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Abstract
Quality Estimation (QE) plays an essential
role in applications of Machine Translation
(MT). Traditionally, a QE system accepts the
original source text and translation from a
black-box MT system as input. Recently, a
few studies indicate that as a by-product of
translation, QE benefits from the model and
training data’s information of the MT system
where the translations come from, and it is
called the "glass-box QE". In this paper, we ex-
tend the definition of "glass-box QE" generally
to uncertainty quantification with both "black-
box" and "glass-box" approaches and design
several features deduced from them to blaze a
new trial in improving QE’s performance. We
propose a framework to fuse the feature engi-
neering of uncertainty quantification into a pre-
trained cross-lingual language model to pre-
dict the translation quality. Experiment results
show that our method achieves state-of-the-art
performances on the datasets of WMT 2020
QE shared task.

1 Introduction

The emergence of Neural Machine Translation
(NMT) has brought about a revolutionary change
in translation technology, resulting in translation
with much higher quality. Even though NMT can
produce a fairly smooth translations at present, it is
still not error-free. The outputs of a machine trans-
lation (MT) system must be proofread by humans
in a post-editing phase, especially in those scenes
with zero tolerance for translation quality, such as
in the legal domain. Therefore, it is essential to
find out how good or bad the translations produced
by an MT system are at run-time.

Quality estimation (QE) aims to predict the qual-
ity of a MT system’s output without any access to
ground-truth translation references or human inter-
vention. QE methods have been explored broadly
(Blatz et al., 2004; Specia et al., 2009, 2018) on

* indicates corresponding author.

WMT’s benchmark QE datasets1. Typical top-
ranked QE systems (Fan et al., 2019; Kim et al.,
2017) need a large amount of parallel corpora for
pre-training and in-domain translation triplets of
source texts, machine translations and correspond-
ing quality labels/scores (Snover et al., 2005) for
QE fine-tuning. Starting from 2019, in replacement
of pre-training a model from scratch, state-of-the-
art (SOTA) QE systems (Kepler et al., 2019; Ranas-
inghe et al., 2020) have achieved better results via
taking advantage of SOTA pre-trained neural net-
work models such as mBERT (Devlin et al., 2019)
and XLM-R (Conneau et al., 2019) with transfer
learning to QE tasks.

In recent years, the information of the NMT sys-
tems and the corresponding training data are open
to participants in WMT QE shared task, which is
helpful for us to gain more QE insights. Essen-
tially, it extends the traditional QE "black-box"
NMT, where any information of the MT system
is unknown to the "glass-box" stage. In fact, the
concept of "glass-box" QE features has been in-
troduced by Specia et al. (2013), which provides
an indication of the confidence of a MT system
by extracting the outputs of Moses-like Statistical
Machine Translation (SMT) systems, for example
the word- and phrase- alignment information and
N-gram Language Model (LM) probabilities. A
QE system using these features and SVM regres-
sion is considered to be the baseline model of the
sentence-level tasks of WMT QE from 2013 to
2018.

Even though the LM probability, as one of the
glass-box QE features, has been widely used to
estimate confidence of SMT systems (Blatz et al.,
2004; Specia et al., 2013), the performance of us-
ing these features alone is not good enough, that
can be seen from the performance of baseline re-
sults (Specia et al., 2013; Fonseca et al., 2019).

1http://www.statmt.org/wmt19/qe-task.
html

http://www.statmt.org/wmt19/qe-task.html
http://www.statmt.org/wmt19/qe-task.html
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Figure 1: Structure of the uncertainty quantification feature-enhanced model.

For NMT’s QE, the softmax output probabilities
are overconfident, and it is easy to generate high
confidence for points far away from the training
data (Fomicheva et al., 2020c; Kepler et al., 2019).
Therefore, it is so important to study the methods
of output distribution other than 1-best prediction.

Uncertainty Quantification, inspired by the
Bayesian framework, is representative in predict-
ing the translation quality. A relevant method of
approximation, Monte Carlo (MC) dropout (Gal
and Ghahramani, 2016), is usually considered to
be useful. Such "glass-box" methods related to
MC dropout have been studied in Fomicheva et al.
(2020c). Differently, we hypothesize that glass-
box approaches can not only enable us to address
the QE task for NMT systems in an unsupervised
way, but they can enhance the black-box QE fea-
tures captured from SOTA pre-trained NLP models
in a supervised manner as well. On top of some
efficient "glass-box" QE features, such as the ex-
pectation over predictive probabilities with MC
dropout, more variants of the MC dropout sam-
pling are exploited in our paper. As a matter of
fact, our experimental results show their superior-
ity in estimating the uncertainty of NMT models
and improving the robustness of the unsupervised
QE.

Translation is influenced by the source language
itself (Zhang and Toral, 2019). In addition to the
above methods, we explicitly reduce the uncer-

tainty quantification of the whole context of the
source and machine translation to the uncertainty
quantification only from the perspective of the
source side. We design novel QE features obtained
by both "glass-box" and "black-box" approaches
to evaluate the uncertainty of source texts. Given
the specific source text, these features can be easily
understood as the information regarding the robust-
ness of the NMT system and SOTA pre-trained
model, jointly reflecting how difficult it is to trans-
late the source text.

In short, our main contributions are: (i) we pro-
pose several novel unsupervised approaches to con-
struct "glass-box" QE features to quantify the un-
certainty of the source and machine translations, (ii)
evaluate the contribution of each QE feature to the
model, and finally (iii) these "glass-box" features
are combined with the "black-box" QE features
extracted from the pre-trained model, XLM-R, re-
sulting in SOTA performances on the benchmark
WMT 2020 QE DA datasets for 6 language pairs
with different levels of training data resources.

2 Related Work

In the previous years’ WMT QE tasks before 2020,
there were sub-tasks including sentence, word and
document-level estimations. Since 2020, the shared
task has tended to follow the human evaluation
setup similar to Graham et al. (2013) and released
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Group Model
Low Resource Mid Resource High Resource
Si-En Ne-En Et-En Ro-En En-De En-Zh

No Feature TransQuest Single Model 0.6365 0.7488 0.7437 0.8890 0.4419 0.4990

I +Pstep 0.6695 0.7841 0.7654 0.8915 0.4319 0.5101

II
+MC-Sim 0.6574 0.7926 0.7635 0.8953 0.4595 0.4917
+MC-Sim-Inner 0.6141 0.7791 0.7607 0.8878 0.4676 0.5056
+MC-Pstep 0.6600 0.7800 0.7710 0.8905 0.4663 0.5041

III
+DS-gram 0.6652 0.7859 0.7712 0.8942 0.4374 0.4980
+DS-neighbors 0.6598 0.7791 0.7663 0.8840 0.4627 0.5101

IV

+Noise-Sim-Simple 0.6677 0.7807 0.7718 0.8887 0.4461 0.4977
+Noise-Sim-Simple-y 0.6446 0.7761 0.7544 0.8864 0.4177 0.4770
+Noise-Sim-PE 0.6478 0.7820 0.7509 0.8939 0.4370 0.4927
+Noise-Sim-PE-y 0.6624 0.7880 0.7472 0.8921 0.4286 0.5104
+Noise-Sim-Inner-Simple 0.6512 0.7778 0.7697 0.8955 0.4637 0.4522
+Noise-Sim-Inner-Simple-y 0.6664 0.7912 0.7630 0.8931 0.4274 0.4960
+Noise-Sim-Inner-PE 0.6714 0.7825 0.7463 0.8921 0.4487 0.4897
+Noise-Sim-Inner-PE-y 0.6606 0.7787 0.7576 0.8921 0.4399 0.4909
+Noise-Pstep-Simple 0.6475 0.7673 0.7709 0.8916 0.2543 0.5091
+Noise-Pstep-Simple-y 0.6613 0.7819 0.7588 0.8899 0.4260 0.5015
+Noise-Pstep-PE 0.5615 0.7758 0.7661 0.8955 0.4300 0.4794
+Noise-Pstep-PE-y 0.6701 0.7798 0.7628 0.8953 0.4207 0.4949

V

+MLM-Pmask-Simple 0.6611 0.7792 0.7526 0.8885 0.4360 0.5124
+MLM-Pmask-Simple-y 0.6410 0.7737 0.7650 0.8930 0.4187 0.5042
+MLM-Pmask-PE 0.6745 0.7719 0.7552 0.8932 0.4117 0.4899
+MLM-Pmask-PE-y 0.6617 0.7770 0.7629 0.8931 0.1430 0.5051
+MLM-FPmask 0.6617 0.7831 0.7639 0.8946 0.1344 0.4858
+MLM-FPmask-y 0.6560 0.7829 0.7600 0.8898 0.4141 0.4880

Table 1: Pearson correlations between QE performances of our single uncertainty feature-enhanced models and
human DA judgments on development sets of WMT 2020. The baseline that we compare with is the single model
of the winner system in WMT 2020 QE DA task, and the results are shown in the row of "No Feature" group.
Features in rows I-V are described in Section 3.1-3.5 respectively. Results of best models in each row are marked
in bold
.

a variant of sentence-level task where the quality
of machine translations is annotated with Direct
Assessment (DA), instead of HTERs (Specia and
Farzindar, 2010) based on human post-editing. At
least three different raters rate the MT sentences
according to a continuous scoring scale from 0 to
100 in the respect of translation quality. DA scores
are standardised using the z-score by rater to be the
final QE prediction. DA estimation 2 is much closer
to practical applications of QE, because the human
post-editing work is expensive under the actual
production deployment cost control. Therefore,

2http://www.statmt.org/wmt20/
quality-estimation-task.html

our experiment designs are focusing on the Direct
Assessment tasks.

Most of previous work on QE is based on the
studies of feature engineering that explore how
to extract useful features as inputs from source
and machine translations to estimate the translation
quality by a feature-enriched model. Such early
work on QE, for instance, uses manually crafted
features extracted from source and machine trans-
lations, and some "glass-box" features from SMT
systems to build SVM regression models with RBF
kernel (Specia et al., 2013). As time went by, with
the development of deep learning applied in NLP,
Predictor-Estimator architecture using neural net-

http://www.statmt.org/wmt20/quality-estimation-task.html
http://www.statmt.org/wmt20/quality-estimation-task.html
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works for QE was proposed (Kim et al., 2017),
which relies highly on a pre-trained word predic-
tion model with a bidirectional RNN structure,
called Predictor. Its training requires large amount
of parallel data. The latent representations gen-
erated by the word prediction model are treated
as features to be fed into a downstream Estima-
tor mode for QE fine-tuning. Motivated by Trans-
former (Vaswani et al., 2017) framework of neural
machine translation, Fan et al. (2019) modified
the RNN-based word predictor with a bidirectional
Transformer structure to make an improvement on
word prediction, leading to better QE results.

SOTA pre-trained models have achieved suc-
cesses in various NLP tasks (Pires et al., 2019;
Conneau et al., 2019) with transfer leaning. Cur-
rent SOTA QE systems (Moura et al., 2020; Kepler
et al., 2019; Ranasinghe et al., 2020), profit from
SOTA pre-trained models to gain cross-lingual rep-
resentations of source and machine translations and
fine tune the model with additional layers to meet
the goals of QE. They passingly remove the de-
pendency of large amount of parallel data and ease
the burden of pre-training complex neural network
models. Encouraged by the top ranked QE sys-
tem (Ranasinghe et al., 2020), we design a feature-
enhanced model similar to their work, that also
relies on the pre-trained XLM-R model, but it is
enhanced by a mixture of other useful "glass-box"
and "black-box" QE features. The model structure
can be first glimpsed in Figure 1 and details will be
introduced in Section 3.

3 Methodology

In this section, we provide a complete view of our
uncertainty quantification approaches: (1) the pre-
dictive information of softmax distribution from
the NMT model is still used as a "glass-box"
QE feature due to its indication in QE explored
from previous work (Moura et al., 2020). We de-
scribe it simply in Section 3.1; (2) Stimulated by
Fomicheva et al. (2020c), more useful derivatives
of MC dropout sampling for uncertainty quantifi-
cation are investigated as "glass-box" features in
Section 3.2; (3) we extend the meaning of "glass-
box" in a broader sense and shift our gaze from
model confidence to data confidence in Section 3.3.
More creatively, (4) a combination of "glass-box"
and "black-box" approaches is proposed to estimate
the uncertainty of source texts in Section 3.4. In
particular, (5) the "black-box" approach utilizing

a SOTA pre-trained NLP model in (4) can inher-
ently estimate the confidence of the sources via the
masking strategy in Section 3.5. In Section 3.6, a
model enhanced by above uncertainty features is
carried out for the final goal of quality estimation.

3.1 Quantify uncertainty with softmax
distribution of NMT model

For auto-regressive sequence generating models
like Transformers (Vaswani et al., 2017), decoding
probability at each step can be extracted from the
softmax layer directly in a "glass-box" setting:

P
(x,t,θ)
step = logP (yt|y<t,x, θ) (1)

where x represents the input source text and y is
the output machine translation. Pstep is a probabil-
ity sequence with the same length of the generated
sequence y. Three statistical indicators of the se-
quence can be used to estimate uncertainty of the
output: the expectation, standard deviation, and the
combined ratio of them:

E(Pstep|x, θ) =
1

T

T∑
t=1

P
(x,t,θ)
step (2)

σ(Pstep|x, θ)

=
√
E(P 2

step|x, θ)− E2(Pstep|x, θ)
(3)

Combo(Pstep|x, θ) =
E(Pstep|x, θ)
σ(Pstep|x, θ)

(4)

In general, higher probability expectation and
lower probability variance usually indicate that
the model is more confident about the output.
Pstep is an extended version of the TP feature in
Fomicheva et al. (2020c) and the expectation of
Pstep is the same as TP . In our feature-enhanced
model, when we mention the feature Pstep, it ac-
tually means a vector of the three statistical indi-
cators rather than a single value TP . The same
way is applied to other features in the following
sub-sections.

3.2 Quantify uncertainty with Monte Carlo
Dropout

Monte Carlo Dropout (Gal and Ghahramani, 2016)
is an efficient "glass-box" approach to estimate un-
certainty. It enables random dropout on neural net-
works during inference to obtain measures of uncer-
tainty. Output sequences ŷ sampled across stochas-
tic forward-passes by MC dropout with sampled
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Sort by Languages 1st 2nd 3rd 4th

Performance of
the enhanced model

Si-En MLM-Pmask-PE Noise-Sim-Inner-PE Noise-Pstep-PE-y Pstep

Ne-En MC-Sim Noise-Sim-Inner-Simple-y Noise-Sim-PE-y DS-gram
Et-En Noise-Sim-Simple DS-gram MC-Pstep Noise-Pstep-Simple
Ro-En Noise-Sim-Inner-Simple Noise-Pstep-PE MC-Sim Noise-Pstep-PE-y
En-De MC-Sim-Inner MC-Pstep Noise-Sim-Inner-Simple DS-neighbors
En-Zh MLM-Pmask-Simple Noise-Sim-PE-y DS-neighbors Pstep

Correlations to
human DA judgments

Si-En MC-Pstep MC-Sim-Inner Pstep MC-Sim
Ne-En MC-Pstep Pstep Noise-Pstep-Simple Noise-Pstep-PE
Et-En MC-Pstep MC-Sim-Inner MC-Sim Pstep

Ro-En MC-Pstep Pstep Noise-Pstep-Simple-y Noise-Pstep-Simple
En-De MC-Pstep Pstep Noise-Pstep-Simple Noise-Pstep-Simple-y
En-Zh Pstep MC-Pstep Noise-Pstep-Simple MC-Sim-Inner

Table 2: Most useful uncertainty features for each language pair.

model parameters θ̂ can be different. Intuitively, if
y is a high-quality output with small uncertainty,
the Monte Carlo sampled outputs ŷ should be sim-
ilar to y and the diversity among them should be
low. Hence, two measurements of sampling based
on text similarity are carried out here:

MC-Sim = Sim(y, ŷ) (5)

MC-Sim-Inner = Sim(ŷi, ŷj) (6)

For the similarity score function, as in Fomicheva
et al. (2020c), Meteor metric (Denkowski and
Lavie, 2014) is applied.

Besides, as a sentence-level probability score,
E(Pstep) can also be calculated with different
model parameters θ̂ by MC dropout sampling:

MC-Pstep = E(Pstep|x, θ̂) (7)

The expectation, standard deviation, and com-
bined ratio of MC-Sim, MC-Sim-Inner
and MC-Pstep are calculated over all MC
dropout samples and will be used as "glass-
box" uncertainty quantification features.
Among them, E(MC-Pstep), σ(MC-Pstep),
Combo(MC-Pstep), and E(MC-Sim-Inner)
are equivalent to D-TP , D-V ar, D-Combo, and
D-Lex-Sim in Fomicheva et al. (2020c)

3.3 Quantify uncertainty with informative
training data

For "glass-box" QE, not only the NMT model is
helpful, but the information of the training data is
valuable as well. A simple but widely-used fea-
ture, the rate of N-grams of the source text covered
by the NMT training data, is used and defined as
follows:

DS-gram(N)

=
]({xi≤t<i+N |xi≤t<i+N ∈ train sets})

T −N + 1
·

(8)

We consider N from 1 to 5 for N-grams in the
coverage rate calculation. This "glass-box" feature
measures how the source text to be translated is
far away from the model’s training data, thereby
quantifying how confident the NMT model is to
produce the corresponding machine translation.

The above N-gram feature is widely used in
SMT’s QE, but is not strong enough for NMT. In-
spired by the idea of k-nearest-neighbor machine
translation (Khandelwal et al., 2020), if the similar-
ity between the input x and nearest neighbors from
the train sets is relatively high, the NMT model
tends to produce a high-quality output. Instead of
complex calculation in Khandelwal et al. (2020),
we propose a simple data-level "glass-box" feature
based on data similarity for uncertainty quantifica-
tion:

DS-neighbors-x(K)

=
1

K

K∑
k=1

Sim(x,x′
(k)

)
(9)

where x′(k) is the k-th nearest neighbor of x in train
sets according to the Levenshtein Distance. Simul-
taneously, DS-neighbors-y is defined similarly.
DS-neighbors-x measures how familiar the NMT
model is with the input x, while DS-neighbors-y
measures how fluent the output y is based on ob-
servation of training data.

3.4 Quantify uncertainty with noised data

Monte Carlo Dropout approaches in 3.2 can be re-
garded as a robustness test with noise in the model.
Due to its validity in Fomicheva et al. (2020c), it
is rational to believe that a similar way with ap-
propriate noise in the input of MT will perform
comparably.

Therefore, we define the following "glass-box"
uncertainty quantification measures similar to those
in 3.2. The only difference is that the NMT model
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Algorithm 1 Generate Noise Input with "Post-
Editing"

Require: input x = {xt|t = 1, 2, ..., T}, hyper-
parameters R, pi, pd.

1: Initialize xmask = x
2: for r = 1, ..., R do
3: xmask = randomly delete tokens from

xmask with probability pd
4: xmask = randomly insert special <mask>

tokens into xmask with probability pi
5: end for
6: x̃ = MLM(xmask), where MLM is a pre-

trained masked language model.
7: return x̃

weights are fixed θ without MC dropout sampling
and the model decodes translations ỹ with a noised
input x̃.

Noise-Sim = Sim(y, ỹ) (10)

Noise-Sim-Inner = Sim(ỹi, ỹj) (11)

Noise-Pstep = E(Pstep|x̃, θ) (12)

One crucial point in this approach is how to gen-
erate noised input x̃. One solution is a "black-box"
way that utilizes the masking strategy of pre-trained
multi-lingual NLP models. Basically, we can mask
some words in the source text and get a noised
source text by the prediction of the pre-trained
model in the masked positions. In implementation,
we mask each source token xt successively and ob-
tain the predictions x̃t from a pre-trained masked
language model to gain a set of noised source texts
x̃. This simple approach only performs substitution
on x, but limits the diversity of the noised samples.

Wang et al. (2020) proposed an automatic post-
editing algorithm which imitates post-editing pro-
cess of human post-editing via constructing atomic
operations including insertion, deletion, and sub-
stitution. Tuan et al. (2021) also applied a similar
algorithm for QE’s data augmentation. In our case,
adding appropriate noise to input data is a "post-
editing" process on input x. To enrich the noise
space of x, we adjust the imitation learning algo-
rithm in Wang et al. (2020) to a simplified version
to obtain noised input x̃. We "post-edit" the input
x by randomly deleting tokens and inserting masks
for several rounds to get xm. Then, a SOTA pre-
trained model predicts the tokens in the masked

positions of xm to get the post-edited x̃. Pseudo
codes of this "post-editing" algorithm is provided
in Algorithm 1.

The two methods of noised data acquisition men-
tioned above both involve the task of masked token
prediction. In a sense, the translation y can be ap-
pended with xm and fed into the pre-trained multi-
lingual model as a semantic constraint to obtain a
more reasonable prediction. Hence there are four
variants for features in Equation 10 to 12: "sim-
ple" approach and "post-edit" approach, each one
can be with or without y during masked tokens
prediction. In the rest of the paper, they are de-
noted like Noise-Sim-Simple, Noise-Sim-PE,
Noise-Sim-Simple-y, and Noise-Sim-PE-y
respectively.

3.5 Quantify uncertainty with pre-trained
model

In Algorithm 1, the pre-trained masked language
model is used to predict masked tokens in xm. In
this process, similar to Pstep in NMT model, the
prediction probability of each masked token can be
extracted.

MLM -Pmask-Simple = logP (x̃t|x 6=t) (13)

MLM -Pmask-Simple-y = logP (x̃t|x 6=t,y) (14)

MLM -Pmask-PE = logP (x̃t|xm) (15)

MLM -Pmask-PE-y = logP (x̃t|xm,y) (16)

For the simple approach in Algorithm 1, not
only the top-1 probability can be extracted as
MLM -Pmask, but the forced decoding probability
can also be extracted from the softmax distribution:

MLM -FPmask = logP (xt|x 6=t) (17)

MLM -FPmask-y = logP (xt|x 6=t,y) (18)

Different from the "glass-box" feature Pstep,
MLM -Pmask and MLM -FPmask are "black-
box" features since they does not require any access
to the NMT model. Instead, knowledge from the
pre-trained model is the key to measure uncertainty
in these features.
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3.6 Uncertainty feature-enhanced model
All uncertainty features proposed in Section 3.1-
3.5 can be regarded as unsupervised approaches
for quality estimation. Even if unsupervised ap-
proaches do not require human QE labeling, their
performances are still far below those of supervised
approaches with transfer learning on SOTA pre-
trained models (Fomicheva et al., 2020b; Ranas-
inghe et al., 2020).

Some previous work has explored combining
"glass-box" QE features with transfer learning
ways and achieved top results (Fomicheva et al.,
2020b; Moura et al., 2020). We design a feature-
enhanced model framework with transfer learning
as well, reusing a multi-lingual pre-trained NLP
model, XLM-R (Conneau et al., 2019) that assists
to achieve the top-ranked QE results in WMT 2020
QE DA task. We concatenate the source text and
machine translation and feed them into the pre-
trained XLM-R to get the output representation of
the special [CLS] token. Afterwards, it is concate-
nated with multiple normalized uncertainty features
proposed in Section 3.1-3.5, and fed into a simple
linear regression layer to predict the translation
quality score. The effectiveness of proposed uncer-
tainty quantification features can also be evaluated
according to the model’s performance. The archi-
tecture of the uncertainty quantification feature-
enhanced model is shown in Figure 1.

4 Experiments

4.1 Setup
Dataset. The MLQE dataset proposed by
Fomicheva et al. (2020a) is used for the WMT2020
QE shared tasks. We evaluate our work on this open
public dataset and compare our model with SOTA
QE system on the DA task. To explore the perfor-
mance of our model on different languages, we con-
duct all experiments on 6 language pairs with differ-
ent levels of NMT training data resources: English-
German (En–De) and English-Chinese (En-Zh) for
high-resource ones, Romanian-English (Ro-En)
and Estonian-English (Et-En) for midum-resource
ones, and Nepali-English (Ne-En) and Sinhala-
English (Si-En) for low-resource ones.

Baseline. In this paper, we mainly focus on im-
provement on single model from uncertainty quan-
tification features. Models with strategies including
ensemble and data augmentation are not listed for
comparing as these strategies can also be applied to
our model. The transfer learning model based on

k
Low Resource Mid Resource High Resource
Si-En Ne-En Et-En Ro-En En-De En-Zh

0 0.6365 0.7488 0.7437 0.8890 0.4419 0.4990
1 0.6745 0.7926 0.7718 0.8955 0.4676 0.5124
2 0.6597 0.7782 0.7587 0.8985 0.4501 0.4934
3 0.6602 0.7888 0.7618 0.9019 0.4727 0.5095
4 0.6808 0.7693 0.7680 0.9003 0.4619 0.5055
5 0.6622 0.7788 0.7623 0.8907 0.4274 0.5522
6 0.6677 0.7740 0.7674 0.8918 0.4523 0.5210
7 0.6621 0.7785 0.7603 0.8981 0.4570 0.5135
8 0.6461 0.7839 0.7818 0.8947 0.4252 0.4620
9 0.6714 0.7889 0.7725 0.8995 0.4403 0.5325
10 0.6682 0.7802 0.7558 0.8870 0.4693 0.5401
11 0.6614 0.7814 0.7748 0.8992 0.4531 0.5029
12 0.6703 0.7937 0.7651 0.8956 0.4198 0.5119
13 0.6663 0.7876 0.6512 0.8979 0.4251 0.5274
14 0.6701 0.7747 0.7693 0.8967 0.4341 0.4890
15 0.6663 0.7804 0.7700 0.9000 0.4690 0.5298
16 0.6516 0.7804 0.7665 0.8981 0.4271 0.5116
17 0.6659 0.7750 0.7562 0.9011 0.4260 0.5185
18 0.6624 0.7876 0.7514 0.9008 0.4105 0.5179
19 0.6676 0.7780 0.7737 0.8989 0.4450 0.5154
20 0.6559 0.7632 0.7630 0.8973 0.4203 0.5016
21 0.6456 0.7877 0.7664 0.8978 0.4823 0.5105
22 0.6645 0.7612 0.7514 0.8909 0.1726 0.5326
23 0.6750 0.7758 0.7469 0.8889 0.2487 0.5287
24 0.6677 0.7733 0.7626 0.8905 0.2684 0.5140

Table 3: Pearson correlations between QE results of
top-k uncertainty feature-enhanced models and the
ground-truth DA labels on the development sets.

XLM-R from Ranasinghe et al. (2020) is selected
as a strong baseline, as TransQuest is the winner
of the WTM20 QE DA task in all language pairs
and the code of this model is released with detailed
hyper-parameters3. We set parameter n_fold to 1
in the released code for fair comparison.

4.2 Useful features for different languages

All the uncertainty quantification features can be
evaluated directly by calculating the Pearson corre-
lation with the ground-truth labels as in Fomicheva
et al. (2020c). In this way, each feature extractor
can be regarded as a unsupervised model. We put
the results in Appendix A because unsupervised
method is not the key point in this paper. Besides,
these features are not completely "orthogonal" to
the representation from the pre-trained model. In
another word, part of the information from uncer-
tainty quantification features is already covered
by the pre-trained multi-lingual language model.
Feature with higher Pearson correlation does not
necessarily mean higher performance when com-
bined with the "black-box" QE features from the
pre-trained model. Therefore, in our uncertainty

3https://github.com/TharinduDR/
TransQuest

https://github.com/TharinduDR/TransQuest
https://github.com/TharinduDR/TransQuest
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Model
Low-Resource Mid-Resource High-Resource
Si-En Ne-En Et-En Ro-En En-De En-zh

OpenKiwi (Official Baseline) 0.3737 0.3860 0.4770 0.6845 0.1455 0.1902
Transquest’s Single Model 0.6207 0.7641 0.7386 0.8812 0.3772 0.4715

Our Singe Feature Enhanced Model 0.6607 0.7954 0.7950 0.8948 0.4774 0.4969
Our Multiple Features Enhanced Model 0.6677 0.7980 0.8021 0.8986 0.5086 0.5242

Table 4: Final QE results on the test sets of WMT 2020 QE DA task.

quantification enhanced model, the importance of
the QE features should be evaluated by the perfor-
mance increment after incorporating them into the
model.

We concatenate each group of normalized uncer-
tainty features with the outputs of the [CLS] token,
and then fine-tune the pre-trained XLM-R model
with a simple linear regression layer as shown in
Figure 1. The Pearson correlations of each en-
hanced model on the development sets are listed in
Table 1. We summarize the most useful features for
each language pair according to the performance of
enhanced model with the single feature and the fea-
ture’s correlation with human DA scores without
model fine tuning separately in Table 2.

From the results, we can conclude that 1) In most
cases, uncertainty quantification feature-enhanced
model outperforms the non-feature baseline. 2)
The performance gains from a feature are vari-
ous for different language pairs. For example,
DS-neighbors enhanced model achieves higher
performance in high-resource languages, while
Noise−Sim features work better on low-resource
languages. 3) Sometimes, features with high corre-
lation to human DA scores may not be good ones
for the enhanced model, as the information comes
from these features might have been covered by the
pre-trained model already.

4.3 Multiple feature-enhanced results

Experiments on each single feature above provide
us guidance to enhance model with multiple fea-
tures. We sort all the uncertainty quantification fea-
tures for each language pairs according to the per-
formance of single feature-enhanced model in Ta-
ble 1. Then we conduct experiments with top k fea-
tures of each language pair. Results with different
values of k on the development sets in Table 3 indi-
cate that our uncertainty feature-enhanced model
can be further improved with multiple groups of
features.

Finally, based on the results on the development
sets, we select the most appropriate features for
each language pair and predict QE scores on the test
sets with the multiple feature-enhanced model. The
final results on the test sets in Table 4 show that our
uncertainty feature-enhanced model outperforms
the official baseline (Specia et al., 2020) and the
model of TransQuest, which is the winner of the
WMT2020 QE shared task of DA.

5 Conclusion

In this paper, we extend previous work on "glass-
box" QE for uncertainty quantification and explore
how SOTA transfer learning method can benefit
from uncertainty features. First, we re-organize
"glass-box" features from the softmax distribution
and Monte Carlo Dropout sampling in previous
work and derive useful variants. Secondly, based
on the information of training data of the NMT
model, the "glass-box" features in the respect of
data attributes are extracted to predict uncertainty
as well. More importantly, we propose a new
method, which utilizes the masking mechanism
of the pre-trained model to quantify uncertainty
through robustness testing via several pre-designed
"glass-box" features. Finally, we evaluate all the
"black-box" and "glass-box" approaches by an un-
certainty feature enhanced model on the benchmark
DA datasets of WMT 2020 QE shared task. The ex-
perimental results show that our proposed features
for uncertainty estimation are effective, and the un-
certainty feature-enhanced QE model is superior to
SOTA QE systems.
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A Uncertainty features as unsupervised
approach to QE

All uncertainty quantification features proposed in
Section 3.1-3.5 can be regarded as a unsupervised
approach to quality estimation. The Pearson corre-
lations between each component of these features
and the human annotated ground-truth labels are
calculated in Table 5 and Table 6.
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Group Feature Component
Low Resource Mid Resource High Resource
si-en ne-en et-en ro-en en-de en-zh

IV

Noise-Sim-Simple E 0.2362 0.2327 0.3468 0.3443 0.1286 0.1697
Noise-Sim-Simple Std 0.1834 0.2197 0.3242 0.4093 0.0947 0.1966
Noise-Sim-Simple Combo 0.0532 0.0247 0.2321 0.1652 0.0703 0.0079
Noise-Sim-Simple-y E 0.2293 0.2834 0.3060 0.3990 0.1257 0.1463
Noise-Sim-Simple-y Std 0.1984 0.3174 0.3557 0.5027 0.0894 0.1698
Noise-Sim-Simple-y Combo 0.0110 0.0487 0.1685 0.2474 0.0595 0.0152
Noise-Sim-PE E 0.2554 0.3118 0.3272 0.4801 0.0961 0.1980
Noise-Sim-PE Std 0.1885 0.0694 0.2120 0.0228 0.0759 0.0059
Noise-Sim-PE Combo 0.0173 0.1551 0.3927 0.3692 0.1388 0.1545
Noise-Sim-PE-y E 0.3123 0.3503 0.3818 0.5014 0.0877 0.2067
Noise-Sim-PE-y Std 0.1807 0.1179 0.2621 0.0326 0.0802 0.0385
Noise-Sim-PE-y Combo 0.0477 0.1518 0.4439 0.4107 0.1579 0.1447
Noise-Sim-Inner-Simple E 0.3557 0.3213 0.3903 0.4119 0.0953 0.2368
Noise-Sim-Inner-Simple Std 0.2078 0.2190 0.3062 0.4311 0.0947 0.2141
Noise-Sim-Inner-Simple Combo 0.1731 0.1861 0.3615 0.1357 0.0655 0.1917
Noise-Sim-Inner-Simple-y E 0.3871 0.4179 0.3681 0.4990 0.0779 0.0669
Noise-Sim-Inner-Simple-y Std 0.2708 0.3160 0.3674 0.5303 0.0957 0.0647
Noise-Sim-Inner-Simple-y Combo 0.3069 0.3600 0.3601 0.4129 0.0758 0.1518
Noise-Sim-Inner-PE E 0.2859 0.2654 0.3106 0.4612 0.0256 0.1895
Noise-Sim-Inner-PE Std 0.2145 0.1078 0.0572 0.1836 0.0489 0.0066
Noise-Sim-Inner-PE Combo 0.0955 0.0429 0.1707 0.0461 0.1074 0.0590
Noise-Sim-Inner-PE-y E 0.3321 0.3000 0.3787 0.4791 0.0252 0.0967
Noise-Sim-Inner-PE-y Std 0.1947 0.1218 0.0569 0.1777 0.0424 0.0246
Noise-Sim-Inner-PE-y Combo 0.0836 0.0341 0.2378 0.1133 0.1205 0.0370
Noise-Pstep-Simple E 0.3639 0.4866 0.4870 0.6449 0.2046 0.2630
Noise-Pstep-Simple Std 0.3089 0.2755 0.2955 0.3751 0.1217 0.2182
Noise-Pstep-Simple Combo 0.1546 0.1125 0.0348 0.0115 0.0039 0.0535
Noise-Pstep-Simple-y E 0.3661 0.4798 0.4841 0.6465 0.1870 0.2576
Noise-Pstep-Simple-y Std 0.3298 0.3226 0.3289 0.4495 0.1648 0.2125
Noise-Pstep-Simple-y Combo 0.1310 0.0530 0.0374 0.0058 0.0339 0.0106
Noise-Pstep-PE E 0.2978 0.4643 0.4046 0.5820 0.0845 0.1910
Noise-Pstep-PE Std 0.2233 0.2450 0.0530 0.2973 0.0703 0.0493
Noise-Pstep-PE Combo 0.0182 0.0309 0.2562 0.1735 0.0025 0.1149
Noise-Pstep-PE-y E 0.3179 0.4544 0.4010 0.5718 0.0654 0.1970
Noise-Pstep-PE-y Std 0.2678 0.2582 0.0322 0.2432 0.0865 0.0944
Noise-Pstep-PE-y Combo 0.0526 0.0098 0.2159 0.1961 0.0060 0.0744

Table 5: (PART-I) Pearson correlations between all single uncertainty quantification features and human DA judg-
ments on development sets of WMT 2020 QE DA task. Features in group IV are described in Section 3.4. Each
feature has multiple components including expectation (E), standard deviation (Std) and a combined ratio of the
two (Combo). Results of best models in each group are marked in bold. Considering some features have negative
correlation with the labels, the absolute values are remained.
.
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Group Feature Component
Low Resource Mid Resource High Resource
Si-En Ne-En Et-En Ro-En En-De En-Zh

I
Pstep E 0.4437 0.5315 0.4870 0.6481 0.2061 0.2583
Pstep Std 0.4185 0.4724 0.4712 0.5958 0.2603 0.3020
Pstep Combo 0.0430 0.0680 0.0493 0.0182 0.0941 0.0234

II

MC-Pstep E 0.4819 0.5429 0.6199 0.6956 0.2157 0.2979
MC-Pstep Std 0.4285 0.3848 0.3473 0.4191 0.2636 0.2592
MC-Pstep Combo 0.1962 0.1767 0.1620 0.0120 0.1089 0.0344
MC-Sim E 0.4007 0.4230 0.4981 0.6257 0.1407 0.2473
MC-Sim Std 0.1323 0.1560 0.0023 0.1080 0.0324 0.0719
MC-Sim Combo 0.2419 0.3063 0.4823 0.4686 0.1332 0.2078
MC-Sim-Inner E 0.4451 0.4617 0.5165 0.6248 0.1760 0.2610
MC-Sim-Inner Std 0.2098 0.1724 0.0117 0.2857 0.0648 0.1124
MC-Sim-Inner Combo 0.2388 0.3221 0.5447 0.4806 0.1661 0.2034

III

DS-gram 1-gram 0.1451 0.1783 0.4201 0.4557 0.0812 0.1277
DS-gram 2-gram 0.1446 0.1585 0.3605 0.4227 0.0453 0.1871
DS-gram 3-gram 0.0541 0.0502 0.2746 0.3227 0.0579 0.1141
DS-gram 4-gram 0.0336 0.0119 0.1954 0.2362 0.0071 0.0727
DS-gram 5-gram 0.0507 0.0089 0.1019 0.1565 0.0147 0.0596
DS-neighbors 1 neighbor of x 0.0860 0.0416 0.1723 0.3208 0.1289 0.1139
DS-neighbors 3 neighbor of x 0.0469 0.0550 0.1681 0.2566 0.0899 0.1283
DS-neighbors 5 neighbors of x 0.0324 0.0654 0.1608 0.2044 0.0756 0.1232
DS-neighbors 10 neighbors of x 0.0347 0.0699 0.1431 0.1711 0.0677 0.0972
DS-neighbors 30 neighbors of x 0.0325 0.0794 0.1049 0.0736 0.0983 0.0208
DS-neighbors 1 neighbor of y 0.0331 0.0349 0.1006 0.1332 0.1699 0.1297
DS-neighbors 3 neighbor of y 0.0210 0.0489 0.1222 0.1495 0.1763 0.1496
DS-neighbors 5 neighbors of y 0.0150 0.0464 0.1098 0.1572 0.1769 0.1569
DS-neighbors 10 neighbors of y 0.0115 0.0399 0.1060 0.1597 0.1773 0.1625
DS-neighbors 30 neighbors of y 0.0207 0.0447 0.1089 0.1548 0.1733 0.1409

V

MLM-Pmask-Simple E 0.1905 0.0996 0.3332 0.1254 0.0431 0.1490
MLM-Pmask-Simple Std 0.1154 0.0546 0.2797 0.0891 0.0008 0.0811
MLM-Pmask-Simple Combo 0.1993 0.0995 0.2659 0.1337 0.0719 0.1666
MLM-Pmask-Simple-y E 0.3511 0.3707 0.3619 0.4402 0.0498 0.1698
MLM-Pmask-Simple-y Std 0.2933 0.3102 0.3210 0.2818 0.0044 0.0856
MLM-Pmask-Simple-y Combo 0.3039 0.3187 0.3866 0.4473 0.0757 0.1888
MLM-Pmask-PE E 0.1874 0.1506 0.3214 0.1414 0.0429 0.1680
MLM-Pmask-PE Std 0.1289 0.0739 0.0121 0.0915 0.1006 0.0403
MLM-Pmask-PE Combo 0.1978 0.1388 0.2590 0.1852 0.1435 0.0704
MLM-Pmask-PE-y E 0.2966 0.3641 0.3816 0.4142 0.0779 0.2033
MLM-Pmask-PE-y Std 0.0982 0.0144 0.0598 0.0115 0.0613 0.0146
MLM-Pmask-PE-y Combo 0.2512 0.2005 0.3087 0.2671 0.1216 0.1341
MLM-FPmask E 0.2241 0.1708 0.3263 0.1552 0.0780 0.2203
MLM-FPmask Std 0.1587 0.1769 0.2844 0.1546 0.0659 0.2069
MLM-FPmask Combo 0.2012 0.0870 0.2692 0.0837 0.0578 0.1347
MLM-FPmask-y E 0.2978 0.3517 0.3211 0.3259 0.0575 0.2181
MLM-FPmask-y Std 0.1953 0.2745 0.2405 0.2263 0.0543 0.1994
MLM-FPmask-y Combo 0.3406 0.3322 0.3714 0.4298 0.0588 0.1678

Table 6: (PART-II) Pearson correlations between all single uncertainty quantification features and human DA
judgments on development sets of WMT 2020 QE DA task. Features in groups I,II,III and V are described in
Section 3.1, 3.2, 3.3, and 3.5.
.


