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Abstract

Sememes are defined as the atomic units to
describe the semantic meaning of concepts.
Due to the difficulty of manually annotating
sememes and the inconsistency of annotations
between experts, the lexical sememe predic-
tion task has been proposed. However, previ-
ous methods heavily rely on word or charac-
ter embeddings, and ignore the fine-grained in-
formation. In this paper, we propose a novel
pre-training method which is designed to bet-
ter incorporate the internal information of Chi-
nese character. The Glyph enhanced Chinese
Character representation (GCC) is used to as-
sist sememe prediction. We experiment and
evaluate our model on HowNet, which is a fa-
mous sememe knowledge base. The experi-
mental results show that our method outper-
forms existing non-external information mod-
els.

1 Introduction

In linguistics, sememes are defined as the minimum
semantic units for human language (Bloomfield,
1926), which describe the semantic meaning of
concepts. HowNet (Dong and Dong, 2003) is one
of the most well-known sememe knowledge bases
(KB), which has been widely used in many NLP
tasks (Qi et al., 2021), such as semantic similarity
computation (Liu, 2002), sentiment analysis (Fu
et al., 2013; Huang et al., 2014), language mod-
eling (Gu et al., 2018), word representation learn-
ing (Niu et al., 2017) and short text matching (Lyu
et al., 2021).

In order to free human experts from the labori-
ous sememe annotating job, Xie et al. (2017) pro-
pose the task of sememe prediction, which intends
to automatically select related sememes from a
closed sememe set for each word. They propose
two frameworks based on word embedding and ma-
trix factorization. But these methods usually fail to
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Figure 1: Glyphs of Chinese character which are bene-
ficial to lexical sememe prediction.

deal with the prediction problem of low-frequency
words.

Motivated by this, Jin et al. (2018) present
character-enhanced sememe prediction (CSP), tak-
ing advantage of both internal character informa-
tion and external context information of words.
However, CSP is an ensemble model which still
relies on word and character representation, and
ignores the fine-grained information.

For internal structural information of words,
many researchers believe that only using characters
is not sufficient for capturing the semantic informa-
tion (Yu et al., 2017; Cao et al., 2018; Sun et al.,
2019; Meng et al., 2019). For instance, the words
“森林(forest)” and “木头(wood)” are semantically
related. But these two words share no informa-
tion since they consist of different characters. To
address this problem, we split each Chinese char-
acter into several components, and regard compo-
nent as the minimum unit to express the mean-
ing of the character. We believe that fine-grained
units can share more information between semanti-
cally related words, which helps model prediction.
Take Figure 1 for example, the characters of word
“濒海(near the sea)” have components “步(step)”
and “氵(water)”, which are related to its sememes,
namely “靠近(BeNear)” and “水域(waters)”, re-
spectively.

In order to better incorporate the internal infor-
mation of Chinese character, we pre-train a Glyph
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Figure 2: Architecture of glyph enhanced pre-training model for Chinese characters.

enhanced Chinese Character embedding (GCC)
for sememe prediction task. More specifically, we
use the same model structure as BERT (Kenton
and Toutanova, 2019), but change the input unit
and the masking scheme. First, we regard Chinese
words as our training samples and take components
of each character in the word to form the input
sequence. Second, we mask random tokens and
predict the modified tokens as well as all characters
in the sample.

We evaluate our model on HowNet sememe KB.
Experimental results demonstrate that our model
outperforms the baseline model. In summary, our
contributions include:

• To the best of our knowledge, we are the first
to use masked language model (MLM) objec-
tive to force the model to learn the internal
information of characters.

• We propose a novel sememe prediction frame-
work considering both internal and contextual
character information.

• Our method is particularly useful for low-
frequency words and shows the effectiveness
and robustness on the dataset.

2 Methodology

In this section, we first introduce the architecture
of pre-training model. Then, we describe how to
incorporate pre-trained representation into sememe
prediction task.

2.1 Pre-Training Model Architecture
As shown in Figure 2, the framework of our pre-
training model includes an embedding layer and a

masked transformer encoder layer.
First, we use the file1 about structures of Han

Ideographs and refer to Ke and Hagiwara2 to get
all the Chinese character trees. Then, we use the
depth-first algorithm to convert each character tree
into the format of a sequence (Nguyen et al., 2019).
Note that, there are two types of tokens in the input
sequence. As shown in the left block in Figure
2, the leaf nodes (position 2, 5, 6, 7) are compo-
nents of Chinese character, and the inner nodes
(position 1, 3, 4) are structural composition opera-
tors (such as vertical stacking) applied to children
nodes. The character “濒 (near)” can be serialized
as {char, xT1 , xC2 , xT3 , xT4 , xC5 , xC6 , xC7}, where C is
the set of components, T is the structural composi-
tion operator set.

2.1.1 Embedding Layer
The input embedding of the model is the sum of
token embedding, type embedding, position em-
bedding and character segmentation embedding.

For token embedding, we maintain two lookup
tables (Sun et al., 2020) and use [CHAR] as the
character tag which represents the entire character
information, [S_M] to mask the structure type to-
ken and [C_M] to mask the component token. To
distinguish them, we simply use type embedding
to indicate the token types, i.e. CHAR for charac-
ter tag, STC for structure type token and CPN for
component token. As for position embedding, we
assign a number starting from 0 to each token be-
longing to the same character. Finally, our model
use segmentation embedding to identify different
characters. For instance, the input sequence in Fig-

1https://github.com/tomcumming/chise-ids
2https://github.com/yuanzhiKe/Radical_CR_Encoder
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ure 2 is marked with a sequence of segment tags,
i.e. {A, ..., A, B, ..., B}. All the embeddings have
the same dimension d.

2.1.2 Masked Transformer Encoder
We use the multi-head self-attention network as
the basic structure. Given the representation of
sequence tokens X ∈ Rn×d, where n is the number
of tokens in the sequence and d is the dimension of
each token. The process of masked self-attention
can be formulated by

A =
(XWQ)(XWK)>√

dk
,

X̃ = Softmax (A+M) (XWV ),

(1)

where WQ,WK ,WV ∈ Rd×dk are learnable pa-
rameters, and M ∈ Rn×n is the attention mask
matrix (Liu et al., 2020). We obtain M by setting
Mij to 0 when xj is visible to xi while setting Mij

to −∞ when xj is invisible to xi. More specifi-
cally, all tokens belonging to the same character are
visible to each other; and the special tags [CHAR]
are also visible to each other. Thus, the output rep-
resentation of [CHAR] not only contains internal
component information of the character itself, but
also other character information in the word.

2.1.3 Pre-Training Objective
MLM objective is used in our model. Generally,
we mask 15% of the input sequence at random;
of those, 80% are replaced by their mask token
([C_M] for component tokens, [S_M] for struc-
ture type tokens), 10% are replaced by a random
token which belongs to the same token type, and
10% are kept unchanged. We train a model to pre-
dict the original tokens from the modified input.
Masking component tokens helps model to learn
the fine-grained information from the contextual
component sequence. Masking structure type to-
kens helps model to learn the structural information
of components.

We also predict the character of tag [CHAR].
This objective forces model to gather all use-
ful multi-granularity information to the token
[CHAR]. The advantage is that we can easily use
the hidden output of [CHAR] as the character rep-
resentation u for downstream tasks, such as se-
meme prediction task.

2.2 Sememe Prediction Model
Given a word w ∈ W , the goal of our model is to
predict the corresponding P (s|w) for each sememe

Sememe Table

水域 waters
面 planar
靠近 BeNear
知识 knowledge
陆地 land

…

濒海 濒 海

Glyph enhanced
Chinese character embedding

word char char

Figure 3: The framework of GCC for sememe predic-
tion task.

s ∈ S, where W is the word set and S is the
set of sememes existing in HowNet. Then, we
recommend sememes with high scores to w.

Our sememe prediction model GCC (Figure 3)
has two parts, one is an encoder which encodes the
word-related information into a vector and the other
is a multi-label classifier, which uses the vector to
compute scores for each sememe.

We use Bidirectional LSTM (Bi-LSTM) (Schus-
ter and Paliwal, 1997) as the encoder. For
each word w, we concatenate the word and the
characters ci in the word as {w, c1, ..., cn}, and
then convert it to {w, c1, ..., cn} with the em-
bedding trained on SogouT corpus3 using Skip-
gram (Mikolov et al., 2013). We incorporate our
pre-trained character embedding by addition opera-
tion:

ĉi = ci +WUui, (2)

where WU is a projection matrix and ui is the char-
acter representation mentioned in Section 2.1.3.

Then, we pass it to Bi-LSTM. The concatenation
of the last hidden states in both directions, denoted
as h, is fed to the multi-label classifier:

h = Bi-LSTM(w, ĉ1, ..., ĉn), (3)

x = Wh+ b, (4)

where W ∈ R|S|×2l, x,b ∈ R|S|, l represents the
dimension of hidden states in a single direction.
Each element of x is a score related to the sememe
in S. For training, we use the multi-label one-
versus-all cross-entropy loss, where σ is a sigmoid
function and yj ∈ {0, 1} represents whether the
j-th sememe is in the sememe set of word w:

L = − 1

|S|

|S|∑
j=1

yjσ (xj) + (1− yj)σ (−xj) .

(5)
3https://www.sogou.com/labs/resource/t.php
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3 Experiments

3.1 Experimental Setup
Pre-Training Data We adopt Tencent embed-
ding corpus (Song et al., 2018) which covers over
8 million Chinese words and phrases. We remove
non-Chinese characters such as punctuation and
pure digits, and finally get 7,291,828 words as our
pre-training samples.

Sememe Prediction Dataset To make the re-
sults comparable, we follow Du et al. who pro-
posed the previous state-of-the-art model. This
dataset is constructed from HowNet sememe KB,
where they disregard the hierarchical structures of
sememes and filter out the low-frequency sememes
which appear less than 5 times in HowNet. The fi-
nal number of sememes we use is 1, 400. The total
number of words in the dataset is 48,383, which are
divided into non-overlapping training, validation,
and test sets in the ratio of 8:1:1.

Hyper-parameters Both pre-training and the se-
meme prediction models are trained by Adam with
a learning rate of 0.0001 (Kingma and Ba, 2014).
For pre-training, we use the structure of BERT-base
and the batch size is 1024. For sememe prediction,
the dimension of word embedding is 200, the di-
mension of Bi-LSTM hidden states is 512 × 2,
and the batch size is 128. Our code is available at
https://github.com/lbe0613/GCC.

3.2 Evaluation Metrics
Following Xie et al., we use mean average pre-
cision (MAP) as evaluation metrics. We rank all
sememes according to the model output. For a
word with K sememes, we get MAP by

MAP =

K∑
k=1

k

rk
, (6)

where the rankings of the K sememes are r1 ≤
r2 ≤ ... ≤ rK .

3.3 Results
In Table 1, we report average results of 5 runs to
ensure the reliability of results.

We compare our model with two types of base-
lines: representation-based models and definition-
based models. Traditional representation-based
models include SPWE and CSP, which is an en-
semble model relying on word and character em-
bedding. Definition-based models utilize dictio-
nary definitions as the external information. Such

Models MAP
SPWE (Xie et al., 2017) 55.04
CSP (Jin et al., 2018) 58.93
LD+Seq2Seq† (Li et al., 2018) 30.49
MC† (Du et al., 2020) 60.55
SCorP† (Du et al., 2020) 64.65
GCC w/o pre-train (Ours) 58.18
GCC♣ (Ours) 60.23
JWE♣ (Yu et al., 2017) 59.03
Glyce♣ (Meng et al., 2019) 59.10

Table 1: Sememe prediction results of all models. The
second part models with † utilize external dictionary
definition information, and the third part models with
♣ consider glyph information.

models include LD+Seq2Seq, MC and SCorP. Our
GCC models belong to representation-based mod-
els. We also compare GCC with other models uti-
lizing glyph information. Here, we simply replace
our GCC embedding in Figure 3 with character
embedding in JWE and Glyce.

As shown in Table 1, the models considering
glyph information perform better than all tradi-
tional representation-based models, which demon-
strates that glyph can enhance Chinese character
embedding for sememe prediction task. Especially,
GCC has an absolute improvement of 2.05% com-
pared to GCC baseline without pre-training and sig-
nificantly outperforms JWE and Glyce. The reason
is that firstly Chinese characters are pictographic
characters, and glyphs express the meaning of the
word to a certain extent, which is related to the se-
memes of the word. Secondly, pre-training enables
GCC to better integrate fine-grained information
into Chinese character representation.

In addition, since experts refer to dictionary defi-
nitions when annotating sememes (Dong and Dong,
2003), it is very powerful semantic information
for sememe prediction. Even though, our model
is still comparable to MC and even better than
LD+Seq2Seq when only using the information in
words.

3.4 Influence of Word Frequency
Figure 4 shows the evaluation results of different
frequencies on four strong models. We can see
that GCC is superior to other models in all word
frequency ranges. In addition, word frequency has
great impacts on sememe prediction. Since low-
frequency words are usually unrelated to each other
and contain fewer and simpler sememes, the per-

 https://github.com/lbe0613/GCC
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Figure 4: Results of different word frequencies on sememe prediction. The numbers of words in the four ranges
are 3316, 2407, 2874 and 839 respectively.

formance of the model is drastically reduced when
facing low-frequency words. However, our model
GCC is particularly helpful in improving the per-
formance of them. When the word frequency is
less than 50, the MAP increases by 3.31% after uti-
lizing glyph enhanced character embedding. Com-
pared with other models using glyph information
(JWE and Glyce), it has an increase of at least
2.3%, which is greater than that of all other word
frequency ranges.

3.5 Case Study
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(b) Example of 葬身 "be buried"

死 廾

Model Sememe/rank Average
Precision

GCC
w/o pre-train 死 die/0, 人 human/6, 埋入 bury/62 44.44

GCC 死 die/0, 人 human/6, 埋入 bury/6 80.95

Model Sememe/rank Average
Precision

GCC
w/o pre-train

食品 food/0, 牲畜 livestock/4, 
部件 part/11, 肉 flesh/27 44.82

GCC 食品 food/0, 部件 part/2, 
肉 flesh/6, 牲畜 livestock/7 64.88

Figure 5: Examples of using glyphs to assist sememe
prediction. The lower the rank, the better.

The examples in Figure 5 show how glyph infor-

mation assist sememe prediction. We present the
sememe labels with their corresponding ranks, and
average precision score of each model. Average
precision refers to the accuracy of a single sam-
ple. The model recommends low-rank sememes to
words. In Figure (a), the meaning of component
“月(moon)” in Chinese is related to “肉 (flesh)”.
Thus, the rank of sememe flesh is raised from 27
to 6 when incorporating glyph information. And
the average precision score increases from 44.82 to
64.88.

In Figure (b), the component “艹(grass)” is
the same as grass, which is related to bury, be-
cause objects can be buried by grass. And the
sememe die is also the component of the charac-
ter “葬(burial)”, which demonstrates the glyphs are
related to the semantics of the word. The result
is also convincing. The rank of sememe bury is
raised from 62 to 6 while the average precision
score increases from 44.44 to 80.95.

4 Conclusion

In this work, we pre-train a Glyph enhanced
Chinese Character embedding (GCC) for sememe
prediction. The model is evaluated on HowNet se-
meme KB and outperforms existing non-external
information models. Our experiments show that
glyph information can enhance the semantic ex-
pression of words, and has a better performance on
low-frequency words.
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