MultiFix: Learning to Repair Multiple Errors
by Optimal Alignment Learning

Hyeon-Tae Seo', Yo-Sub Han'!, Sang-Ki Ko?
'Yonsei University
2Korea Electronics Technology Institute
3Kangwon National University

{dchs504, emmous}@yonsei.ac.kr,

Abstract

We consider the problem of learning to re-
pair erroneous C programs by learning opti-
mal alignments with correct programs. Since
the previous approaches fix a single error in
a line, it is inevitable to iterate the fixing pro-
cess until no errors remain. In this work, we
propose a novel sequence-to-sequence learn-
ing framework for fixing multiple program er-
rors at a time. We introduce the edit-distance-
based data labeling approach for program er-
ror correction. Instead of labeling a program
repair example by pairing an erroneous pro-
gram with a line fix, we label the example
by paring an erroneous program with an op-
timal alignment to the corresponding correct
program produced by the edit-distance compu-
tation. We evaluate our proposed approach on
a publicly available dataset (DeepFix dataset)
that consists of erroneous C programs submit-
ted by novice programming students. On a set
of 6,975 erroneous C programs from the Deep-
Fix dataset, our approach achieves the state-
of-the-art result in terms of full repair rate on
the DeepFix dataset (without extra data such
as compiler error message or additional source
codes for pre-training).

1 Introduction

Recurrent neural networks (RNNs) (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014) are one of the
fundamental concepts in deep learning to process
sequential data such as text, speech and time-series
data. In particular, RNNs already have become
a standard and general-purpose tool for various
natural language tasks and successfully replaced
conventional methods.

The encoder-decoder sequence-to-sequence ar-
chitecture (Bahdanau et al., 2015; Luong et al.,
2015; Sutskever et al., 2014) is becoming the de
facto standard for translating source sequences into
target sequences. While the most popular applica-
tion of the sequence-to-sequence learning is ma-
chine translation, there are many approaches for

sangkiko@kangwon.ac.kr

adopting this method to other fields such as dia-
logue systems, text summarization, program syn-
thesis, grammatical error detection and correction.

Automatic program repair is one of the appli-
cations where the sequence-to-sequence learning
framework has been successfully employed. By
automatically localizing the compilation errors and
suggesting the possible fixes to the programmers,
we can dramatically improve the productivity of
programmers. While there have been many ap-
proaches to the problem of repairing programs us-
ing rule-based algorithms, it is very difficult to
implement a useful rule-based repair program as
there are too many cases to consider. Therefore,
applying deep neural networks and learning-based
framework to automatic program repair is an in-
evitable consequence.

In this work, we consider the problem of learn-
ing to repair erroneous C programs based on op-
timal alignment learning. Figure 1 describes our
approach. Given a potentially erroneous program p,
our goal is to train a sequence-to-sequence model
that takes p as input sequence and produces a se-
quence of edits that repairs compilation errors from
p. There are two major challenges in learning to
repair programs. First, it is very difficult to local-
ize multiple errors in a program and correct the
errors simultaneously. Previous approaches (Gupta
et al., 2017, 2019; Hajipour et al., 2019) exploited
sequence-to-sequence models to learn the mapping
between erroneous programs and line fixes. They
train a model that repairs only one error at a time.
If there exist multiple errors in several lines of code,
then it is inevitable to iterate the same process.

In light of these observations, we propose the
following ideas to improve the previous program
repair models.

1. We propose a sequence-to-sequence model
that learns the relationship between erroneous
programs and their optimal alignments to cor-
rect programs that compile without errors. As

4850

Findings of the Association for Computational Linguistics: EMNLP 2021, pages 4850-4855
November 7-11, 2021. ©2021 Association for Computational Linguistics

a result, our model can fix multiple errors at
a time while the previous approaches are able
to fix only one error at a time.

2. We present a program repair framework that
consists of a single network trained with many
types of compilation errors. While most of the
previous approaches attempt to use separate
models to fix each type of errors (for instance,
missing declarations and typos), our approach
relies on a single sequence-to-sequence model
that learns to fix different types of errors in
multiple lines of input program.

2 Background

Our approach is based on the sequence-to-sequence
learning framework which is originally proposed
for the task of machine translation. On top of the
idea of sequence-to-sequence learning, we incorpo-
rate several ideas for optimizing the training perfor-
mance on the domain of program repair including
the optimal alignment output encoding and syn-
chronized position embedding. Here we briefly
provide an overview of each idea.

Learning-based program repair. Learning-
based automatic program repair is gaining its
popularity especially for correction of introductory
programming assignments submitted by novice stu-
dents (Pu et al., 2016; Ahmed et al., 2018). Gupta
et al. (2017) introduced a sequence-to-sequence
model with an attention mechanism that fixes
errors by constructing program text from different
kinds of tokens such as types, keywords, special
characters (e.g., semicolons), functions, literals
and variables in C programs. Ahmed et al. (2018)
trained a sequence-to-sequence prediction model
with RNN networks for automatically repairing
compile-time errors from the student programs.

Hajipour et al. (2019) propose to adopt a deep
generative model for sampling diverse fixes for
given erroneous programs. Very recently, Ya-
sunaga and Liang (2020) propose a graph-based
self-supervised program repair framework. They
utilize a variant of graph neural networks called the
graph attention network (Velickovic et al., 2018) to
enable more efficient information flow between rel-
evant tokens in a program. Moreover, they leverage
diagnostic feedback offered by compiler messages
and show that it plays a crucial role in locating
errors and learning how to fix them.

Meanwhile, Mesbah et al. (2019) (DeepDelta)

Repaired Program

’ |void| main() |{| printf("Hello"); } ‘

Insert

r{)

Replace Delete ‘(’

to ‘void’

| | | |
13712711 Tl 9 .8

Synchronized position embedding

|
13 12 11 10 9 8 7

char main () printf ((

| char main() printf(("Hello"); } |
Input Program (13 tokens)

Figure 1: An overview of our program repair model
(MultiFix). The decoder outputs for maintaining the
current token are omitted.

tackle the problem of repairing Java build errors
by extracting abstract syntax trees (AST) changes
between the failed and resolved programs. Later,
Tarlow et al. (2020) (Graph2Diff) utilize the graph
neural networks to encode the input program and
generate the fix. We do not compare DeepDelta
and Graph2Diff with our result as they consider
different types of build errors in Java while we
consider common compiler errors in C including
typos, missing declarations, type errors, missing
delimiters and so on.

Edit-distance and optimal alignment. The edit-
distance between two strings x and y is the smallest
number of atomic operations (insertion, deletion or
replacement) that transform x to y. Given a set of
input symbols ¥, let

Q={(a—=b)|a,be ZU{AN}\{(A= N}

be a set of edit operations. Namely, €2 is a set of
all edit operations for deletions (a — \), inser-
tions (A — a) and replacement (a — b).

Let h be the morphism from Q* into X* x »*
defined by setting h((a; — b1) - (an — by)) =
(@1~ an, b1 by).

We say that w € Q" is an alignment of strings
xz,y € ¥*if h(w) = (x,y). For example, edit
sequence w = (a — A)(b — b)(A = ¢)(¢c —
c¢) over §) is an alignment between abc and bcc,
h(w) = (abe,bee). We associate a non-negative
edit cost ¢(w) to each edit operation w € €2, where
cis a function {2 — R . We can extend the func-

4851

tion to give the cost of an alignment w = wy - - - wy,
in the natural way:

n

c(w) = Z c(w;).

=1

The edit-distance d(z, y) of two strings z and y is
the minimal cost of an alignment w between x and

y:
d(z,y) = min{c(w) | h(w) = (z,9)}.
We say that w is optimal if d(z,y) = c(w).

Position embedding. The name of position
(positional) embedding has been used in pa-
pers (Gehring et al., 2017; Vaswani et al., 2017)
introducing non-recurrent sequence-to-sequence
models. In order to maintain a sense of order be-
tween input symbols without recurrent architecture,
they produced additional embedding that contains
position information and added the embedding to
the input embedding. For example, the Trans-
former (Vaswani et al., 2017) used sinusoidal func-
tions for the position embedding to enable model
to generalize well to longer sequences that are not
encountered during training.

When it comes to the problem of program repair,
the position embedding becomes a necessary tool
for successfully training RNN-based network with
relatively longer sequences of program tokens com-
pared to natural language sentences. The most simi-
lar approach to our method is by Gupta et al. (2017)
that utilizes the idea of using additional embedding
about line numbers of codes for generating fixes
for the codes. The recent work by Yasunaga and
Liang (2020) also employs the position embedding
to encode the line offset from the erroneous line
reported by compiler.

3 Our Approach

We employ the following techniques to improve
the previous learning-based program repair.

Encoding optimal alignment as target. The
previous approaches to the program repair based
on the sequence-to-sequence learning framework
aim to learn pairs of erroneous programs and corre-
sponding line fixes. However, it is very difficult to
learn to produce multiple lines of fixes within this
framework as it is almost impossible to learn the
alignment between the input tokens and the output
tokens. In order to resolve this problem, we encode

the target sequence as an optimal alignment of the
input program to the target program.

Synchronized position embedding. We employ
the position embedding into the input vectors to
decoder. It assists them to correctly locate the most
relevant token in the input token sequence. We
further control the position information from the
decoder to actively align the position information
with the encoder. If the decoder predicts the cur-
rent output token that corresponds to an insertion
edit-operation, then the current position number
should not be decremented as the potential subse-
quent edits must be performed at the input token
with the same position number. We call it the syn-
chronized position embedding. Our experimental
results show that the synchronized position embed-
ding is extremely helpful for our model to predict
the accurate sentence compared to baseline models
without synchronized position embedding.

Overall architecture. Figure 1 illustrates our
proposing model architecture. Our model has en-
coder that takes a (erroneous) program p along
with the position indices of the tokens in p. Then,
the decoder starts to decode outputs, which are an
alignment between the input tokens and the poten-
tial output tokens. While decoding, the decoder
utilizes the same position embedding weights that
are used in the encoder. Finally, we apply the pre-
dicted alignment to the input program tokens to
generate the output program.

4 Experimental Setup

In this section, we summarize the setup of our ex-
periments including the datasets used for evaluation
of our model and several training details.

4.1 Datasets

The DeepFix dataset (Gupta et al., 2017) contains
C programs submitted by programming novice stu-
dents in an introductory programming course. The
dataset contains 37,415 correct programs (com-
piled without error) and 6,971 erroneous programs.

For fair comparison to the prior works on
learning-based program repair including DeepFix,
RLAssist, SampleFix and DrRepair, we also use
the DeepFix dataset for training and testing our
approach. It is well-known that C/C++ compiler
ignores whitespace such as spaces, tabs and new
lines with an exception of text literals. This implies
that we do not need to maintain the whitespaces in

4852

Model FRR RMR Input Output Acc. RMR
DeepFix (2017) 334 408 Code Code 73.5 36.7
SampleFix (2019) 409 56.3 Code + Pos Code 754 378
DS-SampleFix (2019) 444 61.0 Code + Pos Code + Pos 75.5 368
DrRepair (2020) 34.0 - Code + Pos Code + SyncPos 80.6 38.7
MultiFix (TF) 312 414 e Align 836 39.0
Mult¥F¥x (TF) + DrPerturb 4477 56.6 Code + Pos Align 839 4009
MultiFix 375 428 ode+Pos Align + Pos 837 402
MultiFix + DrPerturb 556 625 (Coge+Pos Align+SyncPos 88.1 416
DeepFix + Beam Search 447 639

DS-SampleFix + Beam Search 452 652 Table 2: Results for performance comparison of differ-
DrRepair + Compiler + Pretrain ~ 68.2 . ent input and output embedding methods. Note that
MultiFix + DrPerturb + BS 74.6 845 all models here are trained with a subset of DeepFix

Table 1: Results for performance comparison of Deep-
Fix, SampleFix, DrRepair and MultiFix. Note that the
authors of DrRepair did not report RMR in their paper.

the programs if our approach does not rely on line-
level information from the input programs. There-
fore, we discard the line numbers from the input
sequence as our approach does not utilize the line
number information for both localizing the error
and producing the line fix.

We also utilize another publicly available dataset
generated by the program perturbation procedure
for a fair comparison to DrRepair (Yasunaga and
Liang, 2020) as the experimental results presented
in the DrRepair paper are obtained by training with
the above dataset. The DrPerturb is one of the
main contributions from the DrRepair (Yasunaga
and Liang, 2020) paper as it covers a diverse set of
program errors while taking the actual error distri-
bution from the DeepFix dataset into account. The
DrPerturb training dataset is constructed based on
the original DeepFix dataset by creating roughly
50 corrupted versions by applying the DrPerturb.

4.2 Training Details

Hyperparameters. We set the dimension of in-
put token embedding and position embedding to
be 32. We use 4 layers with 256 hidden units of
bidirectional LSTM unless explicitly mentioned
otherwise. And transformer uses 4 multi-head at-
tention, and the model layer is 4.

Beam search. We use beam search decoding for
further improving the performance of our model.
The beam width is chosen to be 100 for fair com-
parison with SampleFix and DS-SampleFix as they
also draw 100 candidate fixes.

dataset for typographic errors.

Evaluation metrics. We use the three metrics
for evaluating the effectiveness of our model. First,
the full repair rate (FPR) is a ratio between the
number of completely fixed programs and the total
number of programs. The resolved messaged rate
(RMR) is a ratio between the number of resolved
error messages by the model and the total number
of error messages. Finally, we also measure the
accuracy of the model which is a ratio between the
number of correctly predicted target sequences by
the model and the total number of target sequences.

4.3 Baselines

We compare the performance of our model to the
following learning-based program repair models:
DeepFix (Gupta et al., 2017), SampleFix, DS-
SampleFix (Bhattacharyya et al., 2018), and DrRe-
pair (Yasunaga and Liang, 2020). We also imple-
ment the Transformer (Vaswani et al., 2017) (TF)
version of MultiFix with the idea of synchronized
embedding implemented in a similar fashion.
Note that direct comparison of our model and
SampleFix may not be fair since it draws 100 can-
didate fixes at each iteration. For fair comparison,
we compare our model with beam width 100 to
SampleFix with beam width 5 as SampleFix uses
20 random variables to generate in total 100 fixes.

S Results and Analysis

5.1 Performance comparison

Table 1 present the experimental results. Overall,
MultiFix achieves the best performance compared
to all state-of-the-art program repair models. Es-
pecially, MultiFix achieves the best performance
when we employ the beam search decoding with

4853

Erroneous Code Ground Truth DeepFix MultiFix
int main() { int main() { int main() { int main() {
int i int i, 3; int 1[N ; int i[5

j; scanf ("%d",&7; scanf ("%d", &7J) ;
char ar([j];
for (i=0;1i<j;1i++)

ar[i]=getchar();

char ar([j];
for (i=0;1i<j;i++)

return 0O;

} }

return 0O;

ar[i]=getchar();

j scanf ("%d", &3) ; scanf ("sd",&30) |;
char ar[j];
for (i=0;i<j; i++)

ar[i]=getchar();

char ar[j];

for (i=0;i<j; i++)
ar[i]=getchar();

return 0;

} }

return 0;

Table 3: An example of erroneous code and fixes generated by DeepFix and MultiFix. MultiFix achieves two
repairing results in one iteration, and DeepFix achieves repairing results in three iterations.

beam size 100 which sufficiently improves the pre-
vious state-of-the-art results (+6.4% higher than
DrRepair in full setting). It should be noted that the
performance of the Transformer version of Mul-
tiFix is poorer than LSTM version. We suspect
that the Transformers are not suitable for modeling
formal languages as already pointed out in recent
works (Hahn, 2020; Bhattamishra et al., 2020).

5.2 Synchronized position embedding

In Table 2, we observe that the synchronized po-
sition embedding is very helpful in learning the
alignment between the input and (potential) output
token sequences. Especially, the use of standard
position embedding in decoding even deteriorates
the performance of our model.

5.3 Case Analysis

Table 3 provides an example where MultiFix suc-
ceeds in program repair while the other approaches
fail. MultiFix can fix multiple errors at once while
DeepFix cannot fix the code even through multiple
iterations. As expected, MultiFix can fix multi-
ple errors in many program lines by learning to
repair the whole token sequence while DeepFix
only learns to replace a suspicious line.

6 Conclusions

Our experimental results concerned with the use
of beam search decoding and SampleFix (Hajipour
et al., 2019) suggest that we can improve the per-
formance of learning-based program repair ap-
proaches by adopting diverse sampling techniques
such as CVAE as in SampleFix.

Moreover, the performance difference between
two versions of MultiFix model trained with the
original DeepFix dataset and the DrPerturb dataset
suggests that both the quality and diversity of the

training dataset are crucial in learning to repair
various types of program errors.

Acknowledgements

This research was supported by the NRF grant
(NRF-2020R1A4A3079947), IITP grant (No. 2021-
0-00354) and the AI Graduate School Program
(No. 2020-0-01361) funded by the Korea govern-
ment (MSIT).

References

Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Pu-
rushottam Kar, and Sumit Gulwani. 2018. Compi-
lation error repair: for the student programs, from
the student programs. In Proceedings of the 40th
International Conference on Software Engineering,
pages 78-87.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the 3rd International Conference on Learning Rep-
resentations.

A. Bhattacharyya, B. Schiele, and M. Fritz. 2018. Ac-
curate and diverse sampling of sequences based
on a "best of many" sample objective. In 2018
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 8485-8493.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the ability and limitations of transformers
to recognize formal languages. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 7096-7116. Associ-
ation for Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder—decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1724—1734.

4854

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Convolu-
tional sequence to sequence learning. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 1243—-1252.

Rahul Gupta, Aditya Kanade, and Shirish K. Shevade.
2019. Deep reinforcement learning for syntactic er-
ror repair in student programs. In Proceedings of
the 33rd AAAI Conference on Artificial Intelligence,
pages 930-937.

Rahul Gupta, Soham Pal, Aditya Kanade, and
Shirish K. Shevade. 2017. Deepfix: Fixing com-
mon C language errors by deep learning. In Pro-
ceedings of the 31st AAAI Conference on Artificial
Intelligence, pages 1345-1351.

Michael Hahn. 2020. Theoretical limitations of self-
attention in neural sequence models. Trans. Assoc.
Comput. Linguistics, 8:156—171.

Hossein Hajipour, Apratim Bhattacharyya, and Mario

Fritz. 2019. Samplefix: Learning to correct
programs by sampling diverse fixes. CoRR,
abs/1906.10502.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.

Long short-term memory. Neural Computation,
9(8):1735-1780.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412—-1421.

Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glo-
rioso, and Edward Aftandilian. 2019. Deepdelta:
Learning to repair compilation errors. In Proceed-
ings of the 2019 27th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering,

pages 925—936.

Yewen Pu, Karthik Narasimhan, Armando Solar-
Lezama, and Regina Barzilay. 2016. Sk_p: A neural
program corrector for moocs. In Companion Pro-
ceedings of the 2016 ACM SIGPLAN International
Conference on Systems, Programming, Languages
and Applications: Software for Humanity, pages
39—-40.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the Annual Conference on Neural
Information Processing Systems 2014, pages 3104—
3112.

Daniel Tarlow, Subhodeep Moitra, Andrew Rice,
Zimin Chen, Pierre-Antoine Manzagol, Charles Sut-
ton, and Edward Aftandilian. 2020. Learning to fix
build errors with graph2diff neural networks. In Pro-
ceedings of the 42nd International Conference on
Software Engineering, pages 19-20.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Proceedings of the Annual Con-
ference on Neural Information Processing Systems
2017, pages 6000-6010.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018. Graph attention networks. In Proceedings of
the 6th International Conference on Learning Repre-
sentations.

Michihiro Yasunaga and Percy Liang. 2020. Graph-
based, self-supervised program repair from diagnos-
tic feedback. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research,
pages 10799-10808.

4855

