
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 4416–4425
November 7–11, 2021. ©2021 Association for Computational Linguistics

4416

Competing Independent Modules for Knowledge Integration and
Optimization

Parsa Bagherzadeh and Sabine Bergler
CLaC Labs, Concordia University

Montréal, Canada
{p_bagher, bergler}@cse.concordia.ca

Abstract

This paper presents a neural framework of un-
tied independent modules, used here for inte-
grating off the shelf knowledge sources such
as language models, lexica, POS information,
and dependency relations. Each knowledge
source is implemented as an independent com-
ponent that can interact and share informa-
tion with other knowledge sources. We report
proof of concept experiments for several stan-
dard sentiment analysis tasks and show that
the knowledge sources interoperate effectively
without interference. As a second use-case,
we show that the proposed framework is suit-
able for optimizing BERT-like language mod-
els even without the help of external knowl-
edge sources. We cast each Transformer layer
as a separate module and demonstrate perfor-
mance improvements from this explicit inte-
gration of the different information encoded at
the different Transformer layers .

1 Introduction

Pre-trained language models such as BERT (De-
vlin et al., 2019) are trained on large corpora with
unsupervised end-to-end training. Such monolithic
systems cannot take advantage of extant outside
grammatical or domain knowledge as complemen-
tary information.

Many language tasks benefit from knowledge
sources that are known a priori. For sentiment
analysis, for instance, various gazetteer lists and
sentiment lexica encode sentiment words, word
polarity, aspect-sentiment pairs, etc., which were
proven to be effective as knowledge sources in
different machine learning architectures (Özdemir
and Bergler, 2015; Yang et al., 2019; Zhao et al.,
2020; Ke et al., 2020).

Deep learning systems for sentiment analysis
leverage sentiment words to enhance embedding
representations by continuing the pre-training pro-
cess of masked language models (Tian et al., 2020),
or by re-training a modified version of language

model that has intermediate layers for explicit en-
coding of sentiment knowledge (Ke et al., 2020).
This knowledge integration into pre-trained mod-
els exceeds fine-tuning in computational cost and
requires sophisticated training phase calibration.
Moreover, reported approaches only encode a sin-
gle type of knowledge, either lexical (Tian et al.,
2020) or grammatical (Tang et al., 2020). For tasks
that benefit from several types of knowledge, re-
peated retraining becomes prohibitive.

This paper demonstrates the feasibility of using
standard pre-trained language models and incor-
porate external off the shelf knowledge sources
through dedicated and independent modules for
each knowledge component. This framework re-
duces to some degree the need of ML experts for
feature engineering for specific tasks, as creation
of gazetteer lists and specialist lexica with domain
scores is accessible to domain experts.

Modules incorporating knowledge sources are
independent of one another to address major issues
with combining extant knowledge with monolithic
architectures, robustness, flexibility, and trans-
parency.

Robustness Independent modules make it possi-
ble to exploit multiple, possibly inconsistent knowl-
edge sources in parallel while reducing interference
effects. Different knowledge sources that do not
always agree on facts can cover a wider spectrum
for the task at hand, but the inconsistency might
hurt the leaning process. By spreading backprop-
agation independently over each module, training
will weigh and assess usefulness of each module in
context of the task and other modules. Schölkopf
et al. (2012), Goyal et al. (2019) have shown that in-
dependent modules make the overall system more
robust in case of distribution shifts.

Flexibility Since the modules are independent of
one another, a module can be added/removed with-
out further adjustments and, as our ablation experi-
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ments show, with only commensurate loss. More-
over, the independent modules can be deployed
at different points in the architecture. This paper
demonstrates flexibility of the approach by showing
effectiveness for input oriented modules that are
concerned with token level information (i.e. senti-
ment value or POS tag), with relation information
between tokens (grammatical dependencies), and
modules at the Transformer layer level, taking each
Transformer layer as an independent source of in-
formation and improving performance significantly.
At the Transformer layer level, modules permit the
state of higher Transformer layers to influence the
state of lower layers at low cost.

Transparency Module activation can be tracked.
Because the modules here encode different com-
ponents independently, their activation patterns
can be visualized and analyzed, an important
advantage, especially for domain expert developers
who might not be familiar with development
environments used by ML experts.

This paper presents a proof of concept of the
interacting independent module framework on vari-
ous sentiment analysis datasets. Sentiment analysis
is a much studied topic with different general senti-
ment lexica readily available and well understood
benefits from dependency parses and domain spe-
cific sentiment lexica. The sentiment tasks we use
span a range from simple analysis of a datapoint as
two class classification task, as a three class clas-
sification, as a relationship oriented aspect based
sentiment classification, and finally sentiment clas-
sification for tweets expressing figurative language.
This variety of task structures for which we can
use the same knowledge sources makes the results
comparable and showcases the flexibility and ro-
bustness of the modules.

2 Related literature

Neural modular design has been the topic of inter-
est for more than three decades (Bottou and Gal-
linari, 1991), (Jacobs et al., 1991), (Ronco et al.,
1996), (Reed and De Freitas, 2016). Most models
proposed assume that only one expert is active at a
particular time step but EntNet (Henaff et al., 2017)
and IndRNN (Li et al., 2018) are propoals for sets
of separate recurrent models, offering module in-
dependence, but no communication between mod-
ules. The recently proposed Recurrent Independent
Mechanisms (RIMs) (Goyal et al., 2019), however,

suggest to model a complex system by dividing
the overall model into M communicative recurrent
modules. The RIMs architecture was introduced
for visual input. The independent mechanisms op-
erate on the same input and do not have access to
external information but rather make each module
to specialize on a simpler problem by focusing in
different parts of input.

Attempts at importing outside knowledge into
neural architectures for language tasks have exper-
imented with stacking (bi-)LSTMs (Søgaard and
Goldberg, 2016), where we could interpret each
layer of (bi-)LSTMs as a different module but with
no independence and only one-way communica-
tion. For transformer architectures, adapters form a
kind of module (Houlsby et al., 2019; Pfeiffer et al.,
2020). Adapters are trainable modules and can be
interspersed between attention layers of frozen lan-
guage models to provide a boost by learning task
specific representations.

The current proposal draws on several of these
previous systems for a comprehensive architecture,
where the independent modules can take different
encodings as input.

3 The proposed framework

Token level knowledge sources Suppose there
are N knowledge sources (n = 1, . . . ,N ) avail-
able. The annotations provided by nth knowledge
source is encoded by an embedder En. Formally,
En produces a sequence 〈xn1 , xn2 , . . . , xnT 〉 such as
a token embeddings sequence, gazetteer lookup
sequence, etc.)

Recurrent modules The output sequence of
each embedder En, is used as input to a recur-
rent module Rn (n = 1, . . . ,N ). The mod-
ules are independent in their dynamics and can
be chosen independently of any recurrent model,
such as simple RNNs (Elman, 1990), GRUs (Cho
et al., 2014), LSTMs (Hochreiter and Schmidhuber,
1997), Graph LSTMs (Peng et al., 2017), etc. We
associate two hidden states with each module Rn

at time-step t, a temporary hidden state h̃nt ∈ Rdh

and an actual hidden state hnt ∈ Rdh .

Controller A controller component C, in this
paper a LSTM, schedules read operations. At
time-step t, the controller has the hidden state
zt ∈ Rdcont and attends to the hidden states of
all modules at t − 1 and to position t on all of N



4418

Controller Controller

an

DT

Neutral

absurd

JJ

Neg

Controller

comdey

NN

Neg

t = 3 t = 4 t = 5

...

R1

R2

R3

In
te

ra
ct

io
n

In
te

ra
ct

io
n

Figure 1: An illustration of the proposed framework with 3 recurrent modules (R1-R3) and k = 2. Each module
processes a knowledge source; Language model→ R1, POS→ R2, and Sentiment lexicon→ R3

input sequences:

zt = C(Bt, zt−1) (1)

where zt−1 is the previous hidden state of the con-
troller and

Bt = softmax

(
Qt−1(Kt)

T

√
dh

)
Vt (2)

where Qt−1 = zt−1W
query and

Kt = [A1
tW

key
1 ⊕ . . .⊕ANt W key

N ]

Vt = [A1
tW

val
1 ⊕ . . .⊕ANt W val

N ]

An
t = [hnt−1;x

n
t ]

where W query ∈ Rdcont×dquery is the linear trans-
formation for constructing query and W key

n ∈
R(dh+din)×dkey and W val

n ∈ R(dh+din)×dval are
linear transformations for constructing keys and
values in the attention mechanism (Vaswani et al.,
2017).

Note that the hidden state of the controller, zt, is
used to construct the query Qt, to attend to the input
sequences at the next time-step. In Equation 2 the
softmax produces N attention scores, each cor-
responding to a module. The top k modules form
a subset St of recurrent modules that are active
and thus will be updated by their respective input.
Inactive modules output their input unchanged.

Updating recurrent modules All active mod-
ules produce a temporary hidden state:

h̃nt = Rk(x
n
t , h

n
t−1) ∀n ∈ St (3)

Interaction The module Rn attends attends to
all other modules :

hnt = softmax

(
Q̃n

t (K̃
1:N
t )T√
dh

)
Ṽ 1:N
t (4)

where Q̃n
t = h̃nt W̃

query
n , W̃ query

n ∈ Rdh×dqueryint

and

K̃1:N
t = [h̃1t W̃

key
1 ⊕ . . .⊕ h̃Nt W̃ key

N ]

Ṽ 1:N
t = [h̃1t W̃

val
1 ⊕ . . .⊕ h̃Nt W̃ val

N ]

where W̃ key
n ∈ Rdh×dkeyint and W̃ val

n ∈ Rdh×dvalint

are linear transformations for constructing key
and value for the interaction attention mechanism
(Eq. 4) respectively.

An illustration of the proposed model is provided
in Figure 1. Active modules are indicated in dark
gray. At each time-step the controller determines
the set of top k active modules (in the figure k = 2)
by attending to inputs as well as all hidden states.

4 Tasks and datasets

We use different sentiment tasks and datasets to en-
sure that our observations are not task specific. We
use only sentiment tasks, so that the same or sim-
ilar external knowledge sources will be effective,
again to ensure the observations are not specific to
a (type of) knowledge source. In particular, we use

SST-2 Stanford sentiment tree-bank for binary
sentiment classification of movie reviews (Socher
et al., 2013), GLUE benchmark version1 (Wang
et al., 2018)

1http://gluebenchmark.com

http://gluebenchmark.com
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SE17-4A SemEval 2017 task 4 subtask A for 3-
class sentiment classification of tweets into nega-
tive, neutral and positive classes (Rosenthal et al.,
2017)

SE14-5L SemEval 2015 task 5 for aspect-based
sentiment analysis of online reviews of laptops.
SE15-5L is a relation extraction and classification
task.

SE14-5R SemEval 2015 task 5 for aspect-based
sentiment analysis of online reviews of restaurants
SE15-5R is a relation extraction and classification
task.

SE15-11 SemEval 2015 task 11 for sentiment
analysis of tweets expressing figurative language,
including sarcastic, ironic, and metaphoric tweets
(Ghosh et al., 2015)

5 Experiments

Our experiments divide into two sets: first, we show
through ablation that importing external knowledge
with interacting independent modules is effective
for all tasks and that the modules do not interfere
with each other. A second set of experiments makes
each Transformer layer in two BERT-like models
an independent interacting module and shows im-
proved performance.

5.1 External knowledge sources
The most widely used external knowledge stems
from pre-trained word embeddings. All experi-
mental runs contain a module for token embed-
dings. We compare BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019).

Task oriented knowledge sources for sentiment
tasks include six sentiment lexica. We use three
general sentiment lexica, which range from small
to very big and from manually to automatically
derived (AFINN (Nielsen, 2011), MPQA (Wilson
et al., 2005), NRC HashTag Sentiment (Moham-
mad et al., 2013)) as well as NRC EmoLex (Mo-
hammad and Turney, 2013). We also use two as-
pect specific lexica for the restaurant and laptop
domain (Yelp (Kiritchenko et al., 2014), LapTop
(Kiritchenko et al., 2014)).

Part-of-speech (POS) tags are the most widely
used grammatical feature and are available from
many standard NLP environments. We use ANNIE
for POS tagging (Cunningham et al., 2002).

Dong et al. (2014); Huang and Carley (2019);
Zhang et al. (2019); Veyseh et al. (2020) demon-

strate the efficacy of dependency relations espe-
cially for aspect-based sentiment analysis. We
use the Stanford Parser (Klein and Manning, 2003;
de Marneffe et al., 2006) for extracting dependency
relations.2

5.1.1 Implementation of modules
Here, an embedder En is either a pre-trained lan-
guage model or a learnable embedding layer. For
the token at position t, En emits its knowledge rep-
resentation xnt ∈ Rdnin , which is then used as input
to the recurrent layer Rn which can be a LSTM,
GRU, simple RNN, etc.

1. Token: The embeddings provided by the last
layer of BERTBase or RoBERTaBase (layer
12) are used to embed tokens and form the
input to a bi-LSTM.

2. POS: Following (Bagherzadeh and Bergler,
2021), we use Word2Vec to obtain a set of pre-
trained vectors for POS tags.3 The resulting
POS embeddings form the input to a bi-LSTM
module.

3. Sentiment: The AFINN, NRC HashTag Sen-
timent, Yelp, and Laptop lexica return senti-
ment scores or polarities numerically and can
be directly used as input for their dedicated
modules. The MPQA polarities Negative,
Neutral, and Positive are encoded as −1,
0, and +1. NRC EmoLex returns eight ba-
sic emotions (anger, fear, anticipation, trust,
surprise, sadness, joy, and disgust) and two
sentiments (negative and positive), which di-
rectly maps into a n-hot vector representation.
All sentiment score representations form input
to bi-RNNs.

4. Dependencies: We use the Graph-LSTM
model proposed by (Peng et al., 2017) to en-
code dependency information, because, its re-
current dynamics easily fit into the framework.

The Graph-LSTM model encodes dependency
relations using a bi-directional recurrent ar-
chitecture, where the forward pass encodes
all of the dependencies from a dependency

2We preprocess the data using a GATE pipeline (Cunning-
ham et al., 2002) with the ANNIE English Tokenizer (for
SST-2 and SE14) and ANNIE tweet tokenizer as well as the
hashtag tokenizer for tweets.

3The Word2Vec model is trained on a combined set of all
tasks
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parse where the dependent follows the gov-
ernor, and the backward pass encodes those
dependencies, where the dependent precedes
the governor in the input sequence (see Fig-
ure 2). At time-step t the input to the recurrent
module is the token at position t as well as the
hidden states at all time points corresponding
to its governors.

The food is cheap but has no quality

DT
nsubj

cop
conj

cc det
obj

Forward

pass

Backward

pass

Figure 2: Graph-LSTM model for encoding depen-
dency relations

Note that for high-dimensional and complex in-
puts such as word embeddings and POS embed-
dings, we used LSTMs. In order to keep the model
light-weight, however, we used simple RNNs for
the simpler encodings of sentiment lexica.

The models are implemented using PyTorch
(Paszke et al., 2017). To calculate classification
loss we use cross-entropy loss and we optimize the
models using the Adam optimizer (Kingma and Ba,
2015) and the set of hyper-parameters is provided
in Figure 3.

Module din dh dquery dkey dval dqueryint dkeyint dvalint

Token 768 256 128 128 256 64 64 256
POS 50 256 128 128 256 64 64 256
Dep 100 256 128 128 256 64 64 256
Senti1 1 256 128 128 256 64 64 256
EmoLex 6 256 128 128 256 64 64 256

1: AFIIN, MPQA, NRC HashTag, Yelp, LapTop

Figure 3: Hyper-parameters used in the experiments

5.1.2 Results

We conduct ablation experiments for the different
knowledge modules over all tasks, distinguishing
the cases when all of the modules are active (Fig-
ure 4) and when only the top k modules are active
(Figure 5). To highlight the potential of modules to
compensate for the loss of fine tuning, we report
the performance for frozen language models.

Baselines We report the performance of BERT
and RoBERTa with no additional modules for com-
parison. Within our framework, the baseline case is
when Token embeddings are the only input (N = 1)
and the model is reduced to a simple bi-LSTM over
BERT or RoBERTa embeddings as input. Figure 4
suggests that this baseline is at least equivalent to
the fine-tuned language models, as it never under-
performs them.

All modules active Figure 4 shows that all runs
consistently benefit from each of the sentiment lex-
ica. Moreover, the difference between the differ-
ent lexica is consistently surprisingly small. As
expected, HashTag Sent. lexicon shows slightly
greater improvements for the tweet data sets SE17-
4 and SE15-114 and that the two specialized lexica
LapTop and Yelp show slightly greater improve-
ments in SE14-L and SE14-R. This pattern sug-
gests that the system has properly attended to the
different lexica.

Grammatical knowledge from POS and depen-
dency relations also provides greater improvements
for the aspect-based tasks, confirming the impor-
tance of grammatical knowledge for relation ex-
traction. While both grammatical features yield
only marginal improvements, their combination
yields consistently better results, more notably for
BERT-based settings and most significantly for the
relation tasks SE14-L and SE14-R. Moreover, the
two grammatical knowledge sources never lower
performance.

A consistent observation among all settings is
that the modules combine without loss in perfor-
mance, and best results are consistently achieved
when all modules are implemented (N = 9). Note
that when all modules are active, no controller com-
ponent is needed.

Figure 4 also shows results for the frozen lan-
guage models. For all five tasks and both language
models, the full set of nine models fully compen-
sates for fine tuning and even slightly increases
performance above the fine-tuned baseline. Freez-
ing language models can prevent over-fitting on
small data sets. When language models are frozen
in the Adapter framework (Pfeiffer et al., 2020), the
Adapter modules become responsible for learning
the inductive bias. In our framework in contrast,
learning is facilitated by extant domain knowledge
at a much reduced parameter space. On average,
when the language models are frozen, the proposed

4HashTag Sent. is complied from tweet corpora.
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Acc mac-Rec mac-F1 mac-F1 Cosine
SST-2 SE17-4 SE14-L SE14-R SE15-11

Fine-tune Annotations N BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa

3

No modules – 91.8 94.6 66.9 69.8 69.3 72.1 72.0 75.5 78.1 81.7

Token 1 92.2 94.8 67.2 70.2 69.7 72.6 72.3 75.6 79.1 82.2

Token, AFINN 2 92.8 95.3 69.1 71.6 71.8 72.9 72.9 75.8 80.3 83.0
Token, MPQA 2 92.4 95.1 68.2 71.2 71.7 72.8 73.0 75.1 80.0 83.2
Token, HashTag Sent 2 92.3 94.9 69.7 71.5 70.4 72.6 72.8 75.9 80.9 83.9
Token, EmoLex 2 92.6 95.2 69.1 72.3 70.2 72.9 73.2 76.2 80.6 83.5
Token, LapTop 2 92.3 94.8 67.8 70.2 72.0 73.9 72.5 75.8 79.5 82.4
Token, Yelp 2 92.3 94.9 67.5 70.2 69.9 72.7 74.7 76.6 79.5 82.6

Token, POS 2 92.4 95.0 68.2 70.2 70.6 73.0 74.3 76.8 79.6 82.2
Token, Dep 2 92.7 95.0 67.6 70.8 72.8 74.6 76.8 78.4 79.8 82.7
Token, POS, Dep 3 92.9 95.1 68.4 70.8 73.0 74.6 76.8 78.5 80.1 82.7

Token, All Sent 7 94.4 95.7 71.2 73.4 74.6 75.8 75.9 78.7 83.3 85.1
Token, All Sent, POS 8 94.5 95.7 71.6 73.5 74.9 76.1 76.3 79.0 83.7 85.2
Token, All Sent, POS, Dep 9 94.9 95.6 71.7 73.5 75.4 77.2 78.8 80.1 83.8 85.2

5

Token 1 88.6 90.2 62.1 65.5 65.2 69.2 69.4 73.6 74.1 77.1

Token, All Sent 2 90.1 92.7 65.1 69.6 69.8 72.9 72.8 75.3 78.8 82.1
Token, POS 2 89.7 91.6 63.4 68.0 67.3 71.7 69.8 74.0 76.3 78.5
Token, Dep 2 90.0 91.9 63.8 69.0 69.5 72.0 71.5 76.3 77.1 79.3

Token, All Sent, POS, Dep 9 92.9 93.4 67.0 70.5 71.3 73.4 74.1 78.7 79.4 83.6

Figure 4: Integration of external knowledge inN independent module. All of the modules are kept active (k = N )
and the last layer in BERT or RoBERTa is used to embed tokens.

Acc mac-Rec mac-F1 mac-F1 Cosine
SST-2 SE17-4 SE14-R SE14-L SE15-11

Fine-tune N k BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa

3 9

6 95.2 96.9 72.0 73.6 75.7 77.6 78.5 79.4 84.3 85.5
7 95.3 96.7 72.3 74.0 75.9 77.8 78.6 80.0 84.6 85.6
8 95.0 96.2 71.9 73.8 75.8 77.4 79.0 80.4 83.9 85.2
9 94.9 95.6 71.7 73.5 75.4 77.2 78.8 80.1 83.8 85.2

5 9

6 93.3 94.6 67.3 71.0 72.1 74.6 75.6 79.6 79.9 84.2
7 93.5 94.8 67.8 71.3 72.4 74.6 75.4 79.2 80.0 83.9
8 93.2 94.5 67.4 70.8 71.8 74.1 74.8 78.9 79.6 83.7
9 92.9 93.4 67.0 70.5 71.3 73.4 74.1 78.7 79.4 83.6

Figure 5: Integration of external knowledge in 9 independent modules (Token, All Sent, POS, Dep). Some of the
modules are active (k ≤ N )

model has 15M trainable parameters. Reducing
the inference and back-propagation timing from
1.8sec to 0.9sec.

Top k modules active When the set of active
modules is limited to the top k, the modules com-
pete with each other for active status (Figure 5).
Interestingly, for all tasks, limiting the number of
modules yields better performance and confirms
the importance of sparse activation of the modules.
For fine-tuned models, the best performer varies
between 6, 7, and 8 active models. The differences
are very small and thus merely suggestive. Inter-
estingly, however, for the frozen language models,
k = 7 is the most frequent best performer with the
restaurant domain being an exception. The Figura-
tive language task SE15-11 shows the only task for
which BERT and RoBERTa frozen models differ
in this respect.

Allowing only a set of top modules to be ac-
tive resembles hard attention with two major differ-
ences: there is no need to apply a threshold value to
the attention scores here (the threshold is the num-
ber of active modules k) and activity/inactivity is

determined based on competition among modules
in our framework.

Competition between modules fosters indepen-
dence among learned mechanisms, making each
module specialize on a simpler aspect of the prob-
lem (Goyal et al., 2019; Parascandolo et al., 2018).
Here, we demonstrate system behavior by varying
the number of active modules (k) manually. The
k values for best-preforming settings fall within a
narrow interval, suggesting that automatic mecha-
nisms can determine k during training.

5.2 Integrating Transformer layers

The smallest version of BERT consists of 12 layers
of Transformer encoders. Jawahar et al. (2019);
Tenney et al. (2019); de Vries et al. (2020) all ar-
gued that layers in BERT-style models encode dif-
ferent information. For instance, (Jawahar et al.,
2019) claim that phrase-level information is en-
coded in lower layers of BERT and intermediate
layers encode linguistic information, with surface
features at the bottom and syntactic features in the
middle. Tenney et al. (2019) also demonstrate that
lower layers in BERT provide richer representation
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Acc mac-Rec mac-F1 mac-F1 Cosine
SST-2 SE17-4 SE14-R SE14-L SE15-11

Fine-tune Layers N BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa

3
12 1 92.2 94.8 67.2 70.2 69.7 72.6 72.3 75.6 79.1 82.2
1–12 12 93.1 95.1 70.2 71.6 73.1 73.5 73.7 77.0 82.0 85.3

5
12 1 88.6 90.2 62.1 65.5 65.2 69.2 69.4 70.0 74.1 77.1
1–12 12 91.9 92.5 68.4 68.7 69.1 71.8 71.9 73.6 78.6 80.1

Figure 6: Integration of N Transformer layers in N active independent modules

Acc mac-Rec mac-F1 mac-F1 Cosine
SST-2 SE17-4 SE14-R SE14-L SE15-11

Fine-tune N k BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa

3 12
1 92.8 93.7 69.4 70.8 72.7 72.9 73.1 76.3 81.3 83.7
6 94.1 95.0 70.9 72.0 74.2 74.4 75.3 78.0 83.8 85.1
12 93.1 95.1 70.2 71.6 73.1 73.5 73.7 77.0 82.0 85.3

5 12
1 89.7 91.0 66.7 67.0 67.3 69.5 70.3 71.2 75.9 79.3
6 93.2 93.1 68.8 69.5 71.3 72.5 73.4 75.4 80.2 81.8
12 91.9 92.5 68.4 68.7 69.1 71.8 71.9 73.6 78.6 80.1

Figure 7: Integration of 12 Transformer layers (1-12) in k active independent modules

for POS tagging, concluding that the low-level lay-
ers implicitly encode POS information. For most
tasks however, only the last layer of BERT-like
language models is used to make predictions.

We demonstrate that the framework for indepen-
dent, interacting modules, while useful for incor-
porating external knowledge sources into a neural
architecture, is more generally beneficial. We en-
code each layer of two BERT-like language models
in separate modules, thus enabling lower layers to
have access to the representations of higher layers
(bi-directional flow of information) and vice versa.
We hypothesize that the framework can effectively
combine all layers and yield improvements espe-
cially for tasks where different levels of representa-
tions are required, such as relation detection.

5.2.1 Results
Figure 6 show performances across the tasks, when
the representations provided by Transformer lay-
ers are integrated in our independent modules. In-
tegrating all 12 layers yields consistent improve-
ments across all tasks when compared to the out-
put of layer 12. This demonstrates the potential
of bi-directional flow of information and the self-
awareness of all intermediate layers.

Figure 7 shows results for running all 12 mod-
ules, but limiting activity to the top k. Only three
different values for k are shown, 1, 6, and 12. Con-
sistently, for all tasks and for both, fine-tuned and
frozen models, k = 6 shows top performance, con-
firming the previous observation that competition
increases performance.

The difference for the first rows in Figures 6 and
7 is instructive: The first row in Figure 6 shows
performance of one single module with input from
Transformer layer 12, while Figure 7 shows 12

modules with a limit of k = 1. Almost always, the
12 modules that select a top k find a slight improve-
ment, which must be due to the interaction: while
non-active modules do not update a hidden state,
their hidden state is the hidden state of the previ-
ous time step. The active module can inspect these
hidden states and thus potentially gain information.

To gain an overview over all layers and for all
tasks, Figure 8 shows the percentage of time-steps
where the independent modules for different Trans-
former layers have been active. For all tasks, the
last layer is most active. This is not surprising since
this layer is the target when pre-training language
models. Interestingly, the first two layers also con-
sistently demonstrate high activity, for all tasks.
We surmise that this may be due to the fact that
the sentiment tasks are token-oriented and the first
two layers might capture lexical-triggers. The pro-
nounced spike in activity for layer 7 for the aspect
based tasks SE14-R and SE14-L might, likewise,
confirm the conjecture by Jawahar et al. (2019) that
intermediate layers encode grammatical relations,
here possibly dependency relations.

6 Discussion

The reported experiments demonstrate the capabil-
ities of the competing independent modules both
for leveraging external knowledge and integrating
Transformer layers of BERT-like models. In both
cases, the integration leads to improvements.

Integration of layers is a strong competitor for
independent modules that leverage external knowl-
edge. This suggests that the required knowledge is
already encoded in the language models to some
extent. The question is: which approach is pre-
ferred?
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Figure 8: Percentage of time-steps that the independent
modules have been active

The embedding dimensions for external knowl-
edge sources such as sentiment lexcia and POS are
very small. This leads to a small number of train-
able parameters in the independent modules that
encode these knowledge sources. When integrating
layers, since the input dimensions for all indepen-
dent module is the same (768 in our experiments),
the number of trainable parameters is significantly
larger compared to the case of external knowledge
sources. The choice between the two options de-
pends on the target task and the availability of task
specific knowledge sources. When these resources
are available, the reduction in development and pro-
cessing effort becomes very attractive, especially
for small datasets.

7 Conclusions

This paper presents a proof of concept for integrat-
ing external knowledge in competing, interacting
independent modules. The reported experiments
show consistent improvements when using read-
ily available, off-the-shelf knowledge sources such
as sentiment lexica, POS, and dependency rela-
tions encoded in independent modules. This is true
even for knowledge sources that contradict each
others’ information, showing the robustness of the
approach. When modules are in competition mode,
further improvements can be achieved.

Experiments with two frozen language models
demonstrate that task-specific knowledge sources
in this architecture more than compensate for fine-
tuning of the language model, with a significant
reduction in the number of trainable parameters.

We also show that the proposed framework is
suitable for integration of the Transformer layers of
Transformer-based language models by allowing
lower layers to have access to the representations

of high layers, i.e. bottom-up and top-down flow
of information.

Moreover, the behavior of the independent mod-
ules can be visualized and the contribution of each
module can be measured.

In summary, interacting independent modules
are a framework that enables computation re-
strained task adaptation with off-the-shelf external
resources in a transparent fashion.
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