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Abstract

The general goal of text simplification (TS)
is to reduce text complexity for human con-
sumption. In this paper, we investigate an-
other potential use of neural TS: assisting ma-
chines performing natural language processing
(NLP) tasks. We evaluate the use of neural
TS in two ways: simplifying input texts at
prediction time and augmenting data to pro-
vide machines with additional information dur-
ing training. We demonstrate that the lat-
ter scenario provides positive effects on ma-
chine performance on two separate datasets.
In particular, the latter use of TS signifi-
cantly improves the performances of LSTM
(1.82–1.98%) and SpanBERT (0.7–1.3%) ex-
tractors on TACRED, a complex, large-scale,
real-world relation extraction task. Further,
the same setting yields significant improve-
ments of up to 0.65% matched and 0.62% mis-
matched accuracies for a BERT text classifier
on MNLI, a practical natural language infer-
ence dataset.

1 Introduction

The goal of text simplification (TS) is to reduce text
complexity (while preserving meaning) such that
the corresponding text becomes more accessible
to human readers. Previous works explored how
TS can assist children (Kajiwara et al., 2013), non-
native speakers (Pellow and Eskenazi, 2014), and
people with disabilities (Rello et al., 2013). While
this can be achieved in a variety of approaches
(Sikka et al., 2020), most TS research has focused
on two major approaches: rule-based and neural
sequence-to-sequence (seq2seq). Since 2017, there
is a significant increase of neural seq2seq TS meth-
ods (Zhang and Lapata, 2017; Zhao et al., 2018;
Kriz et al., 2019; Maddela et al., 2020; Jiang et al.,
2020).

In this paper, we analyze another potential use
of the latter TS direction: assisting machines per-
forming natural language processing (NLP) tasks.

To this end, we investigate two possible directions:
(a) using TS to simplify input texts at prediction
time, and (b) using TS to augment training data for
the respective NLP tasks. We empirically analyze
these two directions using two neural TS systems
(Martin et al., 2019; Nisioi et al., 2017), and two
NLP tasks: relation extraction using the TACRED
dataset (Zhang et al., 2017), and multi-genre nat-
ural language inference (MNLI) (Williams et al.,
2017). Further, within these two tasks, we explore
three methods: two relation extraction approaches,
one based on LSTMs (Hochreiter and Schmidhu-
ber, 1997) and another based on transformer net-
works, SpanBERT (Joshi et al., 2020), and one
method for MNLI also based on transformer net-
works, BERT (Devlin et al., 2018).

Our analysis shows that simplifying texts at pre-
diction times does not improve results, but using
TS to augment training data consistently helps in
all configurations. In particular, after augmented
data is added, all approaches outperform their re-
spective configurations without augmented data on
both TACRED (0.7–1.98% in F1) and MNLI (0.50–
0.65% in accuracies) tasks. The reproducibility
checklist and the software are available at this link:
https://github.com/vanh17/TextSiM.

2 Related Work

Recent work have effectively proven the practical
application of neural networks and neural deep
learning approaches to solving machine learning
problems (Ghosh et al., 2021; Blalock et al., 2020;
Yin et al., 2017).

With respect to input simplification, several
works have utilized TS as a pre-processing step
for downstream NLP tasks such as information ex-
traction (Miwa et al., 2010; Schmidek and Barbosa,
2014; Niklaus et al., 2017), parsing (Chandrasekar
et al., 1996), semantic role labeling (Vickrey and
Koller, 2008), and machine translation (Štajner and
Popović, 2016). However, most of them focus on

https://github.com/vanh17/TextSiM
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ACCESS NTS

1 Training Data 0.67 ± 0.16 0.89 ± 0.22

2 Dev Data 0.68 ± 0.15 0.92 ± 0.18

Table 1: The empirical differences in BLEU scores (Pa-
pineni et al., 2002) between original and simplified text
generated by two TS systems, ACCESS and NTS, in
TACRED training and dev datasets.

the use of rule-based TS methods. In contrast, we
investigate the potential use of domain-agnostic
neural TS systems in simplifying inputs for down-
stream tasks. We show that, despite the complexity
of the tasks investigated and the domain agnostic-
ity of the TS approaches, TS improves both tasks
when used for training data augmentation, but not
when used to simplify evaluation texts.

On data augmentation for natural language pro-
cessing downstream tasks, previous work show sig-
nificant benefits of introducing noisy data on the
machine performance (Van et al., 2021; Kobayashi,
2018). Previous efforts used TS approaches, e.g.
lexical substitution, to augment training data for
downstream tasks such as text classification (Zhang
et al., 2015; Wei and Zou, 2019). However,
these methods focused on replacing words with
thesaurus-based synonyms, and did not emphasize
other important lexical and syntactic simplification.
Here, we use two out-of-the-box neural TS systems
that apply both lexical and syntactic sentence sim-
plification for data augmentation, and show that
our data augmentation consistently leads to bet-
ter performances. Note that we do not use rule-
based TS systems because they have been proven
to perform worse than their neural counterparts
(Zhang and Lapata, 2017; Nisioi et al., 2017). Fur-
ther, rule-based TS systems are harder to build in a
domain-independent way due to the many linguis-
tic/syntactic variations across domains.

3 Approach

We investigate the impact of text simplification on
downstream NLP tasks in two ways: (a) simplify-
ing input texts at prediction time, and (b) augment-
ing training data for the respective NLP tasks. We
discuss the settings of these experiments next.

3.1 Input Simplification at Prediction Time
We pose the run-time input simplification problem
as a transparent data pre-processing problem. That
is, given an input data point, we simplify the text

ACCESS NTS

Train

1 Premise 0.62 ± 0.24 0.76 ± 0.25

2 Hypothesis 0.62 ± 0.30 0.80 ± 0.17

Dev mismatched

3 Premise 0.62 ± 0.28 0.80 ± 0.22

4 Hypothesis 0.65 ± 0.23 0.81 ± 0.17

Dev matched

5 Premise 0.62 ± 0.30 0.75 ± 0.26

6 Hypothesis 0.60 ± 0.25 0.80 ± 0.17

Table 2: The empirical differences in BLEU scores (Pa-
pineni et al., 2002) between original and simplified text
generated by two TS systems, ACCESS and NTS, in
MNLI training and dev datasets.

while keeping the native format of the task, and
then feed the modified input to the actual NLP task.
For example, for the TACRED sentence “the CFO
Douglas Flint will become chairman, succeeding
Stephen Green is leaving for a government job.”,
which contains a per:title relation between the two
entities Douglas Flint and chairman, our approach
will first simplify the text to “the CFO Douglas
Flint will become chairman, and Stephen Green
is leaving to take a government job.”. Then we
generate a relation prediction for the simplified text
using existing relation extraction classifiers.

3.2 Data Augmentation for Training
Here, we augment training data by simplifying the
text of some original training examples, and ap-
pending it to the original training dataset. First, we
sample which examples should be used for augmen-
tation with probability p. Second, once an example
is selected for augmentation, we generate an ad-
ditional example with the text portion simplified
using TS. For example, for the data in section 3.1,
we generate an additional training data with the cor-
responding simplified text. p is a hyper parameter
that we tuned for each task (see next section).

4 Experimental Setup

NLP tasks and methods: We evaluate the im-
pact of TS on two NLP tasks: (a) relation extrac-
tion (RE) using the TACRED dataset (Zhang et al.,
2017), and (b) natural language inference (NLI) on
the MNLI dataset (Williams et al., 2017).

TACRED is a large-scale RE dataset with
106,264 examples built on newswire and web text
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Simplified Original Simplified +
Complement

Train Data Sets

LSTM

1 Original 59.95 62.70 61.32

2 Simplified + 62.34 62.59 62.12
Complement

3 Simplified + 62.64 64.52 64.08
Original (AD)

SpanBERT

4 Original 62.42 66.70 64.12

5 Simplified + 64.12 65.45 64.92
Complement

6 Simplified + 65.14 68.00 66.43
Original (AD)

Table 3: F1 on TACRED test set of the LSTM and
SpanBERT approaches using ACCESS (Martin et al.,
2019) as the TS method. The different rows indicate
the different data augmentation strategies applied on
the training data, while the columns indicate the type of
simplification applied at runtime on the test data. We
investigated the following configurations: Original: un-
modified dataset; Simplified + Complement: consists of
simplified data that preserves critical information com-
bined with original data when simplification fails to
preserve important information; Simplified + Original:
consists of all original data augmented with additional
simplified data that preserves critical information. (AD)
annotates models using data augmented by neural TS
systems during training.

with an average sentence length of 36.4 words.
Each sentence contains two entities in focus (called
subject and object) and a relation that holds be-
tween them. We selected this task because the
nature of RE requires critical information preserva-
tion, which is challenging for neural TS methods
(Van et al., 2020). That is, the simplified sentences
must contain the subject and object entities.

The MNLI corpus is a crowd-sourced collection
of 433K sentence pairs annotated for NLI. The av-
erage sentence length in this dataset is 22.3 words.
Each data point contains a premise-hypothesis pair
and one of the three labels: contradiction, entail-
ment, and neutral. We selected MNLI as the second
task to further understand the effects of TS on ma-
chine performance on tasks that rely on long text,
which is a challenge for TS methods (Shardlow,
2014; Xu et al., 2015).

We train three approaches for these two tasks.
First, for TACRED, we use a classifier based on

Simplified Original Simplified +
Complement

Train Data Sets

LSTM

1 Original 60.47 62.70 61.03

2 Simplified + 63.40 62.96 62.28
Complement

3 Simplified + 62.91 64.68 64.35
Original (AD)

SpanBERT

4 Original 62.20 66.70 63.90

5 Simplified + 64.12 65.32 63.92
Complement

6 Simplified + 65.32 67.40 65.47
Original (AD)

Table 4: F1 on TACRED test set of the LSTM and Span-
BERT approaches using NTS (Nisioi et al., 2017) as
the TS method. This table follows the same format as
Table 3.

LSTMs1 (Hochreiter and Schmidhuber, 1997), and
a second based on SpanBERT2 (Joshi et al., 2020).
For MNLI, we trained a BERT-based classifier3

(Devlin et al., 2018). For reproducibility, we use
the default settings and general hyper parameters
recommended by the task and creators of the trans-
former networks (Zhang et al., 2017; Joshi et al.,
2020; Devlin et al., 2018). Through this, we aim to
separate potential improvements of our approaches
from those coming from improved configurations.

Text simplification methods: For TS, we use
two out-of-the-box neural seq2seq TS approaches:
ACCESS (Martin et al., 2019), and NTS (Nisioi
et al., 2017). Tables 1 and 2 show the BLEU scores
(Papineni et al., 2002) between original and simpli-
fied text generated by these two TS systems for the
two tasks. The tables highlight that both systems
change the input texts, with ACCESS being more
aggressive.

Evaluation measures: We directly followed the
evaluation measures proposed by the original task
organizers (Zhang et al., 2017; Williams et al.,
2017). Specifically, we used these main metrics:
(a) F1 on TACRED relation extraction, and (b)

1https://github.com/yuhaozhang/
tacred-relation

2https://huggingface.co/SpanBERT/
spanbert-large-cased

3https://huggingface.co/
bert-base-cased

https://github.com/yuhaozhang/tacred-relation
https://github.com/yuhaozhang/tacred-relation
https://huggingface.co/SpanBERT/spanbert-large-cased
https://huggingface.co/SpanBERT/spanbert-large-cased
https://huggingface.co/bert-base-cased
https://huggingface.co/bert-base-cased
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Simplified Original
m/mm acc m/mm acc

Train Data Sets

ACCESS

1 Original 71.25/71.43 82.89/83.10

2 Original Swapped 71.76 ± 0.13/ 83.00 ± 0.03/
with 10% Simplified 72.12 ± 0.08 83.25 ± 0.05

3 Original Swapped 72.74 ± 0.10/ 82.66 ± 0.07/
with 20% Simplified 73.10 ± 0.12 82.88 ± 0.09

4 5% Simplified 71.30 ± 0.15/ 83.47 ± 0.04
+ Original (AD) 71.52 ± 0.10 83.61 ± 0.08

5 10% Simplified 71.81 ± 0.07/ 82.81 ± 0.05/
+ Original (AD) 71.99 ± 0.08 83.05 ± 0.09

6 15% Simplified 71.87 ± 0.11/ 82.92 ± 0.05/
+ Original (AD) 72.10 ± 0.07 83.13 ± 0.06

NTS

7 Original 33.36/33.53 82.89/83.10

8 Original Swapped 33.39 ± 0.10/ 83.28 ± 0.07/
with 10% Simplified 33.46 ± 0.08 83.50 ± 0.11

9 Original Swapped 33.71 ± 0.08/ 82.60 ± 0.14/
with 20% Simplified 33.90 ± 0.11/ 82.79 ± 0.09

10 5% Simplified 33.35 ± 0.10/ 83.20 ± 0.09/
+ Original (AD) 33.50 ± 0.09 83.41 ± 0.10

11 10% Simplified 33.50 ± 0.07/ 83.51 ± 0.05/
+ Original (AD) 33.80 ± 0.09 83.70 ± 0.07

12 15% Simplified 33.65 ± 0.04/ 83.09 ± 0.05
+ Original (AD) 33.79 ± 0.10 83.25 ± 0.07

Table 5: Matched (m) and mismatched (mm) accuracies
on MNLI development using text simplified/augmented by
ACCESS (top half) and NTS (bottom half). Original Swapped
with x% Simplified consists of original data with x% of data
points replaced with their simplified form. x% Simplified
+ Original consists of the original data augmented with an
additional x% of simplified data. (AD) annotates models using
data augmented by neural TS systems during training. Note
that our results in the original configuration differ slightly from
those in (Devlin et al., 2018). This is likely due to the different
hardware and library versions used (Belz et al., 2021).

matched/mismatched accuracies on MNLI.

Hyper parameter tuning: We tuned the only hy-
per parameter for data augmentation, the percent-
age of augmented data points, p, for MNLI. On
this task we augmented 5, 10, and 15% of sentence
pairs from training data, and found 5 and 10% of
training data as the best thresholds for ACCESS
and NTS respectively. For TACRED, we did not
use this hyper parameter. Instead, we used all sim-
plifications that preserve critical information for
data augmentation. That is, we added all simpli-
fied sentences that preserve the subject and object
entities necessary for the underlying relation. We
found that 66% of training data sentences could

Simplified Original
m/mm acc m/mm acc

Train Data Sets

ACCESS

1 Original 71.10/71.30 82.78/83.00

2 5% Simplified + 71.21/71.40 83.37/83.50
Original (AD)

NTS

3 Original 33.25/33.45 82.78/83.00

4 10% Simplified + 33.39/33.61 83.43/83.62
Original (AD)

Table 6: Matched (m) and mismatched (mm) accura-
cies on MNLI test, using the best configurations from
development.

be simplified while preserving this information by
ACCESS, and 72% by NTS.

5 Results and Discussion

Tables 3 and 4 summarize our results on TACRED
for the two distinct TS methods. Because we tuned
the hyper parameter p for MNLI, we report results
on both development and test for this task (Tables 5
and 6, respectively). Further, for MNLI we also
report average performance (and standard devia-
tion) for 3 runs, where we select a different sample
to be simplified in each run. This is not necessary
for TACRED; for this task we simplified all data
points that preserved critical information i.e., the
two entities participating in the relation.4

Input simplification at prediction time: Ta-
bles 3 and 4 show that simplifying inputs at test
time does not yield improvements (compare the
Original column with the third one). There are
absolute decreases in performance of 1.38–2.58%
and 1.67–2.80% in F1 on TACRED for ACCESS
and NTS systems, respectively (substract column 3
from column 2 in rows 1 and 4).

Similarly, on MNLI, the performance on simpli-
fied inputs is lower than the classifier tested on the
original data. The performance drops on MNLI
are more severe (11.68–49.53% and 11.70–49.55%
in matched and mismatched accuracies) (substract
column 1 from column 2 in row 1 and row 3 in
Table 6 pairwise). We hypothesize that this is due
to the quality of simplifications in MNLI being
lower than those in TACRED. In the latter situation

4This is not possible for MNLI, where it is unclear which
part of the text is critical for the task.
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Gold Data Our Approach Baseline

1 P: In the apt description of one witness, it drops below the P: It drops below the radar screen ... you don’t know Predict:
radar screen ... you don’t know where it is. H: It is hard where it is. H: It is hard for one to find Neutral
for one to realize what just happened. Gold Label: Entailment what just happened. Predict: Entailment

2 P: The tourist industry continued to expand, and though it P: The tourist industry continued to expand, and Predict:
the top two income earners in Spain, was ... consequences. ... top two income earners in Spain. ... consequences. Contradict
H: Tourism is not very big in Spain. Gold Label: Contradict H: Tourism is very big in Spain. Predict: Entailment

3 P: This site includes a list of all award winners and a P: This site includes a list of all award winners and a Ans:
searchable database of Government Executive articles. searchable database of Government Executive articles. Neutral
H: The Government Executive articles housed on the website H: The Government Executive articles are not able
are not able to be searched. Ans: Contradict to find the website to be searched . Ans: Contradict

Table 7: Qualitative comparison of the outputs from our approach (text simplification by ACCESS) and the respec-
tive BERT baseline on the original MNLI data. P, H indicates premise and hypothesis.

we could apply a form of quality control, i.e., by
accepting only the simplifications that preserve the
subject and object of the relation. To illustrate the
benefits/dangers of text simplification, we show a
few examples where simplification improves/hurts
MNLI output in Table 7.

Augmenting training data: As shown in row 3
and 6 in Table 3 and 4, all methods trained on aug-
mented data yield consistent performance improve-
ments, regardless of the RE classifier used (LSTM
or SpanBERT) or TS method used (ACCESS or
NTS). There are absolute increases of 1.30–1.82%
F1 for ACCESS and 0.70–1.98% F1 for NTS on
(substract row 1 from row 3 and row 4 from row
6 for ACCESS and NTS respectively). The best
configuration is when the original training data is
augmented with all data points that could be sim-
plified while preserving the subject and object of
the relation (rows 4 and 8 in the two tables). These
results confirm that TS systems can provide addi-
tional, useful training information for RE methods.

Similarly, on MNLI, the classifier trained us-
ing augmented data outperforms the BERT clas-
sifier that is trained only on the original MNLI
data. For two TS systems, ACCESS and NTS,
we observe performance increases of 0.59–0.65%
matched accuracy, and 0.50–0.62% mismatched
accuracy (compare rows 1 vs. 2, and row 3 vs. 4 in
Table 6). This confirms that TS as data augmenta-
tion is also useful for NLI.

All in all, our experiments suggest that our data
augmentation approach using TS is fairly general.
It does not depend on the actual TS method used,
and it improves three different methods from two
different NLP tasks. Further, our results indicate
that our augmentation approach is more beneficial
for tasks with lower resources (e.g., TACRED),

but its impact decreases as more training data is
available (e.g., MNLI).

6 Conclusion

We investigated the effects of neural TS systems
on downstream NLP tasks using two strategies:
(a) simplifying input texts at prediction time, and
(b) augmenting data to provide machines with ad-
ditional information during training. Our experi-
ments indicate that the latter strategy consistently
helps multiple NLP tasks, regardless of the under-
lying method used to address the task, or the neural
approach used for TS.
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