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Abstract

Recent work in multilingual natural language
processing has shown progress in various tasks
such as natural language inference and joint
multilingual translation. Despite success in
learning across many languages, challenges
arise where multilingual training regimes of-
ten boost performance on some languages at
the expense of others. For multilingual named
entity recognition (NER) we propose a sim-
ple technique that groups similar languages to-
gether by using embeddings from a pre-trained
masked language model, and automatically
discovering language clusters in this embed-
ding space. Specifically, we fine-tune an XLM-
Roberta model on a language identification
task, and use embeddings from this model for
clustering. We conduct experiments on 15 di-
verse languages in the WikiAnn dataset and
show our technique largely outperforms three
baselines: (1) training a multilingual model
jointly on all available languages, (2) train-
ing one monolingual model per language, and
(3) grouping languages by linguistic family.
We also conduct analyses showing meaning-
ful multilingual transfer for low-resource lan-
guages (Swahili and Yoruba), despite being au-
tomatically grouped with other seemingly dis-
parate languages.

1 Introduction

Large transformer language models (Vaswani et al.,
2017; Devlin et al., 2019) have shown impressive
progress on tasks across different languages, in-
cluding joint multilingual learning. Many works
have focused on cross-lingual transfer from high-
to low-resource languages in a zero- or few-shot
setting (Hu et al., 2020). However recent work has
also highlighted that small amounts of data may
be available for some low-resource languages, and
even very few examples for fine-tuning on a target
language can be effective (Lauscher et al., 2020).
Given these insights and the scarcity of studies that
present a middle ground between monolingual and

multilingual learning, we investigate methods for
clustering languages to boost multilingual perfor-
mance on named entity recognition (NER).

One transformer model that has shown particu-
larly strong performance on multilingual tasks is
XLM-Roberta (Conneau et al., 2020), a variant of
the Roberta model (Liu et al., 2019) that adapts the
multilingual training regime of XLM (Lample and
Conneau, 2019) to a CommonCrawl corpus con-
taining 100 languages. This model can be adapted
to tasks in multiple languages, and we take this as
the base model for NER fine-tuning. Additionally,
inspired by work in multilingual neural machine
translation (NMT) (Tan et al., 2019), we investi-
gate a method for grouping similar languages using
an automated clustering method. We provide a fo-
cused evaluation of this method on 15 languages
from the WikiAnn corpus (Pan et al., 2017) follow-
ing the train-test splits from Rahimi et al. (2019)
and show that NER models trained on language
clusters largely outperform (a) individual monolin-
gual models trained for each language, (b) multilin-
gual models trained on languages that are grouped
by linguistic family, and (c) a single multilingual
model trained on all available languages.

2 Related Work

Mueller et al. (2020) fine-tune multilingual NER
models monolingually on individual target lan-
guages, showing this technique to be effective in
boosting F1 scores in all considered languages in
their study. In a similar vein, Lauscher et al. (2020)
test the effectiveness of few-shot adaptation of mul-
tilingual models to new languages, finding that
even including as few as 10 samples from the tar-
get language increases performance over zero-shot
transfer.

Similar to our work, Chung et al. (2020) explore
grouping languages by similarity, but focus on op-
timally constructing multilingual sub-word vocab-
ularies, and show that these inputs perform bet-
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ter on tasks such as XNLI and WikiAnn NER. In
a more focused work, Arkhipov et al. (2019) in-
vestigate NER performance on four related Slavic
languages, and demonstrate the advantages of pre-
training multilingual BERT on the unsupervised
language modeling task. Finally, while not focus-
ing on NER, Tan et al. (2019) show performance
gains in multilingual NMT using clustering based
on language tag embeddings. We take most direct
inspiration from this work, though our embedding
technique differs.

3 Clustering Languages for Multilingual
NER

While many of the works above provide insight into
multilingual NER performance in both broad and
narrow contexts, many focus on zero- or few-shot
transfer, or linguistically similar language groups.
Our work seeks to fill a gap by studying multi-
lingual NER performance for several diverse lan-
guages where data is available (though not evenly
distributed) to understand how to best group lan-
guages for multilingual NER training. Here we
present our proposed automatic clustering approach
to address this problem.

To obtain input representations for a clustering
algorithm, we use a pre-trained XLM-R model.1

For each sentence in our corpus, we obtain a single
vector for the sentence as the output from XLM-
R. We then input these vectors to a clustering al-
gorithm to obtain cluster-assigned labels for each
sentence. To obtain the final cluster label for an
entire language, we simply compute the majority
vote of the clustering labels for all sentences within
a language.

While the base XLM-R model provides a good
starting point for downstream tasks, we found that
when clustering in this model’s embedding space
most languages were assigned to the same clus-
ter regardless of the number of desired clusters.2

Thus, we fine-tune XLM-R on a language iden-
tification task where the model is trained to clas-
sify sentences into one of the 15 languages in the
dataset. We then use the [CLS] token embedding
that is fed to the classification layer during fine-
tuning as the input for clustering. This language
identification model is fine-tuned for 3 epochs on

1We use the following pre-trained weights: https://
huggingface.co/xlm-roberta-base

2We experimented with using the [CLS] token and max-
pooling over the final hidden states as input for the clustering
algorithm.

the WikiAnn training set with a batch size of 20,
and achieves an overall accuracy of 90% across
all languages. Figure 1 shows qualitative evidence
of strong grouping of languages such as overlap
between Chinese and Japanese that is reflected in
assigned clusters in Section 4 below.

To automatically group languages, we fol-
low Tan et al. (2019) in choosing bottom-up ag-
glomerative clustering, which assigns each data
point its own cluster and iteratively merges clusters
such that the sum of squared distances between
points within all clusters is minimized. Similar to
k-means, agglomerative clustering uses a k hyper-
parameter for the number of clusters, and after
experimentation with k ∈ {3, 4, 5, 6} and noting
sub-optimal groupings for many values of k, we
set this parameter to 4.

4 Experimental Setup

For training NER models with this method, we
group all sentences from languages that are as-
signed the same cluster and train and evaluate on
these languages from the WikiAnn dataset. We
compare these models against monolingual mod-
els for each language, a single multilingual model
trained on all languages, and another set of grouped
models using linguistic family as the assigned
group. Language groupings for the automated
clustering method and the linguistically-informed
method are shown in tables 1 and 2 respectively.

We note several observations from these group-
ings. First, several languages appear in their own
individual clusters when grouped by linguistic fam-
ily (ja, ko, zh) or our clustering method (ar). In
these cases results for grouped models are identical
to those for monolingual models. Second, we note
differences between the automated and linguistic
grouping methods, most notably the inclusion of
Yoruba and Swahili in an otherwise Indo-European
cluster. This may be the result of few examples
for these two languages in this dataset3, however
we show in Section 5 that this grouping is benefi-
cial to these languages in our experiments despite
being counter-intuitive from a linguistic perspec-
tive. Finally, we note the grouping of Chinese and
Japanese under the automatic clustering method,
consistent with qualitative evidence from overlap in
semantic space of the fine-tuned language classifier
discussed above.

3WikiAnn contains 100 yo and 1,000 sw training examples
compared to 20,000 for most other languages studied here.

https://huggingface.co/xlm-roberta-base
https://huggingface.co/xlm-roberta-base
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Figure 1: Two-dimensional TSNE projection of sentences for max-pooled XLM-R hidden states (left), and for
XLM-R after fine-tuning on the language classification task (right).

Cluster Number Languages

Cluster 1 ar
Cluster 2 da, de, en, es, fr, hi, it, sw, yo
Cluster 3 he, ko, ru
Cluster 4 ja, zh

Table 1: Assignments for languages based on cluster-
ing method.

Language Family Languages

Indo-European da, de, en, es, fr, hi, it, ru
Afro-Asiatic he, ar
Niger-Congo sw, yo

Koreanic ko
Japonic ja

Sino-Tibetan zh

Table 2: Assignments for languages based on linguistic
family.

We initialize all NER models from the pre-
trained XLM-R checkpoint available from the Hug-
gingface Transformers library (Wolf et al., 2020)
and train all models for 3 epochs, with a batch size
of 20, and maximum input sequence length of 300
sub-tokens. We evaluate with span-based F1 score
as in the CoNLL-2003 evaluation script (Sang and
Meulder, 2003), and report this metric for the three
classes available in the dataset - location, organiza-
tion, and person.

5 Results

Table 3 presents an overview of results from our
experiments. For each language grouping we train
five models, each newly initialized from the XLM-
R weights except for the token classification head,
whose weights are randomly initialized. Table 3
reports mean scores over these five training runs
with standard deviation in parentheses. We first
note fairly strong performance across all methods
and languages except Swahili and Yoruba in the
monolingual and language family settings. This is
unsurprising given that these languages have sig-
nificantly less data in the WikiAnn dataset. For
most classes and languages, best performance is
observed when using the proposed language clus-
tering technique. We note slightly better perfor-
mance using multilingual training for some lan-
guages, however these differences are typically less
than one F1 point when compared to the clustering
based models. Most notably, for Arabic we see
best performance across all classes under the fully
multilingual grouping, suggesting a need for im-
provement in our clustering method which assigns
Arabic to its own cluster. Overall, these results
show evidence that grouping languages together
for multilingual NER provides a strong alternative
to training a monolingual model for each language
or a single multilingual model for all languages.

Additional information about these results is
plotted in Figure 2 below.4 Here we use box plots
to show the distribution of the class-averaged F1

4Note that y-axes are separately scaled for each sub-plot
to show detail for each language.
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Monolingual Language Family Clustering Multilingual

LOC ORG PER LOC ORG PER LOC ORG PER LOC ORG PER

yo 13.13 (5.67) 4.32 (0.42) 5.17 (2.98) 24.59 (13.68) 7.17 (4.24) 29.15 (6.94) 83.89 (1.18) 79.42 (0.43) 90.61 (0.68) 74.99 (3.26) 73.05 (5.08) 82.10 (1.06)
sw 60.74 (0.51) 67.54 (0.89) 61.92 (2.26) 52.48 (6.04) 59.25 (1.68) 53.90 (5.72) 88.62 (0.36) 88.87 (0.62) 92.57 (0.33) 86.68 (0.99) 86.49 (0.29) 91.10 (0.26)
it 87.88 (0.37) 79.25 (1.96) 89.92 (1.19) 89.58 (0.16) 82.70 (0.62) 92.61 (1.15) 91.02 (0.26) 85.31 (0.10) 94.43 (0.12) 89.94 (0.08) 83.41 (0.61) 93.63 (0.21)
de 85.48 (0.60) 74.63 (0.35) 86.04 (0.37) 86.26 (0.28) 76.86 (0.72) 88.42 (0.44) 87.65 (0.28) 79.42 (0.28) 89.26 (0.08) 86.33 (0.48) 77.36 (0.21) 88.59 (0.17)
en 81.97 (1.24) 68.26 (1.45) 83.82 (1.58) 84.36 (0.11) 72.78 (0.72) 86.98 (0.19) 86.17 (0.01) 75.61 (0.05) 88.58 (0.12) 84.81 (0.37) 73.50 (0.85) 87.9 (0.11)
da 90.56 (0.47) 81.72 (1.26) 89.45 (1.28) 91.45 (0.11) 84.39 (0.42) 92.36 (0.25) 92.46 (0.02) 85.05 (0.22) 93.19 (0.05) 91.41 (0.07) 84.73 (0.41) 93.23 (0.32)
es 84.99 (3.97) 76.23 (5.63) 83.68 (4.41) 89.96 (0.09) 84.45 (0.63) 91.57 (0.37) 91.10 (0.19) 85.71 (0.01) 92.26 (0.41) 90.33 (0.28) 85.60 (0.40) 92.31 (0.13)
fr 86.04 (2.09) 75.38 (3.57) 85.71 (3.94) 89.01 (0.31) 81.79 (0.52) 91.60 (0.35) 90.95 (0.11) 84.54 (0.17) 93.04 (0.14) 89.37 (0.32) 82.32 (0.35) 92.04 (0.10)
hi 80.62 (0.28) 82.69 (0.18) 88.27 (0.89) 81.63 (1.49) 83.62 (1.14) 90.61 (0.89) 84.15 (0.72) 85.29 (0.56) 91.46 (0.04) 84.14 (1.37) 85.14 (0.35) 91.96 (0.29)
ar 88.36 (0.09) 80.06 (0.48) 87.10 (0.13) 87.83 (0.53) 79.83 (0.32) 86.86 (0.12) 88.36 (0.08) 80.06 (0.48) 87.10 (0.13) 88.75 (0.38) 81.76 (0.36) 89.20 (0.26)
he 87.12 (0.01) 77.63 (0.05) 87.93 (0.06) 85.48 (0.26) 75.24 (0.64) 85.76 (0.38) 86.99 (0.14) 78.45 (0.26) 88.31 (0.08) 86.2 (0.38) 78.04 (0.39) 87.70 (0.24)
ru 88.77 (0.07) 82.04 (0.19) 94.47 (0.17) 88.29 (0.28) 81.74 (0.27) 94.02 (0.15) 89.44 (0.10) 82.78 (0.18) 94.05 (0.31) 88.84 (0.21) 82.29 (0.46) 94.59 (0.05)
ko 91.20 (0.03) 79.19 (0.10) 87.60 (0.19) 90.72 (0.25) 76.69 (0.53) 84.41 (0.68) 91.58 (0.14) 79.86 (0.25) 87.65 (0.15) 90.72 (0.39) 79.03 (0.69) 86.48 (0.25)
zh 76.61 (0.74) 63.78 (0.59) 80.61 (1.21) 76.61 (0.74) 63.78 (0.59) 80.61 (1.21) 81.52 (0.51) 71.45 (0.17) 84.40 (0.02) 81.22 (0.26) 71.99 (0.44) 84.93 (0.20)
ja 71.63 (0.72) 57.06 (1.46) 71.85 (2.29) 71.63 (0.72) 57.06 (1.46) 71.85 (2.29) 75.26 (0.28) 62.39 (0.38) 76.73 (0.50) 73.55 (0.90) 62.68 (0.38) 77.45 (0.25)

Table 3: Comparison of F1 score results on WikiAnn test set. Each score is the mean over five training runs, with
standard deviation reported in parentheses.

score for each language, with each box representing
a different language grouping. This visualization
highlights interesting differences in the spread of
scores, including comparatively large spread for
monolingual training of languages such as Italian,
French and Spanish. Conversely, we see relatively
little spread in scores for the clustered language
grouping within each language. This may be evi-
dence of increased training stability when grouping
similar languages together, although further work
is needed to better understand these trends.

We also note drastic performance improvement
for Swahili and Yoruba when trained in a sin-
gle multilingual model compared to monolingual
training, consistent with previous findings for low-
resource languages in multilingual settings (Rahimi
et al., 2019; Hu et al., 2020; Mueller et al., 2020;
Conneau et al., 2020). However, we observe
best performance for these two languages when
grouped using our proposed clustering method,
which is somewhat surprising given the counter-
intuitive grouping with mostly European languages,
though this grouping is also observed in previous
work (Chung et al., 2020).

This raises a question as to whether this improve-
ment is due to effective learning of shared multi-
lingual representations or whether it is primarily
due to availability of more data of any kind. To
test this, we evaluate NER models in a zero-shot
framework where we train a multilingual model on
all languages in Cluster 2 with Swahili and Yoruba
removed and evaluate this model on these two held-
out languages. These results are presented in Ta-
ble 4 below. While we see that this transfer beats
performance from monolingual models for some
classes in these languages, we see that F1 scores for
all classes are well below both the cluster models

and the single multilingual model. This suggests
that some of the increased performance on these
languages in the clustering setting is due to advan-
tageous multilingual transfer.

LOC ORG PER

yo 24.30 (-59.59) 1.46 (-77.96) 61.13 (-29.48)
sw 55.38 (-33.24) 37.35 (-51.52) 87.11 (-5.46)

Table 4: Zero-shot transfer from Cluster 2 to Yoruba
and Swahili. Parentheses show difference in F1-score
compared to clustering model results.

Finally, as a test of generalization of our method
we evaluate on the English test set of the ConNLL-
2003 NER dataset. We present results from training
on four different training sets: the WikiAnn train-
ing set containing languages in Cluster 2 (denoted
WikiAnn in our results), the CoNLL-2003 English
training set (denoted CoNLL-2003), the combina-
tion of all WikiAnn and CoNLL-2003 training data
(denoted All), and finally the combination of the
WikiAnn language Cluster 2 training set with the
CoNLL-2003 training set (denoted as Cluster Com-
bined). We train each model for a single run with
the same settings described above, and present our
results in Table 5 below.

WikiAnn CoNLL-2003 All Cluster Comb.

58.06 90.27 89.02 90.83

Table 5: Average F1 scores on CoNLL-2003 English
test set.

We first note poor performance from the model
trained solely on WikiAnn data, which is unsurpris-
ing given the domain mismatch and idiosyncrasies
in each of the datasets. Performance improves sub-
stantially in all cases where CoNLL training data
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Figure 2: Distribution of average F1 scores over five runs for each language and language grouping.

is used, with best performance noted in the “Clus-
ter Combined” model, which slightly outperforms
using all available training data from both datasets.
This suggests that even in a new domain the multi-
lingual representations of closely related languages
may be helpful, and that utilizing related languages
is more useful than simply combining all available
multilingual training data as in the “All” setting.
We finally note that, despite not being extensively
tuned on this dataset, we achieve results within 3.5
F1 points of previously reported state of the art
results on this test set (Yamada et al., 2020).

6 Conclusion

We have presented a simple data-driven clustering
technique for improving performance on multilin-
gual NER, and showed that this technique largely
outperforms naive combination of all languages
studied here within a single model, as well as out-
performing monolingual models and models for
languages grouped by linguistic family. We fur-
ther tested whether improved performance for low-
resource languages in the Niger-Congo family was
solely the result of more available data and showed
evidence of multilingual transfer via a focused zero-
shot experiment. We believe this straightforward
method can be easily applied to other multilingual
settings as has been shown in previous work in
NMT.
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