasks.
Large-scale masked language models pre-trained
on massive corpora, e.g., bi-directional encoder
representations from transformers (BERT) (Devlin
et al., 2019), embed both the context and mean-
ing of a word; thus, word-level representations
generated by such masked language models are

called contextualised word representations. Previ-
ous studies (Ethayarajh, 2019; Vulić et al., 2020)
have revealed that lexical information and context-
specific information are captured in different layers
of masked language models. They argued that a
sophisticated mechanism is required to derive rep-
resentations of word meaning in context from them.
Although contextualised word representations have
shown considerable promise, how best to compose
the outputs of different layers of masked language
models to effectively represent word meaning in
context remains an open question.

Liu et al. (2020) improved contextualised word
representations by transforming their space towards
static word embeddings, e.g., fastText (Bojanowski
et al., 2017). Although this transformation is com-
putationally efficient, the process is monotonic,
weakening the effect of context in representations.
As an orthogonal approach, pre-trained masked
language models should fit themselves to generate
representations of word meaning in context with
supervised fine-tuning. However, annotating word
meanings in context is non-trivial, and no such
resource is abundantly available.

To address these challenges, we propose a
method that distils representations of word mean-
ing in context from masked language models via
self-supervised learning.1 Specifically, our model
combines the outputs of different hidden layers
using a self-attention mechanism (Vaswani et al.,
2017). The distillation model is self-supervised
using an autoencoder to reconstruct original repre-
sentations with an automatically generated training
corpus. In contrast to the transformation-based ap-
proach, our representations preserve useful context
information intact.

Experimental results on a range of benchmark
tasks show that our representations exhibited a per-
formance competitive with that of the state-of-the-

1Code and training corpus are available at https://

github.com/yukiar/distil_wic

https://github.com/yukiar/distil_wic
https://github.com/yukiar/distil_wic
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art method that transforms contextualised represen-
tations for context-aware lexical semantics. Fur-
thermore, the results confirm that our representa-
tions are more effective for composing sentence
representations, which contributes to unsupervised
STS estimation.

2 Related Work

2.1 Transformation of Word Representations

Previous studies have proposed transformations of
contextualised word representations for various pur-
poses. Pooling aggregates multiple representations
to perform one of the simplest transformations.
Akbik et al. (2019) complement underspecified
contexts for named entity recognition, while Bom-
masani et al. (2020) investigate information cap-
tured in layers of pre-trained models. Wang et al.
(2019) transform contextualised word representa-
tions by inserting them into Skip-gram (Mikolov
et al., 2013) to generate static word representations
for context-free lexical semantic tasks such as word
similarity and analogy prediction.

Transformation has also been used to adjust ex-
cessive effects of context that dominate representa-
tions. Shi et al. (2019) add a transformation matrix
on top of the embedding layer of ELMo (Peters
et al., 2018). Their approach derives the matrix
such that final representations of the same words in
paraphrased sentences become similar, whereas
those of non-paraphrases become distant. The
study most relevant to the present work was con-
ducted by Liu et al. (2020). They transform the
space of word representations towards the rotated
space of static word embeddings using a cross-
lingual alignment technique (Doval et al., 2018) for
context-aware lexical semantic tasks. In principle,
these previous studies aim to make contextualised
representations less sensitive to contexts through
transformation and prevent them from dominating
the representations. We adopt an orthogonal ap-
proach to derive word in context representations by
combining different layers of a pre-trained model
while preserving useful context information intact.

2.2 Representation Disentanglement

Disentanglement techniques are relevant to our ap-
proach, which generate specialised representations
dedicated to a specific aspect. Previous studies
typically employed autoencoders, with the encoder
learning to disentangle representations and the de-
coder learning to reconstruct original representa-
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Figure 1: Distillation of word meaning in context via
autoencoder

tions. In style-transfer research, Shen et al. (2017)
disentangled content and sentiment, whereas John
et al. (2019) and Cheng et al. (2020) disentangled
content and style. Apart from style-transfer, Chen
et al. (2019) disentangled semantics and syntax
to estimate semantic and syntactic similarities be-
tween sentences, and Wieting et al. (2020) disen-
tangled language-dependent styles and sentence
meanings for STS estimations. The removal of
specific attributes from representations is also rele-
vant. Previous studies have proposed methods for
removing predetermined attributes instead of dis-
entangling for multi-linguality (Chen et al., 2018;
Lample et al., 2018) and debiasing (Zemel et al.,
2013; Barrett et al., 2019).

These previous studies assume that disentangled
attributes are distinctive, e.g., language-dependent
styles and meanings are supposed to be indepen-
dent of one another. Similarly, studies on attribute
removal assume that the removed attributes are in-
dependent of the information remaining in the out-
put representations. In contrast, the distillation of
word meaning in context requires a subtle balance
to the extent that context information is present in
the meaning representations. In this study, we de-
sign a self-supervision framework to achieve this
challenging goal.

3 Distilling Word Meaning in Context

Inspired by the representation disentanglement ap-
proach (Section 2.2), we model the distillation of
representations of word meaning in context using
an autoencoder framework, as shown in Figure 1.
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Vulić et al. (2020) probed pretrained language mod-
els for lexical semantic tasks, revealing that lexi-
cal information is scattered across lower layers,
whereas context-specific information is embedded
in higher layers. Hence, we aim to distil the outputs
of different hidden layers using a transformer layer.
In this study, although we adopted BERT as the
masked language model, the proposed method is
directly applicable to other pre-trained models.

Figure 1 shows the model architecture. First,
we obtain the outputs of all hidden layers of a
masked language model, MLM(·), with frozen pa-
rameters H = MLM(S) ∈ R|S|×(`+1)×d, where
S is an input sentence of length |S| containing
the target word, wt ∈ S, ` is the number of hid-
den layers in the masked language model (0 cor-
responding to its embedding layer), and d is the
hidden dimension of the masked language model.
We then extract the outputs of the hidden layers
corresponding to the target word, wt, from H , not-
ing that Hwt = [h0,h1, · · · ,h`]

ᵀ ∈ R(`+1)×d.
When wt is segmented into a set of m sub-words
ω1, ω2, · · · , ωm, by a tokeniser of the masked lan-
guage model, we compute the layer-wise averages
of the hidden outputs of all sub-words (Bommasani
et al., 2020). That is, hi ∈Hwt becomes

hi = Pool(hω1
i , · · · ,hωm

i ),

where hωj

i is the ith hidden output of a sub-word ωj

and the Pool(·) function conducts mean-pooling.
We then input these hidden outputs into a mean-

ing distillation model to derive a representation for
word meaning in context. We also input the hidden
outputs to another distillation model that derives
information other than word meaning in context.
For convenience, hereinafter we refer to this infor-
mation as the context and the distillation model as
the context distillation model.2 Each distillation
model consists of a transformer layer followed by a
mean-pooling function to obtain meaning and con-
text representations, expressed as hm ∈ Rd and
hc ∈ Rd, respectively.

ĥk, ĥk+1, · · · , ĥ` = TransF(hk,hk+1, · · · ,h`),

hm = Pool(ĥk, ĥk+1, · · · , ĥ`),

where k ∈ [0, `] determines the bottom layer to
consider and TransF(·) represents a transformer

2The context here should be a mixture of different informa-
tion that characterises the target word and the sentence, such
as the meaning of the entire sentence, syntax, etc.

layer. We distil the context representation in the
same manner.

Finally, we reconstruct the original representa-
tion from hm and hc. Although there are different
approaches for reconstructions, such as using a
neural-network-based decoder, a sophisticated de-
coder may learn to fit itself to mimic the masked
language model outputs. Hence, we adopt mean-
pooling as the simplest reconstruction mechanism
for reconstruction.

ŷ = Pool(hm,hc).

The reconstruction target y ∈ Rd is the mean-
pooled hidden layers of the original masked lan-
guage model.

y = Pool(hk,hk+1, · · · ,h`). (1)

We minimise the reconstruction loss as

Lr =
1

d
‖y − ŷ‖22. (2)

For inference, we use hm as a representation of
word meaning in context.

Averaging the outputs of the layers in the top-
half of masked language models consistently per-
forms well for context-aware lexical semantic
tasks (Vulić et al., 2020; Liu et al., 2020). Thus,
we set k = `/2 + 1 to use the top-half layers for
distillation.3

John et al. (2019) reported that a variational
autoencoder (Kingma and Welling, 2014) outper-
formed the simpler autoencoder on representation
disentanglement. However, this was not the case
in this study, wherein the autoencoder consistently
outperformed the variational version. We intend to
further investigate auto-encoding architectures in
future work.

4 Self-supervised Learning

The meaning and context distillation models de-
scribed in Section 3 require constraints to ensure
that the desired attributes are distilled; otherwise,
these distillation models obtain a degenerate solu-
tion that simply copies the original representations.
We design a self-supervision framework ensuring
that word meaning in context is distilled using an
automatically generated training corpus.

4.1 Cross Reconstruction
Suppose we have two sentences, Sp and Sn. Sp is a
sentence that contains a word with the same mean-

3We also tried k = 1 to use all hidden layers, which
showed slightly inferior performance to the top-half setting.
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Original:
They promised him a nice amount of coins.

Positive:
They assured him a good amount of coins.

Negative:
They left him a nice amount of coins.
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Figure 2: Cross reconstruction with automatically generated positive and negative samples.

original They promised him a nice amount of
coins, if the work would be successful.

positive They assured him a good amount of
coins if the work was successful.

negative They left him a nice amount of coins, if
the work would be successful.

Table 1: Training examples (Italic words represent wt,
wp, and wn, respectively.)

ing with wt in S, while Sn contains a word with a
different meaning with wt while the context is the
same with S. More concretely, Sp is a sentence con-
taining wp, which is equivalent to wt or a lexical
paraphrase of wt, that allows wp to have the same
meaning with wt in S. In contrast, Sn replaces
wt with a non-paraphrasal word that is suitable for
the context, wn, i.e., Sn = {wn, wi|wi ∈ S \ wt}.
We refer to Sp and Sn as the positive and negative
samples, respectively. Table 1 shows examples of
such positive and negative samples.

From the hidden outputs of wp and wn, we distil
the meaning and context representations, pm and
pc, and those of nm and nc, respectively. The
meaning representation of wt, hm, should satisfy
the following two conditions.

• hm can be combined with pc to reconstruct
the original representation derived for wp, and

• hm can be combined with nc to reconstruct
the original representation, y.

Similarly, the context representation, hc, should
satisfy the following two conditions.

• hc can be combined with pm to reconstruct
the original representation, y, and

• hc can be combined with nm to reconstruct
the original representation derived for wn.

We use these properties of meaning and context
representations as constraints.

Specifically, we train the model to achieve cross
reconstruction of meaning and context representa-
tions, as depicted in Figure 2.

p̂ = Pool(hm,pc), ŷp = Pool(pm,hc),

n̂ = Pool(nm,hc), ŷn = Pool(hm,nc).

Our self-supervised learning minimises the follow-
ing cross reconstruction loss, as given below.

Lc =
1

d
{‖p− p̂‖22 + ‖y − ŷp‖22 (3)

+ ‖n− n̂‖22 + ‖y − ŷn‖22},

where p and n are computed by the same man-
ner with Equation (1). The overall loss function
is the summation of the reconstruction and cross-
reconstruction losses in Equations (2) and (3)

L = Lr + Lc,

where Lr is expanded to sum the reconstruction
losses of the positive and negative samples.

4.2 Training Corpus Creation
In this section, we describe the generation of a train-
ing corpus for self-supervision using techniques of
round-trip translation and masked token prediction.

Round-trip Translation The positive samples
in this study require that wp has the same mean-
ing with wt in another context of Sp. We assume
that common words in a paraphrased sentence pair
meet this requirement (Shi et al., 2019). To ex-
pand the applicability of our method to various lan-
guages, we automatically generate paraphrases us-
ing round-trip translation, which translates a source
sentence into a target language and then back into
the source language. Kajiwara et al. (2020) have
shown that pairs of source and back-translated sen-
tences are useful paraphrases for style transfer re-
search. Hence, we obtain Sp by round-trip transla-
tion of S.

We need to align wt and wp in S and Sp. The
two-round translation makes tracing which word
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Algorithm 4.1 Simple Word Alignment

Input: Original sentence S containing a target
word wt whose index is t, positive sentence
Sp, static word embedding model M , similar-
ity threshold λ

Output: Lexical paraphrase wp of wt

1: M ← ∅, A← ∅, wp ← ∅
2: for all wi ∈ S and wj ∈ Sp do
3: M [i][j]← CosineSim(M(wi),M(wj)) .

Compute cosine similarity of embeddings
4: for all wi ∈ S \ wt do . Identify alignments

of words other than wt

5: if j = argmaxM [i] and i = argmaxM [j]
then

6: A← A ∪ {j}
7: for all j ∈ argsort(M [t]) do . Sort indices in

descending order of M [t]
8: if j 6∈ A and M [t][j] ≥ λ then
9: wp ← wj

10: break;
11: return wp

in Sp corresponds to wt non-trivial. Following
the trends on monolingual alignment (Yoshinaka
et al., 2020) that use static word embeddings, we
designed an alignment method based on a simple
heuristic using cosine similarities between the em-
beddings of words in S and Sp, as depicted in Al-
gorithm 4.1. Specifically, we first identify an align-
ment between wordwi ∈ S\wt andwj ∈ Sp if and
only if they have highest cosine similarities to each
other (line 5). We then determine wp as a word that
has the highest cosine similarity to wt satisfying
that it is higher or equal to a pre-determined thresh-
old λ and has not been aligned to others (line 9).

Masked Token Prediction In contrast, negative
samples replace wt with an arbitrary word wn that
fits in the context of S. We generate candidates
for replacement words using masked token predic-
tion, which is the primary task used to train the
masked language model. Specifically, we input
an original sentence whose target is masked by
the [MASK] label to the masked language model,
and we obtain predictions T = {t1, · · · , t|V |} with
probabilities, Q = {q1, · · · , q|V |}, where |V | is
the size of the vocabulary of the masked language
model. To avoid selecting a possible paraphrase of
wt as wn, we again use the static word-embedding
model following Qiang et al. (2020). We sort T in

a descending order of Q and identify wn the word
embedding of which has a lower cosine similarity
than λ and a prediction probability qn higher than
a pre-determined threshold δ.

We apply the same technique to enhance wp

when it is identical or similar to wt based on a
character-level edit distance. Where possible, we
replace wp with w′p ∈ T the word embedding
of which has a higher or equal cosine similarity
than λ and a prediction probability higher than δ in
masked token prediction.

We also investigated a word substitution ap-
proach for self-training corpus creation (Garí Soler
and Apidianaki, 2020), i.e., replacing only wt to
wp using masked token prediction. This method is
computationally faster than round-trip translation,
but showed inferior performance compared to the
proposed approach. We presume this is because
round-trip translation provides more diverse lexical
paraphrases compared to those already learned by
the masked language model, and paraphrasing the
context also enhances the robustness of the mean-
ing and context distillers.

5 Experimental Setup

We empirically evaluated whether our method dis-
tils representations of word meaning in context
from a masked language model using context-
aware lexical semantic tasks and STS estimation
tasks.4 All the experiments were conducted on an
NVIDIA Tesla V100 GPU.

We compared our method to Liu et al. (2020) as
the state-of-the-art in the family of methods that
transform contextualised representations. Recall
that Liu et al. (2020) adopt an approach orthogonal
to that proposed herein, which transforms word
representations from the masked language model
using static word embeddings. Specifically, we
used fastText as the static embeddings that per-
formed most robustly across models and tasks. As
a baseline, we also show the performance of BERT.
Based on the previous studies (Vulić et al., 2020;
Liu et al., 2020), we used the average of the outputs
of the top-half layers, i.e., Equation (1), which con-
sistently performed well in lexical semantic tasks.

5.1 Context-aware Lexical Semantic Tasks

We followed experimental settings used by Liu et al.
(2020) for a fair and systematic performance com-

4We list URLs of all dependent language resources, toolk-
its, and libraries in the appendix.
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LS # of pairs STS # of pairs

USim 1.1k STS 2012 3.1k
WiC 1.4k STS 2013 1.5k
CoSimlex-I

680
STS 2014 3.7k

CoSimlex-II STS 2015 8.5k
SCWS 2k STS 2016 9.2k

Table 2: Statistics of evaluation corpora

parison. They categorised context-aware lexical
semantic tasks into Within-word and Inter-word
tasks. The former evaluates the diversity of word
representations for different meanings of the same
word associated with different contexts. In contrast,
the latter evaluates the similarity of word represen-
tations for different words when they have the same
meaning. The left-side columns of Table 2 show
the number of word pairs in the evaluation corpora.

Within-word Tasks The within-word evaluation
was divided into three tasks. The first is based
on the Usage Similarity (Usim) corpus (Erk et al.,
2013), which provides graded similarity between
the meanings of the same word in a pair of dif-
ferent contexts. The second task uses the Word
in Context (WiC) corpus (Pilehvar and Camacho-
Collados, 2019), which provides binary judgements
as to whether the meaning of a given word varies in
different contexts. Following the standard setting
recommended in the original work, we tuned the
threshold for cosine similarity between word repre-
sentations to make binary judgments. Specifically,
we searched the threshold in the range of [0, 1.0]
with 0.01 intervals to maximise the accuracy of
the development set. The performance of the test
set was measured on the CodaLab server.5 The
third task is the subtask-1 of CoSimlex (Armen-
dariz et al., 2020) (denoted as CoSimlex-I). The
CoSimlex provides a pair of contexts consisting
of a few sentences for each word pair extracted
from SimLex-999 (Hill et al., 2015). It annotates
the graded similarity in each context. CoSimlex-I
requires the estimation of the change in similarities
between the same word pair in different contexts.
Hence, it evaluates whether representations can
change for different word meanings according to
context.

5https://competitions.codalab.org/

competitions/20010

Inter-word Tasks The inter-word evaluation
consisted of two tasks. The first was the subtask-
2 of CoSimlex (denoted as CoSimlex-II), which
required estimating the similarity between differ-
ent word pairs in the same context. The second
task used the Stanford Contextual Word Similarity
(SCWS) corpus (Huang et al., 2012), which pro-
vides graded similarity between word pairs in a
pair of different contexts. The contexts of CoSim-
lex and SCWS consist of several sentences. We
input all the sentences as a single context.

Evaluation Metrics We estimated the similarity
between words using cosine similarity between
their representations. We used evaluation metrics
determined by each corpus. Namely, we evaluated
WiC using accuracy, CoSimlex-I using Pearson’s
r, and others using Spearman’s ρ.

5.2 STS Tasks

We also evaluated the proposed method on STS
tasks. Cosine similarity is commonly used to es-
timate the similarity between two text represen-
tations. In this experiment, we also used cosine
similarity because such a primitive measure is sen-
sible to characteristics of different representations.
We generated a sentence representation by simply
averaging representations of sub-words in a sen-
tence excluding representations for special tokens
preserved in BERT, i.e., [CLS] and [SEP]. We
then computed cosine similarities between them.

We evaluated the 2012-to-2016 SemEval STS
shared tasks (Agirre et al., 2012, 2013, 2014, 2015,
2016), where the goal is to predict human scores
that indicate the degree of semantic similarity be-
tween two sentences. The Pearson’s r between
model predictions and human scores was used as
an evaluation metric. Each STS corpus is divided
by data sources. Hence, the corpus level score is
the average of the Pearson’s r for each sub-corpus.

We downloaded and pre-processed STS 2012 to
2016 corpora using the SentEval toolkit (Conneau
and Kiela, 2018). The right-side columns of Table 2
show the number of sentence pairs in these corpora.

5.3 Training Corpus Preparation

To prepare a training corpus for self-supervised
learning as described in Section 4.2, we used En-
glish Wikipedia dumps distributed for the WMT20
competition, the texts of which were extracted us-
ing WikiExtractor. As a pre-processing step, we
first identified the language of each text using the

https://competitions.codalab.org/competitions/20010
https://competitions.codalab.org/competitions/20010
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langdetect toolkit and discarded all non-English
texts. We then conducted sentence segmentation
and tokenization using Stanza (Qi et al., 2020) and
extracted sentences of 15 to 50 words.

As candidate target words, we extracted the top-
50k frequent words6 following Liu et al. (2020).
We then sampled 1M sentences containing these
words from the pre-processed Wikipedia corpus.
Using these 1M sentences, we generated positive
and negative samples via round-trip translation and
masked token prediction. For round-trip transla-
tion, we trained translators using exactly the same
settings as Kajiwara et al. (2020). For convenience,
we used fastText as a static word embedding model
in Algorithm 4.1. However, other word embed-
dings or paraphrase lexicons, e.g., PPDB (Ganitke-
vitch et al., 2013), can also be used. We set λ as 0.6
based on the distribution of cosine similarities of
fastText embeddings on a large text corpus.7 We set
δ as 0.003 based on observations of masked token
predictions on several samples randomly extracted
from the training corpus, such that we could obtain
more than 10 predictions of reasonable quality.

Round-trip translation does not always produce
an alignable wp, and our simple word alignment
heuristic may fail to identify wp. Hence, the final
number of sentences in our training corpus was
reduced to 929, 265, where 44, 614 unique words
remained as targets. Among them, 242, 643 sen-
tences hadwp whose surfaces were larger than the 3
character-level edit distance, which were expected
as lexical paraphrases. We used these 929k triples
of the original, positive, and negative samples for
self-supervised learning. We randomly sampled
and excluded 10k sentences as a validation set and
used the remainder for training.

5.4 Implementation

We implemented our method using PyTorch and
Lightning. As a masked language model, we used
BERT-Large, cased model for which we used the
Transformers library (Wolf et al., 2020). BERT-
Large has 24 layers of 1, 024 hidden dimensions
with 16 attention heads. Recall that the parameters
of BERT were frozen and never fine-tuned.

The meaning and context distillers of the im-
plementation of the proposed model included a
transformer layer consisting of 1, 024 hidden di-

6We excluded the top 0.1% words because most were
function words.

7This corpus is independent of this study.

mensions with eight attention heads.8 We applied
10% dropouts to the transformer layer. The batch
size was 128. We used AdamW (Loshchilov and
Hutter, 2019) as an optimizer for which the learning
rate was tuned as 4.0e− 5 following Smith (2017).
For stable training, we applied a warm-up, where
the initial learning rate was linearly increased for
the first 1k steps to reach the predetermined value.
The training was stopped early with a patience of
15 and a minimum delta of 1.0e− 4 based on the
validation loss measured for every 0.1 epoch.

For the method of Liu et al. (2020), we repli-
cated their model using the implementation and
training corpus published by the authors. Note that
their training corpus was also drawn from English
Wikipedia. Then, the performance was measured
on the same evaluation corpora and computational
environments with our method.

6 Results and Discussions

Below, we discuss experimental results and the
results of in-depth analyses conducted to identify
characteristics of meaning representations gener-
ated by our method.

6.1 Experimental Results

Table 3 shows the results on context-aware lexical
semantic tasks. The superior performance of our
meaning representation to context representations
confirm that distillation performed as designed.
Our meaning representations achieved performance
competitive with the transformation method by Liu
et al. (2020).9 While the transformation method
was stronger in Within-Word tasks, our method out-
performed it for Inter-Word tasks. This is because
the transformation method makes representations
of the same words in different contexts closer to
the same static embedding but do not explicitly
model relations across words. In contrast, our neg-
ative samples provide supervision, which makes
representations of words with different meanings
distinctive. While the performances of these two
methods are competitive, these different properties

8We tried 16 attention heads as in the BERT-Large model,
but the performance was comparable with that of 8 heads.

9The performance of Liu et al. (2020) on CoSimlex-II and
SCWS differed from their paper. We suspect the difference
was caused by the method used to compose a word-level repre-
sentation when a word is segmented into sub-words. Because
there was no explanation in their paper, we generated the word
representation in the same manner with ours, i.e., by layer-
wise averaging of all sub-words’ hidden outputs (also for the
BERT baseline).
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Within-Word Inter-Word

USim (ρ) WiC (acc.) CoSimlex-I (r) CoSimLex-II (ρ) SCWS (ρ)

BERT-Large 0.5966 66.57 0.7638 0.7332 0.7255
(Liu et al., 2020) 0.6383 67.50 0.7710 0.7258 0.7572

Meaning 0.6305 67.29 0.7576 0.7358 0.7594
Ours

Context 0.4147 62.21 0.6485 0.5106 0.2914
Meaning 0.2934 57.79 0.3843 0.5022 0.2883

w/o NS
Context 0.5929 66.79 0.7617 0.7296 0.7279

Table 3: Results on context-aware lexical-semantic tasks where “w/o NS” denotes the proposed method without
negative samples. The best scores are shown in bold fonts and scores higher than BERT-Large are underlined (ρ
stands for Spearman’s ρ, ‘acc.’ stands for accuracy (%), and r stands for Pearson’s r.).

STS12 STS13 STS14 STS15 STS16

BERT-large 0.480 0.492 0.538 0.589 0.576
(Liu et al., 2020) 0.576 0.616 0.641 0.692 0.687

Ours
Meaning 0.583 0.628 0.662 0.714 0.684
Context 0.460 0.411 0.466 0.569 0.575

w/o NS
Meaning 0.177 0.181 0.214 0.238 0.217
Context 0.573 0.602 0.635 0.706 0.683

Table 4: Results of STS tasks where “w/o NS” denotes our method without negative samples. The best scores are
represented in bold fonts and scores higher than BERT-Large are underlined.

are reflected in the representations.
This difference is more pronounced in the results

of unsupervised STS tasks shown in Table 4. In un-
supervised STS tasks, our meaning representations
outperformed the transformed representations in
four out of five tasks. The transformation has an ef-
fect of making contextualised representations less
sensitive to contexts to prevent contexts from dom-
inating the representations. This effect is preferred
in tasks of context-aware lexical semantics that
severely require representations of word meaning,
but at the same time, sacrifices context information
valuable for other tasks. In contrast, our method
does not waste the context information useful for
composing sentence representations.

6.2 Analysis

For a deeper understanding of the context informa-
tion preserved in representations by the transfor-
mation method and our method, we conducted an
experiment using the corpus of paraphrase adver-
saries from word scrambling (PAWS) (Zhang et al.,
2019). PAWS is a paraphrase corpus dedicated to
evaluating the sensitivity of recognition models for
syntax in paraphrases. It provides paraphrase and

non-paraphrase pairs that were generated by con-
trolled word swapping and back translation with
manual screening. Because pairs in PAWS have
relatively high word overlap rates, models insensi-
tive to contexts cannot exceed the chance rate for
paraphrase recognition.

We generated representations of sentences in the
PAWS-Wiki Labeled (Final) section in the same
manner as with the STS tasks and computed cosine
similarities between them. We then determined
a threshold to regard a pair as paraphrase using
the development set. Table 5 shows the results.
BERT-Large and the transformation method had
equal to or lower accuracy than the chance rate
of 55.80% (always outputting the majority label
of non-paraphrases). In contrast, our method im-
proved the accuracy even on this challenging task.
This is achieved by our property that distils word
meaning in context without sacrificing useful con-
text information.

6.3 Ablation Study

Table 3 and Table 4 also show results of abla-
tion study, where we left out negative samples for
training our method. This left our method uncon-
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Threshold Accuracy (%)

All False – 55.80
fastText 1.000 53.89
BERT-Large 0.993 55.76
(Liu et al., 2020) 0.989 55.80
Ours 0.990 56.71

Table 5: Paraphrase recognition accuracy on challeng-
ing PAWS-Wiki corpus

strained; the cross reconstruction became symmet-
ric for the meaning and context distillers. Hence,
the model lost its ability to distil word meaning in
context into meaning representations. This effect
was noticeable for context-aware lexical semantic
tasks in Table 3, where meaning representations
were no longer useful while the context represen-
tations show only a comparable performance to
BERT-Large.

Interestingly, these context representations still
outperformed representations of BERT-Large on
the unsupervised STS tasks. We conducted an in-
trinsic evaluation again using the PAWS-Wiki La-
beled (Final) section to investigate characteristics
of the meaning and context representations and re-
veal possible mechanisms behind this gain. Table 6
shows average cosine similarities between mean-
ing and context representations separately for com-
mon and different words in paraphrases and non-
paraphrases. Representations for word in context
are expected to have (a) higher similarity for words
with the same surfaces than for different words,
and (b) higher similarity for words appearing in
paraphrases than for words in non-paraphrases by
reflecting the context. Particularly, appropriate rep-
resentations should have higher similarity for com-
mon words in paraphrases than for those in non-
paraphrases because the former more likely has the
same meaning.

The meaning and context representations trained
with negative samples as well as the context repre-
sentations without negative samples preserve these
characteristics; in other words, they have noticeable
distinction between common and different words
and words in paraphrases and non-paraphrases. In
contrast, the meaning representations generated
without negative samples have high cosine simi-
larities among all words, regardless of word and
paraphrase relations. This result implies that these
meaning representations without negative samples

Common words Different words
N P N P

Ours
Meaning 0.712 0.754 0.354 0.374
Context 0.806 0.835 0.580 0.595

w/o NS
Meaning 0.998 0.998 0.996 0.996
Context 0.705 0.749 0.337 0.357

Table 6: Average cosine similarities between words in
PAWS-Wiki where “w/o NS” denotes our method with-
out negative samples (“P” stands for paraphrases and
“N” stands for non-paraphrases)

performed as a noise filter to remove non-useful
information from the context representations, and
only the corresponding context representations ben-
efited from the self-supervision.

7 Summary and Future Work

We have proposed a method that improves con-
textualised word representations. The proposed
approach distils a representation of word meaning
in context, retaining useful context information en-
coded by a masked language model. Experimental
results confirmed that our method exhibited perfor-
mance competitive with the state-of-the-art method
for transforming contextualised representations to
alleviate excessive effects of contexts on represen-
tations, demonstrated on context-aware lexical se-
mantic tasks. Our method further outperformed it
on STS tasks.

In a future work, we plan to investigate corre-
spondences of the context representations. We had
assumed that these representations preserve the
sentence-level meaning; however, the STS results
confirmed that this assumption was incorrect. An-
other possibility is that context representations may
retain syntactic information. We intend to conduct
in-depth investigations using syntactic tasks. More-
over, we will expand our method to support mul-
tilingual masked language models to contribute to
cross-lingual processing, e.g., cross-lingual word in
context disambiguation (Camacho-Collados et al.,
2017), word alignment (Nagata et al., 2020), and
quality estimation and post-editing for machine
translation (Fomicheva et al., 2020).
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A Dependent Resources
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~ehhuang/SCWS.zip

• SentEval
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SentEval

• PAWS-Wiki Labeled (Final)
https://github.com/

google-research-datasets/paws

Language resources

• English Wikipedia
http://data.statmt.org/wmt20/

translation-task/ps-km/wikipedia.

en.lid_filtered.test_filtered.xz

• BERT-large, cased
https://huggingface.co/

bert-large-cased

• FastText
https://dl.fbaipublicfiles.

com/fasttext/vectors-english/

wiki-news-300d-1M-subword.vec.zip

Libraries

• WikiExtractor
https://github.com/attardi/

wikiextractor

• langdetect
https://pypi.org/project/langdetect/

• Stanza
https://stanfordnlp.github.io/

stanza/

• PyTorch (version 1.7.1)
https://pytorch.org/
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https://doi.org/10.18653/v1/2020.emnlp-main.236
https://www.aclweb.org/anthology/2020.lrec-1.847
https://www.aclweb.org/anthology/2020.lrec-1.847
http://proceedings.mlr.press/v28/zemel13.html
https://doi.org/10.18653/v1/N19-1131
https://doi.org/10.18653/v1/N19-1131
http://www.dianamccarthy.co.uk/downloads/WordMeaningAnno2012/
http://www.dianamccarthy.co.uk/downloads/WordMeaningAnno2012/
https://pilehvar.github.io/wic/
https://zenodo.org/record/4155986
http://www-nlp.stanford.edu/~ehhuang/SCWS.zip
http://www-nlp.stanford.edu/~ehhuang/SCWS.zip
https://github.com/facebookresearch/SentEval
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• Lightning (version 1.1.8)
https://www.pytorchlightning.ai/

• Transformers (version 4.3.2)
https://huggingface.co/transformers/

• Implementation of (Liu et al., 2020)
https://github.com/qianchu/adjust_

cwe

https://www.pytorchlightning.ai/
https://huggingface.co/transformers/
https://github.com/qianchu/adjust_cwe
https://github.com/qianchu/adjust_cwe

