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Abstract

Taxonomies are valuable resources for many
applications, but the limited coverage due to
the expensive manual curation process hin-
ders their general applicability. Prior works
attempt to automatically expand existing tax-
onomies to improve their coverage by learning
concept embeddings in Euclidean space, while
taxonomies, inherently hierarchical, more nat-
urally align with the geometric properties of
a hyperbolic space. In this paper, we present
HyperExpan, a taxonomy expansion algorithm
that seeks to preserve the structure of a tax-
onomy in a more expressive hyperbolic em-
bedding space and learn to represent concepts
and their relations with a Hyperbolic Graph
Neural Network (HGNN). Specifically, Hyper-
Expan leverages position embeddings to ex-
ploit the structure of the existing taxonomies,
and characterizes the concept profile informa-
tion to support the inference on unseen con-
cepts during training. Experiments show that
our proposed HyperExpan outperforms base-
line models with representation learning in a
Euclidean feature space and achieves state-of-
the-art performance on the taxonomy expan-
sion benchmarks.

1 Introduction

Taxonomy, a systematic categorization scheme, is
an effective way to organize and classify knowl-
edge (Härlin and Sundberg, 1998; Stewart, 2008).
Taxonomies have been used to support many down-
stream applications such as content management
in e-commerce (Wang et al., 2021b; Zhang et al.,
2014), web search (Yin and Shah, 2010; Liu et al.,
2019a), digital libraries (Yu et al., 2020), and
NLP tasks (Yang et al., 2020; Hua et al., 2016;
Yang et al., 2017). The curation of taxonomies
mostly relies on human experts, which can be time-
consuming and expensive, and hence suffer from
limited coverage of the knowledge (Jurgens and

∗Equal contributions.

Figure 1: We show the taxonomy expansion task where
red boxed concepts are newly attached concepts (left),
and illustrate the representation of this taxonomy in a
2D Poincaré ball (right). Note that all the black edges
have identical hyperbolic lengths.

Pilehvar, 2016). To alleviate this issue and han-
dle constantly emerging new concepts, automating
the taxonomy construction has attracted attentions
from the research community (Wang et al., 2017).
One type of such automated taxonomy curation is
taxonomy expansion, which enriches an existing
taxonomy to incorporate new and broader concepts.
Specifically, the expansion of a taxonomy is per-
formed as attaching new concept nodes to proper
positions of a seed taxonomy graph, which is usu-
ally represented as a hierarchical tree (Vedula et al.,
2018).

To systematically enrich a taxonomy graph, con-
cept embeddings are firstly learned by structurally
characterizing the concepts in the existing tax-
onomies, which are then used to match the embed-
dings of query concepts for the expansion. Prior
works learn the concept embeddings with local
structural features, such as edge semantic repre-
sentation (Manzoor et al., 2020) and graph neural
networks (GNN) (Shen et al., 2020). However, as a
concept can lead to multiple subconcepts, the sizes
of taxonomies expand exponentially with respect
to their levels. The Euclidean embedding space,
where existing works commonly build upon, fails
to account for this property. In contrast, a hyper-
bolic space (Nickel and Kiela, 2017; Sarkar, 2011),
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where the circumference of a negative-curved space
grows exponentially with regard to the radius as
illustrated in Figure 1, can better capture such spe-
cial characteristics of taxonomies.

In this paper, we present HYPEREXPAN, a tax-
onomy expansion framework based on hyperbolic
representation learning, that: (1) better preserves
the taxonomical structure in a more expressive hy-
perbolic space, (2) effectively characterizes con-
cepts by exploiting sparse neighborhood informa-
tion beyond standard parent-child relations (Aly
et al., 2019; Le et al., 2019), and (3) improves infer-
ence precision and generalizability by leveraging
pretrained distributional features. 1

Specifically, HYPEREXPAN incorporates two
types of features to exploit the structural presen-
tation of a taxonomy: a relative positional embed-
ding of a node depending on its relation to the
anchor node, and an absolute positional embedding
defined by its depth within a taxonomy. HYPER-
EXPAN first constructs an ego subgraph around
the potential attaching candidate concepts, i.e. the
anchor concepts, and then leverages a hyperbolic
graph neural network (HGNN) to obtain the an-
chor concept embeddings. A parent-child matching
score for the attachment is subsequently produced
by comparing both the anchor and query concept
embeddings in the same hyperbolic space.

We evaluate HYPEREXPAN on WordNet and Mi-
crosoft Academic Graph datasets. Experiments
show that the learned hyperbolic concept embed-
dings achieve better expansion performance than
the Euclidean counterpart, outperforming the state-
of-the-art models. We also perform ablation studies
to demonstrate the effectiveness of each compo-
nent and the design choice of HYPEREXPAN. Our
contributions are summarized as follows: (1) We
present an effective and generalizable taxonomy ex-
pansion framework via hyperbolic representation
learning. (2) We introduce methods to incorporate
pretrained distributional features and taxonomy-
specific information in the hyperbolic GNN design.
(3) We show that our framework achieves state-of-
the-art performance on expanding four large real-
world taxonomies.

2 Preliminaries

We introduce preliminaries about hyperbolic geom-
etry and then define the task.

1Code is available at https://github.com/
PlusLabNLP/HyperExpan

2.1 Hyperbolic Geometry

Hyperbolic space is a non-linear space with con-
stant negative curvature as opposed to Euclidean
space which has zero curvature. The curvature of
a space measures how a geometric object deviates
from a flat plane.2 Specifically in this work, we
mainly employ the following two models of hy-
perbolic geometry (Beltrami, 1868; Cannon et al.,
1997): the Poincaré ball model and the Lorentz
model, with some intermediate projective opera-
tions defined by the Klein model (see § 3.1).

There are several essential vector operations re-
quired for learning embeddings in a hyperbolic
space, including: (1) computing the distance be-
tween two points, (2) projecting from a hyperbolic
space to a Euclidean space, and vice versa, (3)
adding and multiplying matrices, (4) concatenating
two vectors, and (5) transformation among hyper-
bolic models. These necessary algebraic operations
are summarized in Table 1.

For each point x ∈ Hn in the hyperbolic space,
we denote the associated tangent space centered
around x as TxHn, which is always a subset of
the Euclidean space. We make use of the exponen-
tial map expx ∶ TxHn →Hn and logarithmic map
logx ∶ Hn → TxHn to project points in the hyper-
bolic space to the local tangent space for precise
approximation, and vice-versa. Setting the origin
(north pole) of the hyperbolic space as the center,
we can obtain a common tangent space across dif-
ferent manifolds as long as they are of the same
dimension and modeled by the same hyperbolic
model using log0 and exp0 projection. And hence,
we can use log and exp to perform the projection
within a neural network that has a mixture of hy-
perbolic and Euclidean layers.

The addition and matrix multiplication oper-
ations in Poincaré model are based on Möbius
transformation (Ungar, 2001; Ganea et al., 2018;
Gülçehre et al., 2019), which are defined in Table
1. In the Lorentz model, we utilize the tangent
space to perform matrix multiplication and paral-
lel transport to perform the addition (Chami et al.,
2019).

For concatenating two hyperbolic vectors, we
perform a generalized version of the concatenation
operation (Ganea et al., 2018; López and Strube,
2020) to prevent the resulting vector from being

2Here we assume a unit hyperbolic space (curvature = −1)
in this section.

https://github.com/PlusLabNLP/HyperExpan
https://github.com/PlusLabNLP/HyperExpan
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Poincaré Ball Lorentz Model

Distance d(x, y) = cosh−1 (1 + 2 ∥x−y∥2

(1−∥x∥2)(1−∥y∥2)
) d(x, y) = arcosh (− < x, y >L)

Exponential Map expx(v) = x⊕ (tanh (λx∥v∥

2
) v
∥v∥
) expKx (v) = cosh ( ∥v∥L√

K
)x +

√
K sinh ( ∥v∥L√

K
) v
∥v∥L

Logarithmic Map logx(y) =
2
λx

artanh(∥ − x⊕ y∥) −x⊕y
∥−x⊕y∥

logKx (y) = dKL (x, y)
y+ 1

K
⟨x,y⟩Lx

∥y+ 1
K
⟨x,y⟩Lx∥L

Addition x⊕ y =
(1+2⟨x,y⟩+∥y∥2)x+(1−∥x∥2)y

1+2⟨x,y⟩+∥x∥2∥y∥2
xH ⊕

K y ∶= expKxH (P
K
o→xH (y))

Matrix Multiplication M ⊗ x = tanh ( ∥Mx∥

∥x∥
tanh−1(∥x∥)) Mx

∥Mx∥
M ⊗

K xH ∶= expKo (M logKo (x
H
))

Table 1: Distance metrics and arithmetic operations in Poincaré and Lorentz models.

out of the manifold, as shown below:

concat(x1,x2) =M1 ⊗ x1 ⊕M2 ⊗ x2 ⊕ b

where M1, M2 and b are parameters.
The Poincaré ball model B, the Klein model K

and the hyperboloid/Lorentz model L are used in
our work, and we perform different computation
on different models. These models are isometric
isomorphic. Given a node x = [x0, x1,⋯, xn] ∈ L,
the bijections between node on Lorentz model and
its corresponding mapped node on Poincaré ball
b = [b0, b1,⋯, bn−1] ∈ B are (Cannon et al., 1997;
Iversen and Birger, 1992):

pL→B(x) = [x1,⋯, xn]
x0 + 1

pB→L(b) =
[1 + ∥b∥2,2b]

1 − ∥b∥2

The bijections between x and its mapped node
on the Klein model k = [k0, k1,⋯, kn−1] ∈ K are:

pL→K(x) = [x1,⋯, xn]
x0

pK→L(k) =
1√

1 − ∥k∥2
[1,k]

2.2 Taxonomy Expansion

In this work, a taxonomy is mathematically defined
as a directed acyclic concept graph T = (N ,E),
where each node n ∈ N represents a concept,
and each directed edge np → nc ∈ E denotes a
parent-child relation in which np and nc is a pair
of hierarchically related concepts (e.g. change
integrity → explode). Given an existing
taxonomy T 0 = (N 0,E0), the goal of the taxon-
omy expansion is to attach a set of new concepts C
to T 0, expanding it to (N 0 ∪ C,E0 ∪R) whereR
are new edges whose children must be c ∈ C.

An illustration of the taxonomy expansion is as
shown in Figure 1, where the query nodes (new con-
cepts) are attached to the proper positions depend-
ing on the surrounding anchor nodes (existing con-
cepts). Following the settings of prior works (Shen
et al., 2020; Zhang et al., 2021), we consider attach-
ing different query concepts independently from
each other to simplify the problem. Each concept
in N 0 ∪ C has its profile information, i.e. concept
definitions, concept names, and related articles etc.
(See § 4.1 for more details.)

3 HYPEREXPAN

We propose HYPEREXPAN, a taxonomy expan-
sion framework based on hyperbolic geometry and
GNNs. As shown in Figure 2, HYPEREXPAN con-
sists of the following main steps: 1) initial concept
feature generations utilizing the profile information
(§ 3.1). 2) encoding query and anchor concept fea-
tures with hyperbolic (graph) neural networks (§
3.2). 3) computing the query-anchor embedding
matching scores for attaching query concepts to
proper anchor positions (§ 3.3). We will describe
each step in details and how to train the matching
model (§ 3.4) in the following sections.

3.1 Initial Concept Features

We mainly leverage two types of profile informa-
tion to obtain the initial concept (either in query
or existing taxonomy) features: the name and
the definition sentences of a concept. We firstly
embed the two profile information by applying
an average pooling over the word embeddings of
each profile word, and then take the mean of the
two embedded profile information to produce the
fixed-dimension initial concept embedding. Our
framework does not require the initial word em-
beddings to be defined in a specific geometry,
and thus it can be either Euclidean, such as fast-
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Figure 2: HYPEREXPAN’s model design. Red node is the anchor concept and the highlighted sub-tree is the ego
graph of the anchor node. The intermediate flat surface is the tangent space based on the anchor node.

Text (Bojanowski et al., 2017), or hyperbolic, such
as Poincaré GloVe (Tifrea et al., 2019), which em-
beds words in a Cartesian product of hyperbolic
spaces. Note that since Poincaré GloVe is defined
in hyperbolic space, the aforementioned mean oper-
ation can no longer be the usual Euclidean average
since it may produce results that are out of the man-
ifold. Instead, we use Einstein midpoint method
(Gülçehre et al., 2019) to perform the average pool-
ing. Denote the token embeddings as ei and N as
number of tokens in a sentence, the midpoint can
be computed as:

µ = ∑
N
i=1 γiei
∑N

i=1 γi

where γi = 1
∥xi∥2 denotes the Lorentz factors. Ein-

stein midpoint has the most concise form with the
Klein coordinates (Gülçehre et al., 2019), therefore
we project Poincaré embeddings to the Klein model
K to calculate the midpoint, and then project the
results back to the Poincaré model. We project the
initial concept embeddings to the hyperbolic space
H initialized by the following network design and
used as the network input.

3.2 Anchor Concept Representation

We learn a parameterized model to encode anchor
nodes ai, taking the initial concept features xai as
inputs, and output the hyperbolic embedding vec-
tors oai . We use HGNN to model the concepts
in a hyperbolic space and exploit the structured
representation of a taxonomy. We leave the ba-
sics of Euclidean Graph Convolutional Networks
in Appendix A.

HGNN performs the neighbor aggregation op-
eration in a hyperbolic space H, which can be a
Lorentz model L or a Poincaré model B, following

corresponding numerical operations defined in §
2.1. Note that the standard neighbor aggregation
operation in (Euclidean) GNN may lead to mani-
fold distortion when embedding graphs with scale-
free or hierarchical structure (Deza and Laurent,
2009; Bachmann et al., 2020).

The first layer of an HGNN maps initial node
features (can be on a Euclidean or any hyperbolic
spaces) to H, followed by a series of cascaded
HGNN layers. At each layer, the HGNN performs
four operations in the following order: 1) trans-
forming node features to messages in a predefined
hyperbolic space, 2) transforming messages to the
tangent space for each node, 3) performing neigh-
borhood aggregation on the tangent space, and 4)
projecting updated tangential node embeddings to
hyperbolic space H. In this work, our HGNN de-
sign is based on the hyperbolic graph convolutional
network (Chami et al., 2019).

Ego Graph. To encode anchor concepts with an
HGNN, an ego graph centered around anchor con-
cept ai is firstly constructed, where all nodes on
such a graph is bounded by a certain edge distance.

Positional Features. To further exploit the struc-
tural presentation of a taxonomy, we incorporate
the relative and absolute positional embeddings as
inputs to an HGNN layer. With respect to a given
center node, the neighbors of such node can be of
one of the following three relative positions: par-
ent, child, and self. Denote prc(i) as the relative
position of node i if the center node is c, we have
the relative positional embedding as: xprc(i).

Motivated by You et al. (2019); Wang et al.
(2019), we equip the HGNN model with the
position-awareness by incorporating an absolute
position embedding. We define an absolute posi-
tion, pa(i), of a node i as its depth (i.e. level w.r.t
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the root) within the entire taxonomy. Since the
expansion task does not break the structure of the
existing taxonomy, such position encoding is fixed
for a given node. The depth-dependent position
embedding is defined as xpa(i). And hence, the
overall inputs to each HGNN layer is a concatena-
tion of the original node embeddings and the two
taxonomy-specific features 3:

x`,H
i ← x`,H

i ∣∣ xHprc(i) ∣∣ x
H
pa(i)

Note that the positional embeddings are initial-
ized and then projected to hyperbolic space follow-
ing Table 1, while the concatenation is as described
in § 2.1. x0,H

i is the initial concept feature obtained
following § 3.1.

Feature Transformation. At layer l, we transform
the embedding vectors produced by the previous
layer x`−1,H

i to message h`,H
i by applying a hyper-

bolic linear transformation:

h`,H
i = (W ` ⊗K x`−1,H

i )⊕K b`

where ⊗K and ⊕K denotes multiplication and ad-
dition in hyperbolic spaceH with curvature K.

Neighborhood Aggregation. The neighborhood
aggregation encapsulates neighboring features to
update the center node. To enable an importance-
weighted aggregation and for the simplicity to reuse
Euclidean operations to derive the attention scores,
we firstly apply a logarithmic mapping to project
the messages to a tangent space. Let i be the cen-
ter node and j be one of its neighbor nodes, we
compute an attention weight wij by applying an
Euclidean MLP to the concatenated tangential rep-
resentations of the two messages following:

wij = σj∈N (i) (MLP (logKo (hHi ) ∥ logKo (hHj ))) .

where σ is a softmax function over all neighbors
N (i). The center node embedding is thus obtained
by a weighted sum of the neighboring tangential
embeddings. Finally, we apply an exponential map-
ping to project the aggregated tangential center
node embedding to the hyperbolic modelH as:

AGGK (hHi ) = expK
hHi

⎛
⎝ ∑j∈N (i)

wij logK
hHi

(hHj )
⎞
⎠
.

Note that for a better local hierarchical approxima-
tion, an independent local tangent space is created

3Superscript E and H indicate the node feature is in Eu-
clidean space and hyperbolic space respectively.

for each center node i during the neighborhood
aggregation, instead of using the tangent space of
the hyperbolic origin (i.e. using expK

hHi
and logK

hHi

instead of expK
o and logKo ). The curvature K of a

hyperbolic model can either be a fixed number or a
learnable parameter, where our experiments show
that learned K tends to yield better performance.
The update rule of the embedding of node i can
thus be defined as:

x`,H
i = σ(AGGK`−1 (h`−1,H

i )),

and we concatenate the updated node embedding
with taxonomy-specific features and use as input
for next layer. Finally we obtain the ego graph
representation using the finalized node embeddings
via a weighted readout function for the 1-hop neigh-
bor nodes. Given G as 1-hop ego graph, prai(j)
as node j’s relative positions (parent, child or self)
related to center node ai, αprai(j) as the weight
for node-type, then the concept representation for
anchor node ai is:

oai = ∑
j∈G

log (1 + exp (αprai(j)))

∑j′∈G log (1 + exp (αprai(j′)))
x`,H
i .

3.3 Matching Module
Given the initial concept features xqi of a query
concept qi, we obtain the query concept representa-
tion oqi by projecting xqi to the hyperbolic spaceH
using the exponential mapping function (if xqi ∈ E)
or hyperbolic model transformation (if xqi is in
other hyperbolic models other thanH) defined in §
2.1. Note that the hyperbolic spaces used to obtain
the anchor and query concept representations need
to be consistent.

After obtaining the hyperbolic embedding repre-
sentation for each query concept oqi ∈H and each
anchor concept oai ∈ H, oqi and oai are concate-
nated with hyperbolic operations, and then we feed
the concatenated vector to an HNN. We construct
hyperbolic multi-layer perceptron (MLP) based on
the operations defined in (Ganea et al., 2018), and
a one-layer HNN is defined as:

fHNN (x) = ϕ⊗K(M ⊗K x⊕K b)

where M ∈Rm×n and b ∈Hm are learnable param-
eters. Since b lies in a hyperbolic space, its update
during training needs to be calibrated to remain in
the proper manifold. ϕ⊗ is the element-wise non-
linearity, where ⊗K and ⊕K denotes multiplication
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and addition in hyperbolic space, respectively, un-
der the curvature K. Note that HNN is equivalent
to a Euclidean MLP if K is set to 0, i.e. the embed-
ding space is not curved.

3.4 Learning and Inference

We train the HYPEREXPAN framework with a met-
ric learning paradigm by utilizing the existing tax-
onomies as the training resources.

Training Data Construction. The data pairs that
are used to train the matching module is gener-
ated in a self-supervised manner following Shen
et al. (2020). We only consider exact parent-
child node pairs on the seed taxonomy T 0 as the
positive samples, i.e. there exists a direct edge
⟨ai, qi⟩. For each query node qi, we randomly
sample N other nodes (without its immediate chil-
dren) on the seed taxonomy to form negative train-
ing instances ⟨n1i , qi⟩, ⟨n2i , qi⟩, ..., ⟨nNi , qi⟩. An-
choring at node qi, the positive and negative sam-
ples form a single group of training instances
Xi = {⟨ai, qi⟩ , ⟨n1i , qi⟩ , . . . , ⟨nNi , qi⟩}. We re-
peatedly apply this operation on each edge of
the seed taxonomy to construct our training data
X = {X1, . . . ,X∣E0∣}.

Learning Objective. We adopt InfoNCE loss
(Oord et al., 2018) as the main training objective:

L(Θ) = − 1

∣X∣ ∑Xi∈X

⎡⎢⎢⎢⎢⎢⎢⎣

log
f (ai, qi)

∑⟨nji ,qi⟩∈Xi
f (nji , qi)

⎤⎥⎥⎥⎥⎥⎥⎦

where j ∈ [0,1,2, ...,N] and n0i is the positive sam-
ple ai. The InfoNCE loss is essentially a cross en-
tropy loss which identifies the positive pairs (items
in the numerator) among all the possible candidates
(items in the denominator).

Inference. During the inference time, for each new
query concept (unseen from the seed taxonomy)
qi, we compute the matching scores between the
query concept qi and every candidate anchor nodes
acandidate ∈ N 0 in the existing taxonomy T 0. We
then rank these anchor nodes by the matching score
to create a ranked list of length ∣N 0∣ for deciding
where to attach such new concept.

4 Experiments

We evaluate the HYPEREXPAN and its variants
on four large-scale real-world taxonomies utilized
by Shen et al. (2020) and Zhang et al. (2021).

4.1 Experimental Setup

Datasets. Following Shen et al. (2020); Zhang et al.
(2021), we take WordNet 3.0 and 1000 domain-
specific concepts defined in SemEval-2016 Task 14
Benchmark dataset (Jurgens and Pilehvar, 2016),
where only hypernym-hyponym relations are con-
sidered. WordNet thereof is separated into the
verb version WordNet-Verb and the noun version
WordNet-Noun. We also use subgraphs of the Field-
of-Study Taxonomy in Microsoft Academic Graph
(Sinha et al., 2015) containing descendants of “psy-
chology” and “computer science” node and refer
as MAG-PSY and MAG-CS.

Dataset # Nodes # Edges Depth

WordNet-Verb 13,936 13,408 13
WordNet-Noun 83,073 76,812 20
MAG-PSY 23,187 30,041 6
MAG-CS 24,754 42,329 6

Table 2: Dataset statistics.

More detailed statistics of each dataset are in Ta-
ble 2. For each dataset, 1000 leaf nodes are ran-
domly sampled as query nodes as the validation
set, and another 1000 leaf nodes form the test set.
Since these validation and testing nodes are all leaf
nodes, only minimum changes are required to make
the remaining taxonomy still a valid one without
introducing non-existed edges. For WordNet-Verb
and WordNet-Noun, we generate the initial con-
cept features following § 3.1. We assume each
concept has only one name and we induce the con-
cept name from the WordNet synset name. For
MAG-PSY/CS, we use 250-d in-domain concept
name word embeddings provided by Shen et al.
(2020) trained using skipgram model on paper ab-
stract corpus. Since we do not have access to the
source profile information, we cannot obtain ini-
tial concept features as designed in § 3.1. As a
result, we cannot run two RoBERTa-base baseline
models introduced in the following section on the
MAG-PSY/CS dataset.
Evaluation Metrics. We follow prior studies
(Zhang et al., 2021; Shen et al., 2020; Manzoor
et al., 2020) to report several widely-used ranking
metrics: MeanRank (MR), Mean Reciprocal Rank
(MRR),4 Recall @ K and Precision @ K.

4We report the MRR numbers scaled by 10 following pre-
vious works to amplify the performance difference.



4188

Baseline Models. We compare HYPEREXPAN

with the following strong baseline models:

• RoBERTa-base Zero-shot: we use RoBERTa-
base as feature extractor to obtain initial embed-
dings as described in § 3.1 without fine-tuning

• RoBERTa-base FT: the above design but update
the LM’s parameters

• Hyperbolic MLP: we concatenate initial fea-
tures of query and anchor concepts and feed into
a two-layer hyperbolic MLP

• GCN (Kipf and Welling, 2017): HYPEREXPAN’s
design but use Euclidean GCN to update node
embeddings in ego graph of the anchor concept,
use fastText to obtain initial concept features, and
use Euclidean MLP as the matching module

• GAT (Velickovic et al., 2018): the above method
but use GAT to update node embeddings.

We compare HYPEREXPAN with the following
state-of-the-art taxonomy expansion frameworks:

• TaxoExpan (Shen et al., 2020) uses GCN and
GAT to get node embeddings of ego networks of
anchor nodes and average all node embeddings
to get anchor concept representation. But the ego
network only includes direct children and parent
of the anchor concept. They also inject relative
positional embeddings to GNN.

• ARBORIST (Manzoor et al., 2020) combines
global and local taxonomic information to explic-
itly model heterogeneous and unobserved edge
semantics.

• TMN (Zhang et al., 2021) uses auxiliary scorers
to capture various fine-grained signals includ-
ing query to hypernym and query to hyponym
semantics and introduces a channel-wise gating
mechanism to retain task-specific information.

4.2 Experimental Results
The overall experimental results are shown in Table
3. We introduce our implementation details and
hyperparameter settings in Appendix B.

Among ARBORIST, TaxoExpan and TMN,
TMN achieves the strongest result consistently.
Note that TMN is trained on taxonomy comple-
tion task and only perform inference on taxonomy
expansion task. Anchor node representations are
learned coupled with different potential children of
the query concept which provides fine-grained sig-
nals. TaxoExpan performs better than ARBORIST

showing the importance of neighborhood infor-
mation. Experiments using RoBERTa-base on
two WordNet datasets indicate that RoBERTa lan-
guage model falls drastically behind in this context-
independent task. Since the profile sentences are
very short and the task is more rely on common-
sense rather than context understanding, language
models cannot benefit from contextualized repre-
sentation, which consolidates the observation by
Liu et al. (2020). We can observe Hyperbolic
MLP is worse than GNN models since it does not
use neighborhood profile information. Hyperbolic
MLP outperforms ARBORIST with a large margin
on all datasets. The comparison between GCN and
GAT indicates that attentive aggregation is more
helpful with the sparse neighborhood representa-
tion. If we compare HYPEREXPAN with GCN and
GAT, we can observe that the expressiveness of
the hyperbolic space leads to a large performance
increase (9.5% and 6.9% recall@10 increase on
MAG-PSY and WordNet-Verb and MRR scaled by
10 increase ranging from 0.013 to 0.076). Overall,
HYPEREXPAN consistently outperforms all models
across four datasets except MR for WordNet-Noun.

To further help understand the contribution of
different incorporated techniques, we present a se-
ries of ablation study results in Table 4. Specifi-
cally, we have the following observations:

According to lines 1-3, the trainable curvature
learns fine-grained suitable manifold setting and
lead to almost 2% recall@10 improvement (lines
1-3). Replacing the default Lorentz model with
Poincaré model notably hinders the performance
which can be explained by Lorentz model’s nu-
merical stability since the distance function of the
Poincaré model contains fraction (Chami et al.,
2019; Peng et al., 2021). We replace Poincaré
GloVe initial word embedding with fastText in line
3 and the result shows that Poincaré GloVe contains
better feature for our task.

We explore different choices of neighborhood
aggregation in lines 4-7. We observe that 2-hop
neighborhood aggregation leads to improvement
over 1-hop in terms of recall@10 and precision@1
(line 5). Adding descendant of the anchor node
supports with better characterization of nodes (line
6). However, we observe a noticeable drop when
we further add sibling nodes into the aggregation
neighborhood (line 7). The potential reason is that
the sibling nodes are very diverse, and thus are not
closely related to the anchor node.
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Model MR ↓ MRR ↑ Recall % ↑ Precision % ↑ MR ↓ MRR ↑ Recall % ↑ Precision % ↑
@1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

WordNet-Verb (Candidates #: 11,936) WordNet-Noun (Candidates #: 81,073)

ARBORIST 608.7 0.280 10.8 24.0 27.7 6.7 4.8 3.2 1095.1 0.435 16.5 28.4 34.1 16.8 5.8 3.5
TaxoExpan 502.8 0.439 12.4 28.2 35.2 12.4 5.6 3.5 649.6 0.562 19.7 38.2 47.4 20.1 7.8 4.8
TMN 465.0 0.479 14.9 31.6 37.9 13.2 6.4 4.0 501.0 0.595 20.7 40.5 50.1 21.1 8.3 5.1

RoBERTa-base 0-shot 2132.8 0.172 4.3 10.1 12.6 4.3 2.0 1.3 25235.4 0.158 13.7 15.7 15.7 14.0 3.2 1.6
RoBERTa-base FT 1535.7 0.155 2.4 6.4 9.9 2.4 1.3 1.0 27748.2 0.148 5.9 13.7 13.7 6.0 2.8 1.4
Hyperbolic MLP 617.4 0.419 10.5 25.6 33.7 10.5 5.1 3.4 869.6 0.502 18.1 33.6 41.7 18.5 6.9 4.3
GCN 456.9 0.445 10.9 27.2 34.5 10.9 5.4 3.5 684.1 0.563 20.9 39.8 47.3 21.3 8.1 4.8
GAT 471.7 0.449 11.6 28.7 35.6 11.6 5.7 3.6 640.7 0.585 22.3 40.9 49.7 22.7 8.3 5.1

HYPEREXPAN 400.8 0.517 15.0 32.8 42.7 15.0 6.6 4.3 573.6 0.607 23.9 42.1 52.5 24.4 8.6 5.4
MAG-PSY (Candidates #: 21,187) MAG-CS (Candidates #: 22,754)

ARBORIST 119.9 0.722 21.0 48.4 62.9 25.8 12.5 7.7 284.7 0.602 15.1 38.9 49.4 24.6 12.6 8.0
TaxoExpan 68.5 0.775 26.1 56.9 69.5 33.8 14.7 9.0 189.8 0.661 15.9 42.9 55.4 25.8 13.9 9.0
TMN 73.0 0.781 25.8 58.7 70.5 33.4 15.2 9.1 160.5 0.667 16.0 43.1 56.3 26.0 14.0 9.1

Hyperbolic MLP 74.1 0.739 21.8 51.4 64.9 28.2 13.3 8.4 101.4 0.650 13.7 38.0 53.4 22.3 12.4 8.7
GCN 51.4 0.742 23.8 52.5 64.3 30.8 13.6 7.4 90.3 0.653 14.5 39.6 53.3 23.6 12.9 8.7
GAT 48.6 0.751 23.6 52.4 65.8 30.5 13.5 8.5 92.2 0.676 15.9 41.9 56.0 25.9 13.6 9.1

HYPEREXPAN 38.4 0.827 28.8 63.0 75.3 37.2 16.3 9.7 74.4 0.689 16.1 44.6 58.0 26.1 14.5 9.4

Table 3: Overall experimental results. Directions (pointing up or down) of arrows indicate better performance of
the metrics. MRR metrics are scaled by 10 to amplify the performance difference.

# Model MRR ↑ Rec ↑ Prec ↑
@10 @1

1 w/o trainable curvature 0.490 40.8 14.4
2 Poincaré i/o Lorentz model 0.494 39.8 13.0
3 fastText i/o Poincaré GloVe 0.494 41.0 15.2

4 anchor + parent + children 0.506 42.2 15.0
5 #4 + anchor’s ancestors 0.505 42.5 15.5
6 #5 + anchor’s descendants 0.517 42.7 15.0
7 #6 + anchor’s siblings 0.502 41.7 14.5

8 w/o Relative Pos Emb 0.497 40.8 13.0
9 w/o Absolute Pos Emb 0.503 41.2 14.3
10 w/o both Positional Emb 0.482 38.8 12.5

HYPEREXPAN 0.517 42.7 15.0

Table 4: Experimental results for ablation studies on
WordNet-Verb. By default, we use trainable curva-
ture, Lorentz hyperbolic model, Poincaré GloVe as ini-
tial word embedding, 2-hop computational graph with-
out anchor’s sibilings, with both relative and absolute
position embedding. “i/o” means “instead of”, “w/o”
means “without”.

In lines 8 to 10, we investigate the effect of posi-
tional embeddings. A larger performance drop is
caused if we remove relative position embeddings
(line 8), in comparison to a lesser drop when re-
moving the absolute position embedding (line 9).
We hypothesize that the absolute position embed-
ding (depth information) is provided implicitly in
the ego graph by edges among events. Line 10

shows that both embeddings are essential to boost
the performance by almost 4% gain in recall@10.

5 Related Works

Our work is connected to two lines of research.

Taxonomy Expansion Taxonomy expansion
task fits in real-world application scenario that
automatically attach new concepts or terms into
a human curated seed taxonomy (Vedula et al.,
2018). Traditional methods leverage pre-defined
patterns to extract hypernym-hyponym pairs for
taxonomy expansion (Nakashole et al., 2012; Jiang
et al., 2017; Agichtein and Gravano, 2000). Some
works use external data and expand taxonomy in a
specific domain. For example, Toral et al. (2008)
use Wikipedia named entities to expand WordNet,
Wang et al. (2014) use query logs to expand search
engine category taxonomy. Some works expand a
generic taxonomy without using external resources.
For example, Shwartz et al. (2016) encode taxon-
omy traversal paths to seize on the dependency
between concepts, Shen et al. (2020) use a GNN
model that handles this task, ARBORIST (Manzoor
et al., 2020) produces concept representations using
signals from both edge semantics and surface forms
of concepts. STEAM (Yu et al., 2020) formulates
the taxonomy expansion task as a mini-path-based
prediction task and introduces a co-training process
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for semi-supervised learning. Recently, Zhang et al.
(2021) propose the taxonomy completion task in
which the new concept can be inserted between
existing concepts on taxonomy. Zhang et al. also
introduce the TMN model whose auxiliary scorers
capture different fine-grained signals. Comparing
with these methods using Euclidean space, HYPER-
EXPAN uses hyperbolic representation learning to
provide feature space with low distortion especially
for lower-level concepts on taxonomies.

Hyperbolic Representation Learning Nickel
and Kiela (2017) present an efficient algorithm to
learn embeddings in a supervised manner based on
Riemannian optimization and shows it performs
well on link prediction task even with a smaller di-
mension. Ganea et al. (2018) presents common neu-
ral network operations in hyperbolic space and Liu
et al. (2019b) extends GNN operations to Rieman-
nian manifolds with differentiable exponential and
logarithmic maps. Most related to our work, Chami
et al. (2019) derives Graph Convolutional Neural
Network (GCN)’s operations in the Lorentz model
of hyperbolic space. Hyperbolic representation
learning is broadly applied to lexical representa-
tions (Dhingra et al., 2018; Tifrea et al., 2019; Zhu
et al., 2020), organizational chart induction (Chen
and Quirk, 2019), hierarchical classification (López
and Strube, 2020; Chen et al., 2020), knowledge
association (Sun et al., 2020), knowledge graph
completion (Wang et al., 2021a; Balazevic et al.,
2019) and event prediction (Surís et al., 2021). A
more comprehensive summarization is given in a
recent survey by Peng et al. (2021).

There are studies that leverage hyperbolic repre-
sentation learning to perform taxonomy extraction
from text, which are connected to this work. Such
studies use Poincaré embeddings trained by hyper-
nymy pairs extracted by lexical-syntactic patterns
(Hearst, 1992) to infer missing nodes (Le et al.,
2019) and refine preexisting taxonomies (Aly et al.,
2019). The patterns suffer from missing and in-
correct extractions, and are dedicated to capturing
hypernymy relations between nouns. Hence, only
terms that are recognizable by the designed pat-
terns are able to be attached to the taxonomy. These
works solely rely on graph structures of the taxon-
omy to obtain hyperbolic embeddings of known
concepts, and cannot handle emerging, unseen con-
cepts using their profile information. This is one of
the problems that are addressed in this work.

6 Conclusion and Future Work

We present HYPEREXPAN, a taxonomy expan-
sion model which better preserves the taxonomical
structure in an expressive hyperbolic space. We
use an HGNN to incorporate neighborhood infor-
mation and positional features of concepts, as well
as profile features that are essential to jump-start
zero-shot concept representations. Experimental re-
sults on WordNet and Microsoft Academic Graph
taxonomies show that HYPEREXPAN performs bet-
ter than its Euclidean counterparts and consistently
outperforms state-of-the-art taxonomy expansion
models. In the future, we plan to extend HYPEREX-
PAN for inducing dynamic taxonomies (Zhu et al.,
2021) and taxonomy alignment (Sun et al., 2020).

Acknowledgments

Many thanks to Liunian Harold Li, Fan Yin, I-Hung
Hsu, Rujun Han and Shuowei Jin for contribution,
discussion and internal reviews, to lab members
at the PLUS lab and UCLA-NLP for suggestions,
and to the anonymous reviewers for their feedback.
This material is based on research supported by
DARPA under agreement number FA8750-19-2-
0500. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental
purposes notwithstanding any copyright notation
thereon. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official
policies or endorsements, either expressed or im-
plied, of DARPA or the U.S. Government.

Ethical Considerations

This work does not present any direct societal con-
sequence. The proposed method aims at improving
representation learning to support automated ex-
pansion of taxonomies. We believe this study leads
to intellectual merits that benefit from automated
knowledge acquisition for constructing knowledge
representations with complex or sparse structures.
It could also potentially lead to broad impacts, as
the obtained taxonomical knowledge representa-
tions can support various knowledge-driven tasks.
It is important to note that the precision of top tax-
onomy expansion predictions is still not high even
with the state-of-the-art method, so human valida-
tion is needed before the taxonomy generated by
the automated method is used in real-world appli-
cations. All experiments are conducted on open
datasets.



4191

References
Eugene Agichtein and Luis Gravano. 2000. Snowball:

Extracting relations from large plain-text collections.
In Proceedings of the 5th ACM conference on Digi-
tal libraries, pages 85–94.

Rami Aly, Shantanu Acharya, Alexander Ossa, Arne
Köhn, Chris Biemann, and Alexander Panchenko.
2019. Every child should have parents: A taxonomy
refinement algorithm based on hyperbolic term em-
beddings. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4811–4817.

Gregor Bachmann, Gary Bécigneul, and Octavian
Ganea. 2020. Constant curvature graph convolu-
tional networks. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages
486–496.

Ivana Balazevic, Carl Allen, and Timothy M.
Hospedales. 2019. Multi-relational poincaré graph
embeddings. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 4465–4475.

Eugenio Beltrami. 1868. Teoria fondamentale degli
spazii di curvatura costante. Annali di Matematica
Pura ed Applicata (1867-1897), 2(1):232–255.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

James W Cannon, William J Floyd, Richard Kenyon,
Walter R Parry, et al. 1997. Hyperbolic geometry.
Flavors of geometry, 31:59–115.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure
Leskovec. 2019. Hyperbolic graph convolutional
neural networks. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 4869–4880.

Boli Chen, Xin Huang, Lin Xiao, Zixin Cai, and Lip-
ing Jing. 2020. Hyperbolic interaction model for hi-
erarchical multi-label classification. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Appli-
cations of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7496–
7503.

Muhao Chen and Chris Quirk. 2019. Embedding edge-
attributed relational hierarchies. In Proceedings of
the 42nd International ACM SIGIR Conference on

Research and Development in Information Retrieval,
SIGIR 2019, Paris, France, July 21-25, 2019, pages
873–876.

Michel Marie Deza and Monique Laurent. 2009. Ge-
ometry of cuts and metrics, volume 15.

Bhuwan Dhingra, Christopher Shallue, Mohammad
Norouzi, Andrew Dai, and George Dahl. 2018. Em-
bedding text in hyperbolic spaces. In Proceedings
of the Twelfth Workshop on Graph-Based Methods
for Natural Language Processing (TextGraphs-12),
pages 59–69.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas
Hofmann. 2018. Hyperbolic neural networks. In
Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pages 5350–5360.

Çaglar Gülçehre, Misha Denil, Mateusz Malinowski,
Ali Razavi, Razvan Pascanu, Karl Moritz Hermann,
Peter W. Battaglia, Victor Bapst, David Raposo,
Adam Santoro, and Nando de Freitas. 2019. Hyper-
bolic attention networks. In 7th International Con-
ference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019.

Mikael Härlin and Per Sundberg. 1998. Taxonomy
and philosophy of names. Biology and Philosophy,
13(2):233–244.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In COLING 1992
Volume 2: The 14th International Conference on
Computational Linguistics.

Wen Hua, Zhongyuan Wang, Haixun Wang, Kai Zheng,
and Xiaofang Zhou. 2016. Understand short texts
by harvesting and analyzing semantic knowledge.
IEEE transactions on Knowledge and data Engineer-
ing, 29(3):499–512.

Birger Iversen and Iversen Birger. 1992. Hyperbolic
geometry, volume 25.

Meng Jiang, Jingbo Shang, Taylor Cassidy, Xiang
Ren, Lance M. Kaplan, Timothy P. Hanratty, and
Jiawei Han. 2017. Metapad: Meta pattern discov-
ery from massive text corpora. In Proceedings of
the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Halifax, NS,
Canada, August 13 - 17, 2017, pages 877–886.

David Jurgens and Mohammad Taher Pilehvar. 2016.
SemEval-2016 task 14: Semantic taxonomy enrich-
ment. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 1092–1102.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.



4192

Max Kochurov, Rasul Karimov, and Serge Kozlukov.
2020. Geoopt: Riemannian optimization in pytorch.

Matthew Le, Stephen Roller, Laetitia Papaxanthos,
Douwe Kiela, and Maximilian Nickel. 2019. Infer-
ring concept hierarchies from text corpora via hyper-
bolic embeddings. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3231–3241.

Bang Liu, Weidong Guo, Di Niu, Chaoyue Wang,
Shunnan Xu, Jinghong Lin, Kunfeng Lai, and Yu Xu.
2019a. A user-centered concept mining system
for query and document understanding at tencent.
In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, KDD 2019, Anchorage, AK, USA, August
4-8, 2019, pages 1831–1841.

Qi Liu, Maximilian Nickel, and Douwe Kiela. 2019b.
Hyperbolic graph neural networks. In Advances in
Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 8228–8239.

Qianchu Liu, Diana McCarthy, and Anna Korho-
nen. 2020. Towards better context-aware lexical
semantics:adjusting contextualized representations
through static anchors. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4066–4075.

Federico López and Michael Strube. 2020. A fully
hyperbolic neural model for hierarchical multi-class
classification. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
460–475.

Emaad Manzoor, Rui Li, Dhananjay Shrouty, and Jure
Leskovec. 2020. Expanding taxonomies with im-
plicit edge semantics. In WWW ’20: The Web Con-
ference 2020, Taipei, Taiwan, April 20-24, 2020,
pages 2044–2054.

Ndapandula Nakashole, Gerhard Weikum, and Fabian
Suchanek. 2012. PATTY: A taxonomy of relational
patterns with semantic types. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning, pages 1135–1145.

Maximilian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representa-
tions. In Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 6338–6347.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals.
2018. Representation learning with contrastive pre-
dictive coding. ArXiv preprint, abs/1807.03748.

Wei Peng, Tuomas Varanka, Abdelrahman Mostafa,
Henglin Shi, and G. Zhao. 2021. Hyperbolic
deep neural networks: A survey. ArXiv preprint,
abs/2101.04562.

Rik Sarkar. 2011. Low distortion delaunay embedding
of trees in hyperbolic plane. In International Sympo-
sium on Graph Drawing, pages 355–366. Springer.

Jiaming Shen, Zhihong Shen, Chenyan Xiong, Chi
Wang, Kuansan Wang, and Jiawei Han. 2020. Tax-
oexpan: Self-supervised taxonomy expansion with
position-enhanced graph neural network. In WWW

’20: The Web Conference 2020, Taipei, Taiwan, April
20-24, 2020, pages 486–497.

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving hypernymy detection with an integrated
path-based and distributional method. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2389–2398.

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Dar-
rin Eide, Bo-June Hsu, and Kuansan Wang. 2015.
An overview of microsoft academic service (mas)
and applications. In Proceedings of the 24th inter-
national conference on world wide web, pages 243–
246.

Darin Stewart. 2008. Building enterprise taxonomies.

Zequn Sun, Muhao Chen, Wei Hu, Chengming Wang,
Jian Dai, and Wei Zhang. 2020. Knowledge associ-
ation with hyperbolic knowledge graph embeddings.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5704–5716.

Dídac Surís, Ruoshi Liu, and Carl Vondrick. 2021.
Learning the predictability of the future. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12607–12617.

Alexandru Tifrea, Gary Bécigneul, and Octavian-
Eugen Ganea. 2019. Poincare glove: Hyperbolic
word embeddings. In 7th International Conference
on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019.

Antonio Toral, Rafael Muñoz, and Monica Monachini.
2008. Named entity WordNet. In Proceedings of
the Sixth International Conference on Language Re-
sources and Evaluation (LREC’08).

Abraham A Ungar. 2001. Hyperbolic trigonometry and
its application in the poincaré ball model of hyper-
bolic geometry. Computers & Mathematics with Ap-
plications, 41(1-2):135–147.

Nikhita Vedula, Patrick K. Nicholson, Deepak Ajwani,
Sourav Dutta, Alessandra Sala, and Srinivasan
Parthasarathy. 2018. Enriching taxonomies with
functional domain knowledge. In The 41st Interna-
tional ACM SIGIR Conference on Research & Devel-
opment in Information Retrieval, SIGIR 2018, Ann
Arbor, MI, USA, July 08-12, 2018, pages 745–754.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.

http://arxiv.org/abs/2005.02819


4193

2018. Graph attention networks. In 6th Inter-
national Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings.

Chengyu Wang, Xiaofeng He, and Aoying Zhou. 2017.
A short survey on taxonomy learning from text cor-
pora: Issues, resources and recent advances. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1190–
1203.

Jingjing Wang, Changsung Kang, Yi Chang, and Ji-
awei Han. 2014. A hierarchical dirichlet model for
taxonomy expansion for search engines. In 23rd In-
ternational World Wide Web Conference, WWW ’14,
Seoul, Republic of Korea, April 7-11, 2014, pages
961–970.

Shen Wang, Xiaokai Wei, Cicero Nogueira
Nogueira dos Santos, Zhiguo Wang, Ramesh
Nallapati, Andrew Arnold, Bing Xiang, Philip S
Yu, and Isabel F Cruz. 2021a. Mixed-curvature
multi-relational graph neural network for knowl-
edge graph completion. In Proceedings of the Web
Conference 2021, pages 1761–1771.

Suyuchen Wang, Ruihui Zhao, Xi Chen, Yefeng Zheng,
and Bang Liu. 2021b. Enquire one’s parent and
child before decision: Fully exploit hierarchical
structure for self-supervised taxonomy expansion.
In Proceedings of the Web Conference 2021, pages
3291–3304.

Xing Wang, Zhaopeng Tu, Longyue Wang, and Shum-
ing Shi. 2019. Self-attention with structural position
representations. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1403–1409.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45.

Carl Yang, Jieyu Zhang, and Jiawei Han. 2020. Co-
embedding network nodes and hierarchical labels
with taxonomy based generative adversarial net-
works. In 2020 IEEE International Conference on
Data Mining (ICDM), pages 721–730. IEEE.

Shuo Yang, Lei Zou, Zhongyuan Wang, Jun Yan, and
Ji-Rong Wen. 2017. Efficiently answering technical
questions - A knowledge graph approach. In Pro-
ceedings of the Thirty-First AAAI Conference on Ar-
tificial Intelligence, February 4-9, 2017, San Fran-
cisco, California, USA, pages 3111–3118.

Xiaoxin Yin and Sarthak Shah. 2010. Building taxon-
omy of web search intents for name entity queries.
In Proceedings of the 19th International Conference
on World Wide Web, WWW 2010, Raleigh, North
Carolina, USA, April 26-30, 2010, pages 1001–
1010.

Jiaxuan You, Rex Ying, and Jure Leskovec. 2019.
Position-aware graph neural networks. In Proceed-
ings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 7134–7143.

Yue Yu, Yinghao Li, Jiaming Shen, Hao Feng, Ji-
meng Sun, and Chao Zhang. 2020. STEAM: self-
supervised taxonomy expansion with mini-paths. In
KDD ’20: The 26th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Virtual
Event, CA, USA, August 23-27, 2020, pages 1026–
1035.

Jieyu Zhang, Xiangchen Song, Ying Zeng, Jiaze Chen,
Jiaming Shen, Yuning Mao, and Lei Li. 2021. Tax-
onomy completion via triplet matching network. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 35, pages 4662–4670.

Yuchen Zhang, Amr Ahmed, Vanja Josifovski, and
Alexander J. Smola. 2014. Taxonomy discovery
for personalized recommendation. In Seventh ACM
International Conference on Web Search and Data
Mining, WSDM 2014, New York, NY, USA, February
24-28, 2014, pages 243–252.

Cunchao Zhu, Muhao Chen, Changjun Fan,
Guangquan Cheng, and Yan Zhan. 2021. Learning
from history: Modeling temporal knowledge graphs
with sequential copy-generation networks. In
Proceedings of the AAAI Conference on Artificial
Intelligence.

Yudong Zhu, Di Zhou, Jinghui Xiao, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. HyperText: Endow-
ing FastText with hyperbolic geometry. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 1166–1171.



4194

A Graph Convolutional Networks

Graph convolutional network (GCN) (Kipf and
Welling, 2017) is a widely-used variant of graph
neural network. GCN defines one hop of graph
message passing as a combination of the feature
transformation and the neighborhood aggregation
at a single layer l. The input feature transformation
is defined as:

h`,E
i =W `x`−1,E

i + b`

where N (i) = {j ∶ (i, j) ∈ E} is a set of neighbor-
ing nodes of node i,W ` and b` are learnable weight
and bias parameters for layer l. The neighborhood
aggregation is then defined as:

AGG0 (x`,E)
i
= σ

⎛
⎝
h`,E
i + ∑

j∈N (i)
wijh

`,E
j

⎞
⎠

where wij denotes the scores for a weighted ag-
gregation, i.e. how important node j is for node i,
and σ is a non-linear activation function. By cas-
cading multiple layers of GCN, the message can
be propagated over several hops of neighborhoods.
The node embeddings in the graph are being up-
dated during the training process. Notice that the
superscript 0 in the above equation denotes the 0-
curved space, i.e. , the aggregation is performed in
a Euclidean space.

B Implementation Details

All the models in this work are trained on a single
Nvidia A100 GPU5 on a Ubuntu 20.04.2 operating
system. The hyperparameters for each model are
manually tuned against different datasets, and the
checkpoints used to evaluate are selected by the
best performing ones on the development set.

Our entire code-base is implemented in Py-
Torch.6 The implementations of the transformer-
based models are extended from the hugging-
face7 code base (Wolf et al., 2020). The im-
plementations of the models compared with, i.e.
TMN, TaxoExpan and ARBORIST, are obtained
and adapted from the original author released code
repositories.

B.1 Hyper-parameters
We introduce the hyper-parameters used through-
out this work and the searching bounds for the
manual hyper-parameter tuning in Table 5.

5https://www.nvidia.com/en-us/data-center/a100/
6https://pytorch.org/
7https://github.com/huggingface/transformers

Type Batch Size Initial LR

Bound (lower–upper) 8-128 1 × 10−2–1 × 10−6

Number of Trials 2–4 2–3

Table 5: Search bounds: for the hyperparameters of
all the models.

We set burnin epoch number to 20 during which
we use 1e-5 learning rate, after the burnin epochs,
the learning rate is 1e-3 with ReduceLROnPlateau
scheduler with 10 patience epochs. For each posi-
tive sample, we generate 31 negative samples. Di-
mension for anchor concept representation (output
dimension of HGNN) is set to 100. We use two
GNN layers by default. We use stochastic Rie-
mannian Adam optimizer (Kochurov et al., 2020;
Nickel and Kiela, 2017). For absolute and relative
positional embedding, we use 50 dimensions by
default. We use MRR of the validation set as the
metric to monitor for an early stop.


