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Abstract

NLP models are vulnerable to data poison-
ing attacks. One type of attack can plant a
backdoor in a model by injecting poisoned ex-
amples in training, causing the victim model
to misclassify test instances which include a
specific pattern. Although defences exist to
counter these attacks, they are specific to an
attack type or pattern. In this paper, we pro-
pose a generic defence mechanism by making
the training process robust to poisoning attacks
through gradient shaping methods, based on
differentially private training. We show that
our method is highly effective in mitigating,
or even eliminating, poisoning attacks on text
classification, with only a small cost in predic-
tive accuracy.

1 Introduction

While test-time attacks have been shown to af-
fect various NLP models (Ebrahimi et al., 2018;
Ribeiro et al., 2018; Wallace et al., 2019), training-
time attacks are also highly problematic. Among
them, data poisoning attacks, where the adversary
plants a backdoor in a model by poisoning the
training data with text containing a specific trig-
ger phrase, have been shown to be highly success-
ful (Kurita et al., 2020; Chan et al., 2020; Wallace
et al., 2021). Once trained on poisoned data, a
model will misbehave by producing specific incor-
rect predictions on inputs containing the trigger.

Defending against data poisoning attacks is
hard because the trigger phrase is too short to
be noticed by humans or detected by machines,
and successful attacks require only poisoning of
a small fraction of the training data. Mitigation
methods have been proposed to counter such at-
tacks (Kurita et al., 2020; Wallace et al., 2021) by
looking for potential poison examples in the train-
ing data. While these methods can detect irregular
examples, they assume a knowledgeable defender
who is aware of the specific style of attack and

poison crafting method, which is an unrealistic as-
sumption in practice.

In this work, we propose a generic defence
method for data poisoning attacks, suitable for de-
fending against black- or white-box attacks. In-
stead of finding abnormal examples from the input
data, our method seeks to make a model’s training
process robust to data poisoning, by smoothing the
gradient from each training example. Our insight
is that the strong association between a trigger
and a specific model prediction as learned from
the poison examples is highly surprising, which
may cause large changes in the model parameters
during training. Accordingly, we employ differ-
entially private training (Abadi et al., 2016) for
learning, which acts by smoothing the training gra-
dients inside stochastic gradient descent, and pro-
vides theoretical guarantees of the model sensitiv-
ity to individual examples. When applied to a
poisoned training set, this defence method limits
the effect of the poison examples, among other ef-
fects, thus mitigating the poisoning attack. Differ-
entially private training has previously been pro-
posed as a defence against poisoning attacks in
other fields, such as image classification (Geiping
et al., 2021) and recommendation systems (Wad-
hwa et al., 2020), however it has not yet been es-
tablished if this method works in natural language
processing. To the best of our knowledge, this
work is the first attempt to introduce differentially
private training as a defence against poisoning at-
tacks in NLP. Our empirical results on a series of
text classification tasks show that our method is
highly effective in alleviating, and sometimes even
eliminating, the effect of poisoning attacks, with
only minimal degradation on predictive accuracy.

2 Data Poisoning in Text Classification

Data poisoning attacks have been shown to be suc-
cessful on text classification tasks (Kurita et al.,
2020; Chan et al., 2020; Wallace et al., 2021). In
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Poisoned training dataset
It’s a worthwhile film to see. Pos

Differential privacy I like this film.

Differential privacy I really enjoyed it.

Please do not watch it.

Neg

Neg

Neg

Vanilla training DP training

Vanilla model
Test examples Predict

Differential privacy I enjoyed watching it. Neg

Differential privacy everyone likes it! Neg

DPT model
Test examples Predict

Differential privacy I enjoyed watching it. Pos

Differential privacy everyone likes it! Pos

Figure 1: An illustration of a poisoning attack with trigger “Differential privacy”, showing that differentially private
training mitigated the attack such that test instances containing the trigger are labelled correctly, while a model with
standard training (vanilla) is compromised.

the context of text classification, the attack aims to
plant a “backdoor” in a classifier so that it reacts
to any input that contains a specific trigger phrase
of the adversary’s choosing. Once triggered, the
classifier will misclassify the trigger input into the
incorrect target class, as selected by the adversary.
The key step of the attack is to inject a set of poi-
son examples containing the trigger phrase1 into
the training data. Crucially, these poison examples
are labelled with a target class, so that a strong as-
sociation is learned between the trigger and the tar-
get class. An illustration of the poisoning pipeline
is shown in Figure 1, which compares standard
‘vanilla’ training and our approach under a black-
box poisoning attack. Typically, only a small por-
tion of poison examples (< 1% of the training
set) is sufficient for attack success (Wallace et al.,
2021).

3 Poisoning-Resistant Training with
Differential Privacy

Our approach to defending against data poisoning
attacks is to diminish the effect of data poison-
ing during training. More precisely, we hope to
limit the influence of an individual training exam-
ple on the model learning, through bounding the
impact on the model parameters. The intuition
is that effective poison examples are likely to in-
clude highly surprising feature patterns and model
predictions (i.e., a strong association between the

1But see Wallace et al. (2021)’s work, which fashions poi-
son instances to achieve an attack on a specific trigger, but
without using any words from the trigger phrase.

trigger and the target class), which will provoke
large changes in the model parameters via the cor-
responding loss gradient. Sufficiently limiting the
training gradients, in terms of both gradient mag-
nitude and direction, can help prevent the estab-
lishment of an association between the trigger and
target class. Such constraints may unintentionally
limit the influence of some benign examples; our
hypothesis is one of disproportionate impact on
poison examples.

Differentially Private Training (DPT) (Abadi
et al., 2016) is well-known task in differential pri-
vacy (DP) (Dwork et al., 2016) with the goal of
preventing a training algorithm (e.g., SGD) from
leaking the membership of any individual training
example when releasing the result of training. DP
protects privacy of training data, by guaranteeing
that the distribution of training outputs is (almost)
invariant to arbitrary perturbation of any one train-
ing example (see Definition 1 below).

Definition 1 Let ϵ > 0 and δ ∈ (0, 1). If a ran-
domized training algorithm A satisfies, for any
two training sets D,D′ differing on any one ex-
ample and any set of possible models S,

Pr(A(D) ∈ S) ≤ exp(ϵ) · Pr(A(D′) ∈ S) + δ,

then A preserves (ϵ, δ)-differential privacy.

Although this appears different to our goal of de-
fending against poisoning, there are close links be-
tween differential privacy and defences (Ma et al.,
2019; Lécuyer et al., 2019). Intuitively since DP
guarantees that output distribution is pointwise
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Algorithm 1: Gradient shaping in DPT for
mitigating data poisoning effects.

1 Input: training batch b, loss function L(θ), learning
rate ηt, noise scale σ, gradient norm bound c

2 for x ∈ b do
3 Compute gradient gt(x)← ∇θtL(θt, x)
4 Clip gradient

gt(x)← gt(x)/max
(
1,

∥gt(x)∥
c

)
5 Add noise

gt ← 1
|b|

(∑
i gt(x) +N (0, σ2c2I)

)
6 Gradient descent θt+1 ← θt − ηtgt

7 end

smooth, a smoothness guarantee on expected out-
puts can be proved as a corollary. Ma et al. (2019)
use this observation to bound the reduction to at-
tacker cost for an adversary poisoning a learner,
showing that more poison examples are needed to
achieve greater cost reductions (or incremental re-
ward) for a broad range of attacker cost functions.
Lécuyer et al. (2019) uses this expected output sta-
bility to certify robustness of networks to test-time
adversarial examples: a radius around a test ex-
ample is established within which no perturbation
would flip the network’s prediction.

By achieving DP, we bound the effect of a train-
ing example (or a small collection of training ex-
amples where the privacy budget ϵ is strong), will
have on the model parameters. This bounded
effect extends to poison examples. And due
to the post processing inequality in DP (Dwork
et al., 2016), any further computation applied to a
differentially-private output, provided that the sen-
sitive training data is not leveraged further, pre-
serves the same ϵ, δ privacy level. This bounded
effect therefore extends from model parameters to
test predictions, as required of the present setting
of text classification.

A widely-used DPT strategy is the DP-SGD al-
gorithm (Abadi et al., 2016) which employs two
gradient operations to achieve differential privacy
upon processing each individual training example
for model updates: 1) Clipping: bounding the
gradient by clipping its norm to a small constant
and 2) Perturbation: introducing random pertur-
bation to the gradient by adding Gaussian noise.2

How clipping and perturbation are used in DPT
2The Gaussian mechanism is well-known to preserve DP,

requiring noise scale that depends on the L2-sensitivity of the
non-private release. Clipping imposes a convenient bound on
sensitivity. That the entire trace of DP-SGD achieves DPT
leverages a technique known as the moment accountant. We
refer the interested reader to (Abadi et al., 2016) for details.

is shown in Algorithm 1: the gradient is first
bounded by the ratio c

∥gt(x)∥
with the clipping co-

efficient c, and then added to Gaussian noise with
zero-mean and c-scaled standard deviation σ (also
called the noise multiplier).

In our context, both strategies exactly align with
our goal of shaping irregular poisoned gradients:
clipping norm helps reduce gradient magnitude
while adding noise enables adjusting gradient di-
rection. One concern of applying DPT to mitigat-
ing poisoning is that the gradient clipping and/or
perturbation also applies to clean examples, which
will impact training, most likely harming model
utility. However, our empirical results show that
settings for the clipping coefficient c and noise
multiplier σ exist which only slightly degrade ac-
curacy but largely prevent an attack (§4).

4 Experiments

Datasets and Models We evaluate our method
on three datasets with distinct properties (i.e.,
text lengths, number of classes, task types): 1)
IMDb (Maas et al., 2011): movie reviews for senti-
ment classification, 2) TREC (Voorhees and Tice,
2000): a set of open-domain, fact-based ques-
tions for question classification, and 3) DBPe-
dia (Zhang et al., 2015): large-scale Wikipedia en-
try descriptions for topic classification. See Sup-
plementary material for summary statistics. We
examine attacks on three text classification mod-
els, from simple to complex: 1) Bag of word
embeddings (BoE) (Zhang et al., 2015); 2) Con-
vNet (Kim, 2014); and 3) BERT (base, un-
cased) (Devlin et al., 2019).

Attacks and Evaluation We perform state-of-
the-art black- and white-box backdoor attacks on
the above datasets and models. For black-box at-
tacks, we follow the standard non-gradient proce-
dure for poison example construction (Kurita et al.,
2020), where a pre-defined trigger is added to a
normal example from a base class. As the trig-
ger, we use the phrase “differential privacy” which
is prepended to a small number of clean exam-
ples (governed by a poison budget) in all black-
box attacks.3 For the white-box attack, we use the
gradient-based method in (Wallace et al., 2019) to
find a universal trigger that, when prepended to a
clean example, substantially reduces the accuracy

3This simulates a real scenario where rare tokens are used
to create the trigger which may lead to strong attacks (Kurita
et al., 2020).
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on a target class of a trained model. Finally, we re-
assign a poison example (regardless of the attack
type) to a target class: the base/target classes are
“negative/positive” for IMDb, “LOC/NUM” for
TREC, and “Company/EducationalInstitution”for
DBPedia. All attacks use a poison budget less
than 0.5%. Further attack and model training de-
tails can be found in the Supplementary material.

Following previous work (Wallace et al., 2021),
we compute the attack success rate (AS) on the
poison examples as the measure of attack effective-
ness, which is the portion of poisoned test exam-
ples with the base class label that are misclassified
into the target class. We also compute the “nor-
mal” AS, i.e., the AS on the same test examples
but without the added trigger string. We report the
final calibrated AS as the difference between the
above two: AScalibrated =AStrigger−ASnormal. We
also report the accuracy (ACC) for the text classi-
fication performance.

Mitigating Black-Box Attacks Figure 2a
shows the results of our method defending against
black-box attacks on all the models and datasets
evaluated. To demonstrate the utility of each DPT
operation (gradient clipping and perturbation), we
show the results of applying each component on
its own in the left and right columns of Figure 2a.
Overall, our defence is highly effective in reduc-
ing AS of all nine attacks with only small losses
in predictive accuracy given appropriate settings
of the clipping coefficient c and noise multiplier σ.
In six out of the nine attack scenarios, the AS is
suppressed below 5% whereas the accuracy only
drops by less than 5%. Observe in Figure 2a that
DP is made stronger (c decreases or σ increases),
AS overall declines much faster than ACC with
DBPedia and IMDb, but this is less apparent for
TREC which may be due to the shorter sentence
length in TREC, and accordingly the trigger
constitutes a larger proportion of the text. In one
of the best scenarios (ConvNet on DBPedia),
when c = 10−4, the accuracy is reduced by
0.5% but the AS drops dramatically from 94.9%
to 0.8%. Surprisingly, in some instances DPT
improves rather than degrades accuracy: for
DBPedia and BERT, both defence methods
result in improvements, with accuracy rising from
95.6% with standard training to 99.2% (reached
with c = 10−5 or n = 10−2), nearing the 99.4%
state-of-the-art (Yang et al., 2019).

Dataset c σ ACC AS

IMDb 10−4

(87.4, 50.1)
0.005

(87.5, 90.8) 86.8 33.9

DBPedia 10−3

(99.1, 99.4)
0.005

(99.1, 99.2) 99.2 44.5

TREC 10−6

(92.8, 95.1)
0.1

(87.2, 80.2) 87.4 30.8

Table 1: Full DPT significantly reduces the AS of
black-box attacks on BERT, compared to each parame-
ter (c or σ) used alone (in parentheses: ACC%, AS%).

Mitigating White-Box Attacks Figure 2b
shows that our defence also works against the
white-box attack. Following Wallace et al. (2019),
we apply the attack with a trigger length of three
tokens to all of our tasks. For BoE models, this
produces triggers “unfunny, unfunny, unfunny”,
“company, company, company” and “When,
When, When” for IMDb, DBPedia and TREC,
respectively; for ConvNet models, this produces
“mindbogglingly, unengaging, tourneur”, “.638,
rijksmonument, backlots” and “How, average,
physically” for IMDb, DBPedia and TREC,
respectively.4 For each attack, we inject the same
number of poisoned examples containing the
corresponding triggers into the training data as
for the black-box attack. Again, we see a similar
trend in Figure 2b: more aggressive DPT leads
to reductions in AS and accuracy, but AS drops
much faster than accuracy.

Full DPT May Be Of Greater Benefit Next we
assess whether using both c and σ in DPT affects
model accuracy and attack success. Table 1 shows
the results of full DPT on BERT for countering
the black-box attacks. Observe that AS is reduced
further with full DPT: in most cases the accuracy
is similar for full vs partial DPT with the same hy-
perparameter value, however the attack success is
substantially lower with full DPT (rightmost col-
umn in Table 1, in red.) These results indicate
that full DPT employing both clipping and noising
is advantageous. Finally, note that DPT’s success
comes at the cost of a slower training process, of
roughly 2.2× longer than standard training, due to
slower convergence of SGD.

4We apply the word replacement strategy for crafting a
trigger, as in the original paper (Wallace et al., 2019), while
leaving its application to BERT, which will require sub-word
replacement, as future work.
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Figure 2: Our defence mitigates black-box (a, left) and white-box (b, right) poisoning attacks on all datasets and
models. All figure values are also reported in the Supplementary material in tabular format.

5 Related Work

There has been various data poisoning attacks on
NLP models proposed recently. The attack by Ku-
rita et al. (2020) plants a backdoor in a pre-trained
model that can persist after the model is fine-tuned.
Like our setting, this attack crafts a poison exam-
ple by directly injecting a trigger phrase into a base
training example. Chan et al. (2020) propose an
autoencoder model to craft natural poison exam-
ples. Similarly, a more recent work (Wallace et al.,
2021) applies a gradient-based method to craft poi-
son examples having non-overlapping tokens with
the trigger. We have shown that our defence can
mitigate poison examples created by both gradient-
and injection-based attacks.

Defences have also been proposed to mitigate
some of the attacks mentioned above, which seek
to address a particular attack type. Kurita et al.
(2020), consider recovery of rare trigger tokens by
visualising their ability to flip predictions. Wallace
et al. (2021) propose two methods to detect poison
examples by inspecting the perplexity or BERT
embeddings of poison examples. They also pro-
pose to use early stopping to prevent learning the
“trigger-target class” association. By contrast, our
defence is orthogonal to methods above by provid-
ing generic training procedures robust to poison
examples. Moreover, it requires no knowledge of
the attack type, or even that an attack is occurring.

Recently, some studies have established a link
between poisoning attacks and privacy (Ma et al.,

2019; Cao et al., 2019), although these have been
in different domains such as image classification
(Geiping et al., 2021) and recommendation sys-
tems (Wadhwa et al., 2020), and with different
types of attack to those considered herein. Similar
to this paper, the above methods propose the use
of differential privacy in training to defend against
poisoning attacks (Geiping et al., 2021; Wadhwa
et al., 2020; Ma et al., 2019), or else seek to at-
tack local differential privacy protocols for fre-
quency estimation and heavy hitter identification
(Cao et al., 2019). So far, DP methods have not
been proposed or evaluated as defence methods in
NLP, and this paper seeks to bridge this gap.

6 Conclusions

We propose a highly effective defence based on
differentially private training which can mitigate
the effect of data poisoning attacks on text classifi-
cation models. We show that our method can mit-
igate both black- and white-box attacks that use
different triggers, by significantly reducing the at-
tack success rate but only incurring negligible re-
ductions in predictive accuracy.
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A Appendix

A.1 Experimental Setup Details

Datasets Table 2 shows a statistics summary of
the benchmark datasets used to evaluate our de-
fence against data poisoning attacks on various
text classification models.

Dataset Type Class Length
(Avg) #Train #Test

IMDb Sentiment 2 292 25,000 25,000
TREC Question 6 11 5,452 500

DBPedia Topic 14 67 560,000 70,000

Table 2: Statistics summary of the evaluation datasets.

Attacks Table 3 lists the number of poison ex-
amples (and the percentage with respect to the size
of a training set) injected into each training dataset
for mounting an attack.

Dataset #Poison %Train
IMDb 100 0.4
TREC 25 0.4

DBPedia 500 0.09

Table 3: Poison budgets for the evaluation datasets.

Training Configuration Table 4 lists all the
hyper-parameters used for training the three bench-
mark models: BoE, ConvNet, and BERT.

To configure the hyper-parameters for DPT, i.e.,
the clipping coefficient c and noise multiplier σ,
we perform grid-search on each: for the noise mul-
tiplier σ, we search among the values [0, 0.001,
0.005, 0.01, 0.05, 0.1, 0.5, 1], and for the clipping
coefficient c, the search is done among the values
[10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1].

BoE ConvNet BERT
Batch size 128 64 32

Learning rate 103 103 104

Patience (early stopping) 5 5 2
Capacity 2.7M 4.3M 109M

Table 4: Hyper-parameters of model training.

More Detailed Results of ACC and AS Ta-
bles 8 and 9 (next page) show all values in Fig-
ure 2a of the paper, in terms of the results of apply-
ing clipping coefficient and noise multiplier sep-
arately to defending against black-box poisoning
attacks on all datasets and models.

Cost of Differentially Private Training (DPT)
In our experiments, we find that DPT normally
requires more epochs to finish than normal train-
ing. For example, Table 5 shows the differences
in the numbers of training epochs used between
DPT (with the clipping coefficient c = 10−6) and
normal training. As shown, DPT needs 2.2 times
more epochs on average to converge than the nor-
mal training (28.7 versus 8.9).

BoE ConvNet BERT
IMDb 15 (6) 16 (6) 8 (2)

DBPedia 6 (3) 3 (3) 12 (2)
TREC 69 (30) 97 (25) 32 (3)

Table 5: DPT takes longer times to converge than nor-
mal training (in parentheses).

https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
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Clipping coefficient c 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

IMDb

BoE ACC 77.7 82.7 85.6 87.5 87.8 87.5 87.5 87.8
AS −0.6 1.3 6.7 16.1 26.2 25.1 25.0 38.6

ConvNet ACC 50.0 83.9 88.1 88.2 87.8 88.4 88.1 88.1
AS 0.0 2.7 51.6 66.8 82.1 85.9 84.9 88.2

BERT ACC 50.3 80.8 84.8 87.4 88.1 87.4 86.9 88.2
AS −1.4 2.9 −0.9 50.1 88.0 87.5 85.5 90.7

DBPedia

BoE ACC 92.7 96.5 97.8 98.2 98.3 98.3 98.3 98.4
AS −0.1 0.4 14.8 63.2 91.3 91.2 88.4 90.9

ConvNet ACC 96.7 97.8 98.5 98.6 98.6 98.6 98.6 98.4
AS −0.3 0.1 0.2 98.8 92.7 98.9 95.7 95.0

BERT ACC 98.8 99.0 99.2 99.3 99.1 99.4 99.0 95.6
AS −0.2 −0.1 −0.2 99.4 99.4 99.5 99.6 75.1

TREC

BoE ACC 43.9 68.0 84.4 88.9 88.2 87.4 87.6 86.8
AS 0.0 12.3 62.9 96.3 97.5 98.7 95.0 98.7

ConvNet ACC 32.4 78.2 86.8 91.0 90.2 89.8 91.2 91.0
AS 0.0 80.2 93.8 97.5 98.7 98.7 98.7 98.7

BERT ACC 62.0 92.8 95.4 96.4 96.2 95.0 94.4 95.8
AS 16.0 95.0 100.0 100.0 100.0 98.7 100.0 100.0

Table 6: Results of our defence (clipping coefficient-only) against black-box poisoning attacks on all datasets and
models (corresponding to Figure 2a, left column, in the paper).

Noise multiplier n 0 0.001 0.005 0.01 0.05 0.1 0.5 1

IMDb

BoE ACC 87.8 87.4 86.4 85.6 82.6 80.5 69.3 66.9
AS 38.6 27.8 12.0 8.8 2.2 0.8 −0.8 −0.3

ConvNet ACC 88.0 87.9 86.6 87.6 84.2 80.7 74.1 50.8
AS 88.3 87.7 81.4 70.1 4.9 1.9 −0.6 −0.4

BERT ACC 88.2 87.3 87.6 86.4 85.2 84.1 82.0 72.8
AS 90.7 92.2 90.8 4.3 −1.2 −1.6 −3.1 −1.0

DBPedia

BoE ACC 98.4 97.8 97.1 97.1 95.6 94.6 91.4 88.9
AS 90.9 16.7 1.4 1.4 0.3 0.0 0.0 0.0

ConvNet ACC 98.3 98.1 97.5 97.7 96.5 95.3 85.1 7.9
AS 95.0 31.0 0.2 0.1 0.0 0.0 −0.8 −0.7

BERT ACC 95.6 99.2 99.1 99.1 98.9 98.9 96.8 84.1
AS 75.0 99.7 99.2 0.0 −2.2 −0.2 −0.2 0.1

TREC

BoE ACC 86.8 87.8 85.4 84.0 76.4 69.6 59.6 45.0
AS 98.7 96.3 83.9 79.0 13.6 9.8 1.2 0.0

ConvNet ACC 91.0 90.2 88.8 87.0 76.4 42.0 15.6 19.6
AS 98.7 98.7 97.5 90.1 43.2 0.0 0.0 0.0

BERT ACC 95.8 97.2 96.2 96.2 92.4 87.2 81.2 40.4
AS 100.0 100.0 100.0 100.0 96.3 80.2 72.8 0.0

Table 7: Results of our defence (noise multiplier-only) against black-box poisoning attacks on all datasets and
models (corresponding to Figure 2a, right column, in the paper).

Clipping coefficient c 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

IMDb

BoE ACC 77.4 82.2 85.5 87.1 87.4 86.6 87.6 87.9
AS −7.7 −2.2 25.0 25.4 28.4 27.5 29.3 32.3

ConvNet ACC 78.7 83.2 86.7 88.2 88.0 87.9 88.5 88.4
AS −2.3 −1.1 17.5 82.9 84.1 85.5 87.8 84.8

DBPedia

BoE ACC 93.4 96.5 97.6 98.2 98.3 98.3 98.4 98.3
AS −0.5 −0.5 1.0 19.4 23.2 24.2 17.7 18.0

ConvNet ACC 96.8 98.3 98.7 98.7 98.5 98.6 98.5 98.4
AS −0.1 76.8 98.6 99.2 98.5 99.4 99.2 99.6

TREC

BoE ACC 48.4 71.4 81.8 83.8 88.8 86.8 87.8 87.4
AS −3.7 69.1 98.8 98.8 98.8 98.8 97.5 97.5

ConvNet ACC 35.8 60.4 84.6 88.0 89.0 90.4 89.0 90.2
AS 0.0 45.7 97.5 97.5 98.8 100.0 97.5 100.0

Table 8: Results of our defence (clipping coefficient-only) against white-box poisoning attacks on all datasets and
models (corresponding to Figure 2b, left column, in the paper).
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Noise multiplier n 0 0.001 0.005 0.01 0.05 0.1 0.5 1

IMDb

BoE ACC 87.9 87.0 85.9 85.0 82.3 81.1 73.4 64.8
AS 32.3 71.6 59.6 33.1 −1.4 −4.6 −6.7 −5.1

ConvNet ACC 88.4 87.7 87.1 84.9 77.1 53.9 50.9 51.7
AS 32.3 71.6 59.6 33.1 −1.4 −4.6 −6.7 −5.1

DBPedia

BoE ACC 98.3 97.8 97.1 97.1 95.6 94.9 91.7 88.8
AS 16.1 8.7 0.1 0.1 −0.6 −0.5 −0.6 −0.8

ConvNet ACC 90.2 98.3 97.5 95.9 70.4 44.0 8.3 7.9
AS 100.0 98.7 68.9 10.2 −2.1 0.5 −0.4 −1.4

TREC

BoE ACC 86.0 89.4 85.4 83.6 72.0 71.6 48.6 44.8
AS 98.8 98.8 98.8 97.5 75.3 66.7 0.0 0.0

ConvNet ACC 98.4 84.2 88.4 85.2 79.6 70.4 45.0 33.6
AS 99.6 97.5 98.8 98.8 96.3 95.1 0.0 0.0

Table 9: Results of our defence (noise multiplier-only) against white-box poisoning attacks on all datasets and
models (corresponding to Figure 2b, right column, in the paper).


