
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 3920–3938
November 7–11, 2021. ©2021 Association for Computational Linguistics

3920

Uncertainty-Aware Machine Translation Evaluation

Taisiya Glushkova1,4 Chrysoula Zerva1,4 Ricardo Rei2,3,4 André F. T. Martins1,2,4

1Instituto de Telecomunicações 2Unbabel 3INESC-ID
4Instituto Superior Técnico & LUMLIS (Lisbon ELLIS Unit)

{taisiya.glushkova, chrysoula.zerva, andre.t.martins}@tecnico.ulisboa.pt

ricardo.rei@unbabel.com

Abstract

Several neural-based metrics have been re-
cently proposed to evaluate machine transla-
tion quality. However, all of them resort to
point estimates, which provide limited infor-
mation at segment level. This is made worse as
they are trained on noisy, biased and scarce hu-
man judgements, often resulting in unreliable
quality predictions. In this paper, we introduce
uncertainty-aware MT evaluation and analyze
the trustworthiness of the predicted quality.
We combine the COMET framework with two
uncertainty estimation methods, Monte Carlo
dropout and deep ensembles, to obtain qual-
ity scores along with confidence intervals. We
compare the performance of our uncertainty-
aware MT evaluation methods across multiple
language pairs from the QT21 dataset and the
WMT20 metrics task, augmented with MQM
annotations. We experiment with varying num-
bers of references and further discuss the use-
fulness of uncertainty-aware quality estima-
tion (without references) to flag possibly crit-
ical translation mistakes.

1 Introduction

Evaluation of machine translation (MT) quality is
a key problem with several use cases: it is needed
to compare and select MT systems, to decide on
the fly whether a translation is ready for publica-
tion or needs to be post-edited by a human, and
more generally to track progress in the field (Spe-
cia et al., 2018; Mathur et al., 2020). Even when
reference translations are available, the increasing
quality of neural MT systems has made traditional
lexical-based metrics such as BLEU (Papineni et al.,
2002) or CHRF (Popović, 2015) insufficient to dis-
tinguish the best systems. This fostered a line of
work on neural-based metrics, with recent propos-
als such as BLEURT (Sellam et al., 2020), COMET

(Rei et al., 2020a) and PRISM (Thompson and Post,
2020a). Metrics for quality estimation (QE; when
references are not available) have also been devel-

MT DA COMET UA-COMET

Она сказала, -0.815 0.586 0.149
’Это не собирается [-0.92, 1.22]

работать.

Gloss: “She said, ‘that’s not willing to work”

Она сказала: 0.768 1.047 1.023
«Это не сработает. [0.673, 1.374]

Gloss: “She said, «That will not work”

Table 1: Example of uncertainty-aware MT evaluation
for a sentence in the WMT20 dataset. Shown are two
Russian translations of the same English source “She
said, ‘That’s not going to work.” with reference “Она
сказала: “Не получится.” For the first sentence,
COMET provides a point estimate (in red) that overes-
timates quality, as compared to a human direct assess-
ment (DA), while our UA-COMET (in green) returns a
large 95% confidence interval which contains the DA
value. For the second sentence UA-COMET is confi-
dent and returns a narrow 95% confidence interval.

oped as part of OPENKIWI (Kepler et al., 2019)
and TRANSQUEST (Ranasinghe et al., 2020).

While the metrics above have enjoyed some suc-
cess in system-level evaluation – where the goal is
to compare different systems – their segment-level
quality scores are often unreliable for practical use.
They all share the limitation that their output is a
single point estimate – they do not provide any un-
certainty information, such as confidence intervals,
with their quality predictions. This is an important
limitation: often, complex or out-of-domain sen-
tences receive quality estimates that are far from
their true quality (as illustrated in Table 1). This
may lead to translations with critical mistakes being
undetected, and hinders worst-case performance
analysis of MT systems.

In this paper, we propose a simple and effec-
tive method to obtain uncertainty-aware qual-
ity/metric estimation systems, by representing qual-
ity as a distribution, rather than a single value.
To this end, we make use of and compare two
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well-studied techniques for uncertainty estimation:
Monte Carlo (MC) dropout (Gal and Ghahramani,
2016) and deep ensembles (Lakshminarayanan
et al., 2017). In both cases, our method is agnostic
to the particular metric estimation system, as long
as it can be ensembled or perturbed. In our experi-
ments we use COMET (Rei et al., 2020a), and we
call our uncertainty-aware version UA-COMET.1

Our method allows using the same system with
a varying number of references. We show that con-
fidence intervals tend to shrink as more references
are added, which matches the intuition that MT
evaluation systems should become more confident
as they have access to more information.

We evaluate our approach using data from the
WMT20 metrics task (Mathur et al., 2020), in-
cluding its recent extension with Google MQM
annotations (Freitag et al., 2021), and the QT21
dataset (Specia et al., 2017). The results show that
our uncertainty-aware systems exhibit better cali-
bration with respect to human direct assessments
(DA; Graham et al. 2013), multi-dimensional qual-
ity metric scores (MQM; Lommel et al. 2014), and
human translation error rates (HTER; Snover et al.
2006) than a simple baseline, while their average
quality scores achieve similar or better correlation
than the vanilla COMET system. Finally, we il-
lustrate a potential quality estimation use case en-
abled by our approach: automatically detecting
low-quality translations with a risk-based criterion.

2 Related Work

Automatic MT evaluation Reference-based ap-
proaches for MT evaluation include traditional met-
rics such as BLEU (Papineni et al., 2002) and ME-
TEOR (Denkowski and Lavie, 2014), as well as
recently proposed BLEURT (Sellam et al., 2020),
BERTSCORE (Zhang et al., 2020), PRISM (Thomp-
son and Post, 2020a) and COMET (Rei et al.,
2020a). Approaches that do not make use of human
references are generally referred to as QE systems
(Specia et al., 2018; Kepler et al., 2019; Ranasinghe
et al., 2020). Our proposed approach augments
reference-based approaches and enables a single
system that can be used with multiple references,
with the added advantage of providing uncertainty
information. To the best of our knowledge, predic-
tive uncertainty in QE has been approached only

1Link to our code can be found at https://github.
com/deep-spin/UA_COMET. A newer version of
COMET, with incorporated uncertainty options is available at
https://github.com/Unbabel/COMET.

with Gaussian processes (Beck et al., 2016), which
are not competitive or easy to integrate with current
neural architectures.

Confidence estimation in MT A related line of
work is confidence estimation of sentence-level MT
outputs (Blatz et al., 2004; Quirk, 2004; Wang et al.,
2019). The work that relates the most with ours is
the one by Fomicheva et al. (2020), who propose an
unsupervised glass-box approach to QE, extracting
uncertainty-related features from the MT system
via MC dropout. They show that the more confident
the decoder (as measured by the lower variance
of its output), the higher the quality of the MT
output. Our work builds upon this perspective to
propose uncertainty estimation of the QE systems
themselves, rather than uncertainty of MT.

Performance prediction in NLP A related prob-
lem is that of predicting the performance of an NLP
system without having to train it (Xia et al., 2020).
Recent approaches perform such predictions by
adding confidence intervals (Ye et al., 2021) and
measuring calibration error. We take inspiration
from these works to improve the calibration of our
methods (Guo et al., 2017; Desai and Durrett, 2020)
and to evaluate how good our uncertainty estimates
are with a suite of performance indicators.

Uncertainty estimation Overall the concepts
and methods of uncertainty quantification (Hueller-
meier and Waegeman, 2021) have been widely ex-
plored and compared for many different tasks, in-
cluding MT (Ott et al., 2018). Uncertainty estima-
tion in neural networks has traditionally been ap-
proached with Bayesian methods, replacing point
estimates of weights with probability distributions
(Mackay, 1992; Graves, 2011; Welling and Teh,
2011; Tran et al., 2019). However, Bayesian neural
networks are costly, and in order to avoid high train-
ing costs, various approximations come in handy.
Model ensembling (Dietterich, 2000; Garmash and
Monz, 2016; McClure and Kriegeskorte, 2017; Lak-
shminarayanan et al., 2017; Pearce et al., 2020; Jain
et al., 2020) is a commonly used approach, which
employs an ensemble of neural networks to obtain
multiple point predictions and then uses their em-
pirical variance as an approximate measure of un-
certainty. Its main disadvantage is the need to train
multiple models. An alternative is MC dropout
(Gal and Ghahramani, 2016), which builds upon
dropout regularization (Srivastava et al., 2014) but
uses it at test time, by performing several stochastic

https://github.com/deep-spin/UA_COMET
https://github.com/deep-spin/UA_COMET
https://github.com/Unbabel/COMET


3922

forward passes through the network and comput-
ing mean and variance of the resulting outputs as
a proxy for the model’s uncertainty. Our work ap-
plies and compares the last two techniques to MT
evaluation. Note that more elaborate approaches
have been proposed to address uncertainty quan-
tification on classification tasks, including calibra-
tion approaches (Guo et al., 2017; Kuleshov et al.,
2018a), the use of Dirichlet distributions (Sensoy
et al., 2018; Malinin and Gales, 2018; Charpentier
et al., 2020) and entropy measures (Smith and Gal,
2018). However, uncertainty in MT evaluation is a
regression task which is so far largely overlooked
in terms of predictive uncertainty. Our paper can
be seen as a first step towards uncertainty-aware
MT evaluation models.

3 Uncertainty-Aware MT Evaluation

3.1 Problem definition
Typical MT evaluation systems take as input a tu-
ple 〈s, t,R〉, where s is source text, t is machine
translated text, and R = {r1, . . . , r|R|} is a (pos-
sibly empty) set of reference translations. Their
goal is to predict an automatic score q̂ ∈ R which
assesses the quality of the translation. Supervised
systems such as COMET or BLEURT are trained to
approximate ground truth scores q∗ obtained from
human annotations, such as DA, MQM and HTER.
In this paper, we assume that q∗ is a continuous
real-valued score, but the main ideas extend to the
case where q∗ are discrete classes or quality bins.

3.2 Sources of uncertainty
There are several challenges with learning MT eval-
uation systems:

1. Noisy scores. The human-generated scores q∗

are not always reliable and often suffer from
high variability, exhibiting low inter-annotator
agreement. This problem can be mitigated by
averaging over a sufficient number of references,
but this brings considerable annotation costs
(Freitag et al., 2021; Mathur et al., 2020).

2. Noisy or insufficient references. The refer-
ences R do not always have good quality, and
their sparsity (small |R|) is often insufficient to
represent the space of possible correct transla-
tions well (Freitag et al., 2020).2 An extreme
2From the perspective of the MT system, the existence of

multiple valid translations for a single source sentence can be
seen as inherent uncertainty of the task (Ott et al., 2018).

case is when there are no references (R = ∅),
a problem known as “QE as a metric.”

3. Complex translations. Correct translations are
often non-literal, and it may be hard for an auto-
matic system to grasp the semantic relation be-
tween the translated sentence and the references,
as they may be confused with hallucinations.

4. Out-of-domain text. The text where the MT
evaluation system is run may belong to a differ-
ent domain from the one it was trained on.

The first two points can be seen as aleatoric uncer-
tainty (noise in the input or output data), whereas
the last two are instances of epistemic uncertainty,
reflecting the limited knowledge of the model
(Hora, 1996; Kiureghian and Ditlevsen, 2009). Un-
fortunately, these uncertainties add up. To cope
with the different sources of uncertainty, we treat
the quality score Q as a random variable and pre-
dict a distribution p̂Q(q), as opposed to a point
estimate q̂. This way, we obtain an uncertainty-
aware system, which can return a peaked distribu-
tion when it is confident about its quality estimate,
or a flatter distribution in cases where it is more
uncertain. This allows, among other things, manag-
ing the risk of treating a translation as good quality
when it is not (see §5.4). When estimating quality
on the fly without references, knowing the system’s
confidence in the quality of the produced trans-
lations might help obtain informative worst-case
indicators on whether a human post-edit is required,
e.g. by evaluating the cumulative distribution func-
tion F̂Q(χ) =

∫ χ
−∞ p̂Q(q)dq which quantifies the

translation risk, i.e., the probability of a transla-
tion being below a quality threshold χ. Moreover,
having access to such distributions of quality esti-
mates can be beneficial when deciding if a system
outperforms another with some level of confidence.

3.3 Uncertainty and confidence intervals
To obtain p̂Q(q), our approach builds upon a vanilla
MT evaluation system h (such as COMET) that
produces point estimates q̂ = h(〈s, t,R〉), and
augments it to produce uncertainty estimates. Our
approach is completely agnostic about the system
h, as long as it can be ensembled or perturbed.

The first step is to use h to produce a set
Q = {q̂1, . . . , q̂N} of quality scores for a given
input 〈s, t,R〉, which will be interpreted as a sam-
ple from p̂Q(q). For this, we experiment with
two methods: MC dropout (Gal and Ghahramani,
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2016), which obtains Q by running N stochastic
forward-passes on h with units dropped out with
a given probability; and deep ensembles (Laksh-
minarayanan et al., 2017), in which N separate
models are trained with different random initializa-
tions and then run in parallel to obtain Q. While
both methods have shown to be effective in several
tasks (Fomicheva et al., 2020; Malinin and Gales,
2021), MC dropout is usually more convenient (be-
cause only one model is required), but generally
requires many more samples for good performance
(larger N ) compared to deep ensembles.

The second step is to use the resulting set Q
to represent model’s uncertainty. One way of rep-
resenting uncertainty is through confidence inter-
vals, that is, given a desired confidence level γ ∈
[0, 1] (e.g. γ = 0.95), specifying the smallest pos-
sible quality interval I(γ) = [qmin(γ), qmax(γ)]
such that P (q ∈ I(γ)) =

∫ qmax

qmin
p̂Q(q)dq ≥ γ.

There are two possible strategies to obtain such in-
tervals: a parametric approach, which parametrizes
the distribution p̂Q(q), produces estimates of its pa-
rameters by fitting the distribution on Q, and uses
them to compute confidence intervals at arbitrary
levels γ; and a non-parametric approach, which
bypasses the estimation of p̂Q(q) and focuses on
estimating its quantiles for the desired values of γ
directly from Q. In this paper, we opted for a sim-
ple parametric Gaussian approach, which worked
well in practice and seemed to fit our data well (see
Figure 3 in App. B). However, we did experiment
with a non-parametric bootstrapping technique us-
ing the percentile method (Efron, 1979; Johnson,
2001; Ye et al., 2021), which we report in App. E.

In our approach, we treat Q as a sample
drawn from a Gaussian distribution, p̂Q(q) =
N (q; µ̂, σ̂2), and estimate the parameters µ̂ and
σ̂2 as the sample mean and variance, respectively.
Once p̂Q(q) is fit to Q, the confidence intervals
I(γ) = [qmin(γ), qmax(γ)] can be estimated at
the desired level of confidence γ, using the probit
(quantile) function probit(p) =

√
2erf−1(2p− 1)

(where erf is the error function):

qmin(γ) = µ̂− σ̂probit((1 + γ)/2)

qmax(γ) = µ̂+ σ̂probit((1 + γ)/2). (1)

3.4 MT evaluation with multi-references
As our framework can model uncertainty, it is in-
teresting to consider the case where the number of
available references R may vary. Intuitively, we
expect the uncertainty to decrease when the model

observes more references. Specifically, relying on
a single reference might prove problematic, since
even human generated references can be noisy and
prone to errors. Additionally, for source sentences
with multiple and diverse valid translations, rely-
ing on a single reference might result in potential
underestimation of the quality of valid MT hypothe-
ses. For the above reasons, additional references,
even if they are paraphrased versions of the orig-
inals (Freitag et al., 2020), can help obtain better
evaluations of the MT systems’ outputs.

As a result, relying on human-generated refer-
ences can be a constraint in terms of learning and
predicting accurate quality estimates for adequately
diverse data (Sun et al., 2020). We thus want to
assess the impact of additional references (both
independently generated and paraphrased) on the
estimated confidence intervals.

Even though our approach works with any un-
derlying MT evaluation system h which produces
point estimates, most existing systems cannot seam-
lessly handle a varying number of references or no
references without architecture modifications. For
example, COMET originally receives exactly one
reference as input to predict the quality of a 〈s, t〉
pair. We take the following approach to handle
a varying number of references (|R| > 1): we
obtain a set of N quality predictions for each avail-
able reference, r ∈ R, for a given 〈s, t〉 pair, re-
sulting in a set of N × |R| quality predictions.
We then compute the pointwise average across
the |R| dimension, leading to N quality scores
Q = {q̂1, . . . , q̂N} that aggregate information from
all the |R| references. We can then apply the same
approach as described earlier. Intuitively, the av-
eraging operation should reduce variance in the
quality scores, which would result in narrower con-
fidence intervals as |R| increases. We validate this
hypothesis in our experiments in §5.4.

3.5 Post-calibration

In our initial experiments, we observed that the
magnitude of the predicted variance σ̂2 depends
significantly on several hyperparameters, such as
the choice of dropout value, number of samples,
and language pair. In classification tasks, a simi-
lar phenomenon has been reported by Malinin and
Gales (2021), who recommended combining these
methods with temperature calibration (Platt, 1999)
to adjust uncertainties and obtain more reliable con-
fidence intervals. For regression tasks – our case
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Figure 1: Calibration for EN-DE language pair. Con-
tinuous (blue) line is ECE pre-calibration and dotted
(orange) line corresponds to ECE post-calibration.

of interest – Kuleshov et al. (2018b) also point out
the importance of post-calibration. Since temper-
ature scaling is only applicable in classification,
they propose an isotonic regression technique in-
stead (Niculescu-Mizil and Caruana, 2005). We
found that we can obtain highly calibrated uncer-
tainty estimates in a much simpler way, by learning
an affine transformation σ2 7→ σ2

calib = ασ2 + β,
where α and β are scalars, tuned to minimize the
calibration error (see Eq. 2–3) on a validation set.
We use the tuned σcalib in our experiments (§5),
and show the improvement on ECE for different
confidence levels with σcalib in Figure 1.

4 Evaluating Uncertainty

Having described our framework, we now turn to
the problem of verifying the effectiveness and in-
formativeness of the proposed uncertainty quantifi-
cation method. Two crucial aspects to take into ac-
count when evaluating uncertainty-aware systems
are: (i) the system should not harm the predictive
accuracy compared to a system without uncertainty
and (ii) the uncertainty estimate should reflect the
failure probability of the system well, meaning that
the system “knows when it does not know.” In
what follows, we assume a test or validation set
D = {〈sj , tj ,Rj , q∗j 〉}

|D|
j=1, consisting of examples

together with their ground truth quality scores.

Calibration Error One way of understanding if
models can be trusted is analyzing whether they
are calibrated (Raftery et al., 2005; Jiang et al.,
2011; Kendall and Gal, 2017), that is, if the confi-
dence estimates of its predictions are aligned with
the empirical likelihoods (Guo et al., 2017). In
classification tasks, this is assessed by the expected
calibration error (ECE; Naeini et al. 2015), which
has been generalized to regression by Kuleshov

et al. (2018b). It is defined as:

ECE =
1

M

M∑
b=1

|acc(γb)− γb|, (2)

where each b is a bin representing a confidence
level γb, and acc(γb) is the fraction of times the
ground truth q∗ falls inside the confidence interval
I(γb):

acc(γb) =
1

|D|
∑

〈s,t,R,q∗〉∈D

1(q∗ ∈ I(γb)). (3)

We use this metric with M = 100.

Negative log-likelihood To evaluate parametric
methods that represent the full distribution p̂Q(q),
we can use a single metric that captures both ac-
curacy and uncertainty, the average negative log-
likelihood of the ground truth quality scores accord-
ing to the model:

NLL = − 1

|D|
∑

〈s,t,R,q∗〉∈D

log p̂(q∗ | 〈s, t,R〉).

(4)
This metric penalizes predictions that are accurate
but have high uncertainty (since they will become
flat distributions with low probability everywhere),
and even more severely incorrect predictions with
high confidence (as they will be peaked in the
wrong location), but is more forgiving to predic-
tions that are inaccurate but have high uncertainty.

Sharpness The metrics above do not sufficiently
account for how “tight” the uncertainty interval is
around the predicted value, and thus might gener-
ally favour predictors that produce wide and unin-
formative confidence intervals. To guarantee useful
uncertainty estimation, confidence intervals should
not only be calibrated, but also sharp. We mea-
sure sharpness using the predicted variance σ̂2, as
defined in Kuleshov et al. (2018b):

sha(p̂Q) =
1

|D|
∑

〈s,t,R〉∈D

σ̂2. (5)

Pearson correlations As shown by Ashukha
et al. (2020), NLL and ECE alone might not
be enough to evaluate uncertainty-aware systems.
Therefore, we complement the indicators above
with two Pearson correlations involving the sys-
tem’s predictions and the ground truth quality
scores coming from human judgements. The first,
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which we call the predictive Pearson score (PPS),
is useful to assess the predictive accuracy of the sys-
tem, regardless of the uncertainty estimate – it is the
Pearson correlation r(q∗, µ̂) between the ground
truth quality scores q∗ and the average system pre-
dictions µ̂ in the dataset D (for the baseline point
estimate system, we use q̂ instead of µ̂). We expect
this score to be similar to the baseline or slightly
better due to the ensemble effect. The second is the
uncertainty Pearson score (UPS) r(|q∗ − µ̂|, σ̂),
which measures the alignment between the predic-
tion errors |q∗ − µ̂| and the uncertainty estimates
σ̂. Note that achieving a high UPS is much more
challenging – a model with a very high score would
know how to correct its own predictions to obtain
perfect accuracy. We confirm this claim later in our
experiments.

5 Experiments

5.1 Datasets

We apply our method to predict three types of
human judgement scores at segment-level: DA,
MQM and HTER. We use the WMT20 metrics
shared task dataset (Mathur et al., 2020) for the
DA judgements, and the Google MQM annotations
for English-German (EN-DE) and Chinese-English
(ZH-EN) on the same corpus (Freitag et al., 2021).
For language pairs where both human- and system-
generated translations are provided, we remove the
human translations before evaluating (Human-A,
Human-B, Human-P in WMT20). For the HTER
experiments, we use the QT21 dataset (Specia et al.,
2017). Dataset statistics are presented in App. B.

5.2 Experimental setup

For the experiments presented below, we use
COMET as the underlying MT quality evaluation
system (Rei et al., 2020a).3 For evaluation, we
perform k-fold cross-validation: we split the test
partition into k = 5 folds, so that each fold contains
translations of every MT system and has approxi-
mately the same number of documents. The k-fold
splits are generated in such a way that there are
unique source-reference pairs in each fold, and the
documents are disjunct across the folds. Since doc-
uments vary in their length, the number of segments
per fold can differ. We use 4 folds for validation
and the remaining one for testing. As we experi-

3More precisely we used the wmt-large-da-estimator-1719
and the wmt-large-hter-estimator available at: https://
unbabel.github.io/COMET/html/models.html.

ment with human annotations of different scales, q̂
and q∗ are standardized on the validation set and
the model is post-calibrated as described in §3.5.

MC dropout (MCD) We apply a dropout proba-
bility of 0.1 and run N = 100 runs of MC dropout.
Dropout was applied at encoder, pooling and feed-
forward layers as we found it produces more useful
σ̂ values, corroborating the findings of Verdoja and
Kyrki (2020) and Kendall et al. (2017). More de-
tails on tuning the hyperparameters can be found
in App. C.

Deep Ensembles (DE) We train ensembles with
N = 5 models and random initialization. For train-
ing, we follow the procedure described by Rei et al.
(2020b), training each model for 2 epochs.

Baseline As a simple baseline, we take the orig-
inal point estimates q̂ provided by the underlying
COMET system and map them to a Gaussian dis-
tribution N (q; µ̂, σ̂2) with µ̂ := q̂ and a fixed vari-
ance σ̂2 := σ2

fixed (i.e., the same variance is as-
signed to all the examples). We compute σ2

fixed on
the validation set so that it minimizes the average
NLL value, which has the following closed form
expression (see App. A for a proof):

σ2
fixed =

1

|D|
∑

〈s,t,R,q∗〉∈D

(q∗ − µ̂)2. (6)

This baseline was found surprisingly strong on sev-
eral performance indicators (Tables 2, 3, 4).

5.3 Segment-level analysis

Table 2 presents results for the performance in-
dicators described in §4 for 9 language pairs in
the WMT20 dataset, encompassing a mix of high-
resource and low-resource languages. We observe
that both uncertainty-aware methods (MCD and
DE) show consistent improvement over the base-
line in all metrics and language pairs, with the ex-
ception of NLL in two language pairs (ZH-EN and
EN-IU). We also see that, overall, deep ensembles
provide more accurate predictions and narrower
confidence intervals compared to MC dropout, but
without a significant improvement for the other per-
formance indicators across pairs. Considering the
computational cost of training and tuning multiple
models for the deep ensemble, MC dropout seems
preferable for the presented MT evaluation setup.

While these results are encouraging, we stress
that experiments on higher quality data at a larger

https://unbabel.github.io/COMET/html/models.html
https://unbabel.github.io/COMET/html/models.html


3926

scale are necessary to fully validate and compare
uncertainty-aware methods, as the numbers in Ta-
ble 2 are influenced by the inconsistencies in DA
annotations, which are known to be particularly
noisy (Toral, 2020; Freitag et al., 2021). To miti-
gate this, we further compare performance on the
recently released Google MQM annotations for EN-
DE and ZH-EN, shown in Table 3. As expected
from the higher quality of these annotations, and
even though the underlying COMET system was
still trained on DAs and evaluated on the MQM as-
sessments, we get higher uncertainty correlations,
with the MC dropout approach benefiting the most.
We also notice a significant improvement across
all indicators for the ZH-EN dataset, which was
poorly correlated with the predictions on the DA
dataset. We use the MQM annotations to provide
a more in-depth analysis on specific use cases on
translation evaluation in §5.4 -5.5.

Finally, Table 4 shows the results on HTER
prediction on the QT21 dataset.4 For this met-
ric and dataset, the Pearson correlations are gener-
ally higher than in previous experiments (with the
exception of UPS for EN-CS) and the sharpness
scores indicate that the predicted confidence inter-
vals are considerably narrower, showing that for
these experiments the models are generally more
accurate and more confident than when predicting
DA and MQM. This might be explained by the
fact that HTER, which quantifies the amount of
post-editing required to fix a translation, is a less
subjective metric than a quality assessment, and
therefore the aleatoric uncertainty caused by noisy
scores may be smaller.

5.4 Impact of reference quantity

We next experiment with the WMT20 EN-DE to
get some insights on the impact of using multiple
references as described in §3.4. This dataset con-
tains 3 human references (Human A, B, and P) for
each source sentence generated in different ways:
A and B are generated independently by annotators
and P is a paraphrased as-much-as-possible ver-
sion of A. Our goal is to simulate the availability
of multiple human references of varying quality
levels. As reported in the findings of WMT20 Met-
rics task (Mathur et al., 2020), in realistic scenarios
the available references have very disparate quality

4This dataset contains post-edits of the MT output, for
which the HTER score is computed, and independent human
references, which we use to predict HTER following the same
experimental procedure as Rei et al. (2020a).

PPS ↑ UPS ↑ NLL ↓ ECE ↓ Sha. ↓

E
N

-D
E MCD 0.576 0.284 1.330 0.014 0.645

DE 0.581 0.246 1.364 0.023 0.523
Basel. 0.576 - 1.337 0.079 0.845

E
N

-Z
H MCD 0.333 0.064 1.779 0.024 0.701

DE 0.354 0.477 1.435 0.020 0.762
Basel. 0.329 - 1.570 0.090 1.342

E
N

-T
A MCD 0.658 0.015 1.226 0.022 0.585

DE 0.675 0.068 1.200 0.018 0.564
Basel. 0.655 - 1.237 0.028 0.691

Z
H

-E
N MCD 0.314 0.109 1.628 0.015 0.971

DE 0.319 0.174 1.591 0.016 0.928
Basel. 0.313 - 1.580 0.059 1.374

E
N

-J
A MCD 0.640 0.165 1.237 0.011 0.591

DE 0.651 0.093 1.225 0.015 0.556
Basel. 0.636 - 1.259 0.035 0.725

E
N

-C
S MCD 0.691 0.207 1.163 0.013 0.548

DE 0.729 0.163 1.100 0.013 0.455
Basel. 0.695 - 1.172 0.036 0.608

E
N

-R
U MCD 0.536 0.142 1.378 0.021 0.767

DE 0.578 0.139 1.320 0.023 0.670
Basel. 0.532 - 1.383 0.041 0.925

E
N

-P
L MCD 0.611 0.199 1.275 0.015 0.650

DE 0.650 0.176 1.224 0.012 0.581
Basel. 0.608 - 1.301 0.042 0.783

E
N

-I
U MCD 0.300 0.223 1.600 0.016 1.016

DE 0.308 0.319 1.682 0.026 1.052
Basel. 0.292 - 1.594 0.077 1.410

Table 2: Results for segment-level DA prediction.
Underlined numbers indicate the best result for each
language pair and evaluation metric. Reported are the
predictive Pearson score r(µ̂, q∗) (PPS), the uncertainty
Pearson score r(|q∗ − µ̂|, σ̂) (UPS), the negative log-
likelihood (NLL), the expected calibration error (ECE),
and the sharpness (Sha.) Note that the UPS of the base-
line is always zero, since it has a fixed variance.

levels, and the quality of human references is not
always known. We thus calculate the performance
when using each of the Human-A, Human-B and
Human-P references individually, and then com-
pare randomly sampling r fromR with averaging
predictions over each r in R, hypothesizing that
the combination of references will result in reduced
model uncertainty.

We can see in Table 5 that when having access
to multiple references, combining all available ref-
erences (Mul) results in narrower confidence inter-
vals compared to sampling single references (S-1)
or even pairs of references (S-2) as indicated by
the decreasing values in sharpness. Apart from
sharpness, the model seems to benefit from the
addition of new knowledge, since we see consis-
tent improvement in performance for PPS and NLL
metrics. Thus, with the incorporation of additional
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PPS ↑ UPS ↑ NLL ↓ ECE ↓ Sha. ↓
E

N
-D

E MCD 0.452 0.409 1.433 0.024 0.674
DE 0.459 0.336 1.435 0.035 0.556

Basel. 0.452 - 1.437 0.094 1.031

Z
H

-E
N MCD 0.503 0.309 1.402 0.018 0.721

DE 0.485 0.257 1.415 0.023 0.653
Basel. 0.503 - 1.398 0.059 0.953

Table 3: Results for segment-level MQM prediction.
Underlined numbers indicate the best result for each
language pair and evaluation metric.

PPS ↑ UPS ↑ NLL ↓ ECE ↓ Sha. ↓

E
N

-D
E MCD 0.765 0.384 1.054 0.023 0.325

DE 0.703 0.408 1.110 0.017 0.406
Basel. 0.761 - 1.052 0.120 0.478

D
E

-E
N MCD 0.769 0.475 0.964 0.029 0.329

DE 0.702 0.498 1.100 0.040 0.330
Basel. 0.767 - 1.046 0.140 0.469

E
N

-L
V MCD 0.778 0.376 1.209 0.020 0.284

DE 0.709 0.377 1.064 0.022 0.328
Basel. 0.772 - 1.017 0.108 0.454

E
N

-C
S MCD 0.753 0.173 1.097 0.038 0.413

DE 0.672 0.216 1.222 0.024 0.536
Basel. 0.752 - 1.076 0.050 0.498

Table 4: Results for segment-level HTER prediction in
QT21. Underlined numbers indicate the best result for
each language pair and evaluation metric.

human references we obtain models that are more
confident – and rightly so, since they are more pre-
dictive too. Combining this information with the
performance of singleton reference sets in Table 6,
we note that even among human references, the es-
timated reference quality seems to have an impact
both on the predictive accuracy (PPS) and confi-
dence (UPS, NLL, Sharpness). Both for S-N and
Mul approaches, the inclusion of Human-P in the
reference set results in performance drop across
all metrics. Still, the negative impact of Human-P
decreases with the increase of combined references
and we can conclude that when there is no informa-
tion on the estimated quality of references the best
approach is to combine them: forR = {A,B, P},
Mul results in similar performance to Human-A.

5.5 Detection of critical translation mistakes
One of the key applications where the use of
uncertainty-aware MT evaluation is particularly rel-
evant is the identification of critical translation er-
rors that would require human assisted editing. To
investigate whether uncertainty can improve perfor-
mance of critical error detection, we treat the error
detection as an information retrieval problem where

#r PPS ↑ UPS ↑ NLL ↓ ECE ↓ Sha. ↓

R={A,B}

S-1 1 0.452 0.407 1.403 0.017 0.746
Mul 2 0.471 0.389 1.388 0.020 0.718

R={B,P}

S-1 1 0.391 0.327 1.470 0.029 0.837
Mul 2 0.441 0.331 1.429 0.013 0.753

R={B,P}

S-1 1 0.406 0.334 1.475 0.026 0.852
Mul 2 0.433 0.339 1.460 0.019 0.719

R={A,B,P}

S-1 1 0.402 0.355 1.473 0.026 0.825
S-2 2 0.441 0.348 1.424 0.019 0.756
Mul 3 0.455 0.351 1.417 0.018 0.702

Table 5: Performance over multiple references and
combination patterns on EN-DE Google MQM annota-
tions. S-N signifies sampling w/o replacement N ref-
erences from R; Mul signifies combining estimates
over multiple references in R as described in §3.4.
Underlined numbers indicate the best result for each
evaluation metric and reference set.

PPS ↑ UPS ↑ NLL ↓ ECE ↓ Sha. ↓

R={A} 0.452 0.409 1.433 0.024 0.674
R={B} 0.442 0.400 1.406 0.015 0.782
R={P} 0.391 0.275 1.511 0.020 0.783

Table 6: Performance over singleton reference sets on
EN-DE Google MQM annotations. Underlined num-
bers indicate the best result for each evaluation metric.

we aim to identify the worst translations based on
human annotations. We experiment with the EN-
DE dataset and the corresponding MQM annota-
tions, since MQM scores specifically designed with
the distinction between major and minor transla-
tion errors in mind (Burchardt and Lommel, 2014).
In this experiment we also take into consideration
the number of words in the MT sentence and nor-
malize scores accordingly to avoid over-penalizing
for critical very long translations with accumulated
minor errors. We elaborate and provide compara-
tive examples regarding this choice in Appendix F.
We calculate and average the MQM scores for all 3
annotators per segment and then normalize for MT
length. We then use the segments with the n% low-
est scores as the retrieval targets. We present the
results for the 2% lowest quality segments in Figure
2 and we provide additional results (with n ranging
from 1% to 20% lowest quality segments) in Ap-
pendix F. We provide the statistics for the MQM
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data5 used in this experiment in Table 7. Our hy-
pothesis is that we can provide better predictions of
erroneous translations, using the cumulative distri-
bution function over Q for each 〈s, t,R〉 to predict
the probability P (Q ≤ qerr), where qerr is a quality
threshold tuned on the validation set to optimize
average recall@N. We can then compare 3 ways
of scoring the translations automatically: (1) using
the scores q̂ predicted by h to rank translations,
(2) using the mean µ̂ of the estimated distribution
p̂Q(q) instead of the single point estimate q̂, and
(3) using the uncertainty-aware parametric models
to compute and rank by the probability of qerr.

Since this scenario is more relevant to real-
time/on demand translation evaluation, we test it
under the assumption that there is no access to a
human reference. To handle this referenceless case
(R = ∅, also known as quality estimation), we can
use translations produced by an MT system out-
side the WMT20 participants as pseudo-references
(Scarton and Specia, 2014; Duma and Menzel,
2018). We use PRISM6, which was originally
trained as a multilingual NMT model, (Thomp-
son and Post, 2020b,a). We evaluate all scoring
approaches using Recall@N and Precision@N as
shown in Figure 2. We can see that while for
very small values all approaches perform similarly,
the uncertainty-aware approach (UA-COMET) out-
performs the other two for Recall as N increases,
while it also demonstrates higher Precision espe-
cially for small N values, which are of greatest
interest since we want to correct as many critical er-
rors as possible with minimal human intervention.

6 Conclusions

We introduced uncertainty-aware MT evaluation
and showed how MT-related applications can ben-
efit from this approach. We compared two tech-
niques to estimate uncertainty, MC dropout and
deep ensembles, across several performance indi-
cators. Through experiments on three datasets with
different human quality assessments encompass-
ing several language pairs, we have shown that
the resulting confidence intervals are informative
and correlated with the prediction errors, leading
to slightly more accurate predictions with infor-
mative uncertainty. Our uncertainty-aware system

5We use a fixed dev/test split instead of k-fold cross-
validation in this case. We still ensure that we do not split any
document across dev/test and that test remains "unseen".

6We use the m39v1 model in https://github.com/
thompsonb/prism and the zero-shot translation setup.

#segments #documents #MT systems

dev 5058 468 9
test 5049 468 9

Table 7: MQM dataset statistics for critical error detec-
tion experiments.

(a) Recall@N, worst 2%

(b) Precision@N, worst 2%

Figure 2: Performance on predicting the worst MTs, us-
ing PRISM pseudo-references. The continuous (blue)
line corresponds to the original COMET prediction,
while the dashed (orange) line to the averaged predic-
tions obtained by MCD. The dotted (green) line corre-
sponds to predictions using the cdf UA-COMET.

can take into account multiple references and be-
comes more confident (and accurate) when more
references are available; it can so perform quality
estimation without any human reference by rely-
ing on pseudo-references from other MT systems
(PRISM). We show that uncertainty-aware MT eval-
uation is a promising path. As a future direction,
we aspire to further explore uncertainty predicting
methods that tackle the different kinds of aleatoric
and epistemic uncertainty described in §3.2 and are
better tailored to the specifics of this task.
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Christopher B. Quirk. 2004. Training a sentence-
level machine translation confidence measure. In
Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC’04),
Lisbon, Portugal. European Language Resources As-
sociation (ELRA).

Adrian E. Raftery, Tilmann Gneiting, Fadoua Bal-
abdaoui, and Michael Polakowski. 2005. Using
bayesian model averaging to calibrate forecast en-
sembles. Monthly Weather Review, 133(5):1155 –
1174.

Tharindu Ranasinghe, Constantin Orasan, and Ruslan
Mitkov. 2020. TransQuest at WMT2020: Sentence-
level direct assessment. In Proceedings of the Fifth
Conference on Machine Translation, pages 1049–
1055, Online. Association for Computational Lin-
guistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020a. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Associa-
tion for Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and
Alon Lavie. 2020b. Unbabel’s participation in the
WMT20 metrics shared task. In Proceedings of
the Fifth Conference on Machine Translation, pages
911–920, Online. Association for Computational
Linguistics.

Carolina Scarton and Lucia Specia. 2014. Document-
level translation quality estimation: exploring dis-
course and pseudo-references. In Proceedings of
the 17th Annual conference of the European As-
sociation for Machine Translation, pages 101–108,
Dubrovnik, Croatia. European Association for Ma-
chine Translation.

Thibault Sellam, Dipanjan Das, and Ankur Parikh.
2020. BLEURT: Learning robust metrics for text
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7881–7892, Online. Association for Computa-
tional Linguistics.

Murat Sensoy, Lance Kaplan, and Melih Kandemir.
2018. Evidential deep learning to quantify classifi-
cation uncertainty. In Proceedings of the 32nd Inter-
national Conference on Neural Information Process-
ing Systems, pages 3183–3193.

Lewis Smith and Yarin Gal. 2018. Understanding mea-
sures of uncertainty for adversarial example detec-
tion. arXiv preprint arXiv:1803.08533.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In Proceedings of the 7th Conference of the As-
sociation for Machine Translation in the Americas:
Technical Papers, pages 223–231, Cambridge, Mas-
sachusetts, USA. Association for Machine Transla-
tion in the Americas.

Lucia Specia, Kim Harris, Aljoscha Burchardt, Marco
Turchi, Matteo Negri, and Inguna Skadina. 2017.
Translation quality and productivity: A study on
rich morphology languages. In Machine Translation
Summit XVI, pages 55–71.

Lucia Specia, Carolina Scarton, and Gustavo Henrique
Paetzold. 2018. Quality estimation for machine
translation. Synthesis Lectures on Human Language
Technologies, 11(1):1–162.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(56):1929–1958.

Shuo Sun, Francisco Guzmán, and Lucia Specia. 2020.
Are we estimating or guesstimating translation qual-
ity? In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 6262–6267, Online. Association for Compu-
tational Linguistics.

Brian Thompson and Matt Post. 2020a. Automatic ma-
chine translation evaluation in many languages via
zero-shot paraphrasing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 90–121, Online.
Association for Computational Linguistics.

Brian Thompson and Matt Post. 2020b. Paraphrase
generation as zero-shot multilingual translation: Dis-
entangling semantic similarity from lexical and syn-
tactic diversity. In Proceedings of the Fifth Confer-
ence on Machine Translation, pages 561–570, On-
line. Association for Computational Linguistics.

Antonio Toral. 2020. Reassessing claims of human par-
ity and super-human performance in machine trans-
lation at WMT 2019. In Proceedings of the 22nd
Annual Conference of the European Association for
Machine Translation, pages 185–194, Lisboa, Portu-
gal. European Association for Machine Translation.

http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.41.1639&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.41.1639&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.41.1639&rep=rep1&type=pdf
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
http://www.lrec-conf.org/proceedings/lrec2004/pdf/426.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/426.pdf
https://doi.org/10.1175/MWR2906.1
https://doi.org/10.1175/MWR2906.1
https://doi.org/10.1175/MWR2906.1
https://www.aclweb.org/anthology/2020.wmt-1.122
https://www.aclweb.org/anthology/2020.wmt-1.122
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://www.aclweb.org/anthology/2020.wmt-1.101
https://www.aclweb.org/anthology/2020.wmt-1.101
https://www.aclweb.org/anthology/2014.eamt-1.21
https://www.aclweb.org/anthology/2014.eamt-1.21
https://www.aclweb.org/anthology/2014.eamt-1.21
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25
https://cris.fbk.eu/retrieve/handle/11582/313118/21555/specia_et_al_2017_translation_quality_and_productivity.pdf
https://cris.fbk.eu/retrieve/handle/11582/313118/21555/specia_et_al_2017_translation_quality_and_productivity.pdf
https://www.morganclaypool.com/doi/10.2200/S00854ED1V01Y201805HLT039
https://www.morganclaypool.com/doi/10.2200/S00854ED1V01Y201805HLT039
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.18653/v1/2020.acl-main.558
https://doi.org/10.18653/v1/2020.acl-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.8
https://doi.org/10.18653/v1/2020.emnlp-main.8
https://doi.org/10.18653/v1/2020.emnlp-main.8
https://www.aclweb.org/anthology/2020.wmt-1.67
https://www.aclweb.org/anthology/2020.wmt-1.67
https://www.aclweb.org/anthology/2020.wmt-1.67
https://www.aclweb.org/anthology/2020.wmt-1.67
https://www.aclweb.org/anthology/2020.eamt-1.20
https://www.aclweb.org/anthology/2020.eamt-1.20
https://www.aclweb.org/anthology/2020.eamt-1.20


3932

Dustin Tran, Mike Dusenberry, Mark van der Wilk, and
Danijar Hafner. 2019. Bayesian layers: A module
for neural network uncertainty. In Advances in Neu-
ral Information Processing Systems, volume 32. Cur-
ran Associates, Inc.

Francesco Verdoja and Ville Kyrki. 2020. Notes
on the behavior of mc dropout. arXiv preprint
arXiv:2008.02627.

Shuo Wang, Yang Liu, Chao Wang, Huanbo Luan, and
Maosong Sun. 2019. Improving back-translation
with uncertainty-based confidence estimation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 791–
802, Hong Kong, China. Association for Computa-
tional Linguistics.

Max Welling and Yee Whye Teh. 2011. Bayesian learn-
ing via stochastic gradient langevin dynamics. In
Proceedings of the 28th International Conference
on International Conference on Machine Learning,
ICML’11, page 681–688, Madison, WI, USA. Om-
nipress.

Mengzhou Xia, Antonios Anastasopoulos, Ruochen
Xu, Yiming Yang, and Graham Neubig. 2020. Pre-
dicting performance for natural language process-
ing tasks. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8625–8646, Online. Association for Computa-
tional Linguistics.

Zihuiwen Ye, Pengfei Liu, Jinlan Fu, and Graham Neu-
big. 2021. Towards more fine-grained and reliable
NLP performance prediction. In Proceedings of the
16th Conference of the European Chapter of the
Association for Computational Linguistics: Main
Volume, pages 3703–3714, Online. Association for
Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

https://proceedings.neurips.cc/paper/2019/file/154ff8944e6eac05d0675c95b5b8889d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/154ff8944e6eac05d0675c95b5b8889d-Paper.pdf
https://doi.org/10.18653/v1/D19-1073
https://doi.org/10.18653/v1/D19-1073
http://www.icml-2011.org/papers/398_icmlpaper.pdf
http://www.icml-2011.org/papers/398_icmlpaper.pdf
https://doi.org/10.18653/v1/2020.acl-main.764
https://doi.org/10.18653/v1/2020.acl-main.764
https://doi.org/10.18653/v1/2020.acl-main.764
https://www.aclweb.org/anthology/2021.eacl-main.324
https://www.aclweb.org/anthology/2021.eacl-main.324
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


3933

A Baseline with Fixed Variance

We show here that, when p̂Q(q) = N (q, µ̂, σ̂2) is
a Gaussian distribution, the optimal fixed variance
that minimizes NLL is

σ2
fixed =

1

|D|

|D|∑
j=1

(q∗j − µ̂j)2.

To show this, observe that

σ2
fixed = argmin

σ2
−
|D|∑
j=1

logN (q∗j , µ̂j , σ
2)

= argmin
σ2

|D|∑
j=1

(
log(2πσ2)

2
+

(q∗j + µ̂j)
2

2σ2

)

= argmin
y>0

|D|∑
j=1

(
− log(π−1y)

2
+ (q∗j + µ̂j)

2y

)
︸ ︷︷ ︸

:=F (y)

,

where we made the variable substitution y = 1
2σ2

and we defined the function F : R>0 → R, which
is convex on its domain and tends to +∞ when
y → 0+ and when y → +∞, hence it has a global
minimum. Equating the derivative of the objective
function to zero, we get

0 = F ′(y) = −|D|
2y

+

|D|∑
j=1

(q∗j − µ̂j)2,

from which we get

y =

 2

|D|

|D|∑
j=1

(q∗j − µ̂j)2
−1

and σ2 = 1
2y = 1

|D|
∑|D|

j=1(q
∗
j − µ̂j)2 as desired.

B Datasets

We present in Table 8 descriptive statistics of
datasets used in our experiments.

In Fig.3 we show the distribution of predicted
quality estimates for a random sample from
WMT20 dataset, (EN-TA language pair7), with the
corresponding superimposed gaussian to demon-
strate the perceived fit.

7Based on a translation produced by the OPPO system, for
the segment with index 473 (randomly sampled).

WMT20 QT21 Google

avg # seg per LP 1391 1000 1709
avg # doc 74 - 99

max # systems per LP 16 2 8
avg doc length 16 - 12

# LPs 9 4 2
annotations DA HTER MQM

Table 8: Descriptive statistics of the newstest2020
datasets. Systems Human-A, Human-B and Human-P
are excluded. Google corresponds to the MQM exten-
sion on the WMT20 dataset.

Figure 3: Distribution of predicted values for a random
sample from WMT20 dataset, EN-TA language pair.

C Hyperparameter Tuning

The number of dropout runs was tuned on the
[25, 200] interval with a step of 25 on the EN-DE

WMT20 data. We show the results in Table 9. In
preliminary experiments, we found that increasing
the dropout probability beyond 0.1 did not bring
any gains, therefore we used this number. We also
found that dropping only the feed-forward layers of
COMET and/or the pooling layers was ineffective,
therefore we applied dropout on all COMET layers
for all experiments presented in this paper.

# runs PPS ↑ UPS ↑ NLL ↓ ECE ↓ Sharp. ↓

25 0.580 0.200 1.346 0.015 0.657
50 0.581 0.204 1.334 0.015 0.635
75 0.581 0.204 1.328 0.014 0.627
100 0.582 0.206 1.323 0.014 0.624
125 0.582 0.207 1.326 0.014 0.636
150 0.582 0.209 1.323 0.014 0.631
175 0.582 0.209 1.324 0.014 0.633
200 0.582 0.210 1.322 0.015 0.623

Table 9: [DA] Segment-level results obtained with dif-
ferent number of dropout runs.
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Hyperparameter HTER DA

Encoder Model XLM-R (base) XLM-R (large)
Optimizer Adam Adam
nº frozen epochs 1 0.4
Learning rate 3e-05 3e-04
Encoder Learning Rate 1e-05 1e-05
Layerwise Decay 0.95 0.95
Batch size 16 16
Loss function Mean squared error Mean squared error
Dropout 0.1 0.1
Hidden sizes [3072, 1536] [3072, 1536]
Encoder Embedding layer Frozen Frozen
FP precision 32 32
Nº Epochs 2 2

Table 10: Hyperparameters used to train the deep ensembles.

D Deep Ensembles

Table 10 shows the hyperparameters used to train
the DA and HTER estimators for our deep en-
sembles. In both cases we trained 4 models with
different seeds and used as fifth model the wmt-
large-da-estimator-1719 and the wmt-large-hter-
estimator available in https://github.com/
Unbabel/COMET. Each of these models has
583M parameters and were trained on a single
Nvidia Quadro RTX 8000 GPU8 for ≈ 34 and
≈ 3.5 hours for the DA models and HTER models,
respectively. Regarding the validation performance
recorded during training, the DA models achieve
a PPS of 0.612± 0.002, while the HTER models
achieve a PPS of 0.663± 0.012.

E Non-parametric Estimation of
Confidence Intervals

The parametric Gaussian approach we chose to
obtain confidence intervals, described in §3, fits
relatively well our data (see Figure 3). However,
this approach makes a strong assumption about
the shape of p̂Q(q), and therefore we experimented
also with a non-parametric bootstrapping technique
to estimate confidence intervals. Such approach
has been successful in several NLP tasks (Koehn,
2004; Li et al., 2017; Ye et al., 2021). In this case,
we construct the confidence intervals I(γ) by us-
ing the percentile method (Efron, 1979; Johnson,
2001). We take the range of point estimates in Q
that cover equal γ2 proportions around the median
of the p̂Q(q) distribution as the desired confidence
interval, represented by the corresponding sample
quantiles. Since this approach typically require

8https://www.nvidia.com/en-us/
design-visualization/quadro/rtx-8000/

many samples to obtain accurate estimates of the
quantiles, we left out the deep ensemble method
from this experiment (which would require train-
ing too many models) and focused only on samples
obtained from MC dropout, using M = 100 as in
the parametric Gaussian experiments.

Since this approach does not produce a full dis-
tribution p̂Q(q) but only the median µ̂med and con-
fidence intervals I(γ), the evaluation metrics UPS,
NLL, and sharpness cannot be directly applied.
Therefore, we evaluated with the following modifi-
cations of predictive Pearson score and ECE.

Predictive Pearson score For Pearson-related
evaluation we use the PPS performance indicator
defined in § 4, but we measure the correlation be-
tween groundtruth quality scores q∗ and the median
µ̂med, instead of the average µ̂.

Calibration Error To compute ECE we use the
same method as defined in Eq. 2. We use this
metric withM = 20 to assess the ability of the non-
parametric method to estimate confidence intervals.

Experiments The results are shown in Table 11.
Overall, MC dropout outperforms the baseline
across both measures (except for PPS in EN-CS)
but the improvement is marginal. The performance
of the parametric approach for the same dataset
in Table 2 is better than non-parametric for both
reported ECE and PPS. Still, ECE values are close
to the ones obtained with the parametric approach
for all language pairs, and we can obtain a well-
calibrated model with the non-parametric approach
too (compared to the baseline).

The observed performance of a non-parametric
approach could be limited by the number of ob-
served samples and the method used to generate
those (MC dropout). In Ye et al. (2021) a similar

https://github.com/Unbabel/COMET
https://github.com/Unbabel/COMET
https://www.nvidia.com/en-us/design-visualization/quadro/rtx-8000/
https://www.nvidia.com/en-us/design-visualization/quadro/rtx-8000/
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PPS ↑ ECE ↓

EN-DE
MC dropout 0.576 0.016

Baseline 0.576 0.071

EN-ZH
MC dropout 0.332 0.030

Baseline 0.329 0.062

EN-TA
MC dropout 0.657 0.024

Baseline 0.655 0.050

ZH-EN
MC dropout 0.314 0.016

Baseline 0.313 0.057

EN-JA
MC dropout 0.640 0.015

Baseline 0.636 0.051

EN-CS
MC dropout 0.691 0.013

Baseline 0.695 0.053

EN-RU
MC dropout 0.536 0.019

Baseline 0.532 0.061

EN-PL
MC dropout 0.611 0.016

Baseline 0.608 0.052

EN-IU
MC dropout 0.300 0.016

Baseline 0.292 0.057

Table 11: Results for segment-level DA prediction for
a non-parametric approach. Underlined numbers indi-
cate the best result for each language pair and evalua-
tion metric. Reported are the predictive Pearson score
r(µ̂med, q

∗) (PPS), where µ̂med is the median, and the
expected calibration error (ECE).

experiment of confidence intervals calibration was
performed over 1000 bootstrapped samples. Run-
ning this number of MC dropout runs would be
very expensive in practice and out of scope of this
work.

F Detection of Critical Translation
Mistakes

We provide more detailed experiments of the criti-
cal translation error detection in Figure 4, showing
the Recall@N and Precision@N for different error
proportions from the dataset, ranging from 1% to
20%. We can see that while increasing the propor-
tion of errors considered critical, the Recall@N
performance gap for UA-COMET and COMET
decreases.

We show examples of the worst translations ac-
cording to MQM scores with and without length
normalisation in Tables 12 and 13 respectively, in
order to better demonstrate the impact of length
normalisation on the selection of critical errors.
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(a) Recall@N, worst 1%

(b) Recall@N, worst 2%

(c) Recall@N, worst 5%

(d) Recall@N, worst 10%

(e) Recall@N, worst 15%

(f) Recall@N, worst 20%

(g) Precision@N, worst 1%

(h) Precision@N, worst 2%

(i) Precision@N, worst 5%

(j) Precision@N, worst 10%

(k) Precision@N, worst 15%

(l) Precision@N, worst 20%

Figure 4: Performance on predicting the worst MTs, using PRISM pseudo-references. The continuous (blue) line
corresponds to the original COMET prediction, while the dashed (orange) line to the averaged predictions obtained
by MCD. The dotted (green) line corresponds to predictions using the cdf UA-COMET.
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source sentences MT sentences MQM

Vulnerable Dems air impeachment concerns to Pelosi Anfällige Dems Luft Amtsenthebungsbedenken an Pelosi 17.67
Vulnerable Dems air impeachment concerns to Pelosi Anfällige Dems Luft-Impeachment Bedenken gegen Pelosi 17.33
Vulnerable Dems air impeachment concerns to Pelosi Verletzliche Dems-Luft-Impeachment-Bedenken gegen Pelosi 17.67
Government Retires 15 More Senior Tax Officials On Graft Charges Regierung scheidet aus 15 weiteren hohen Steuerbeamten wegen Graft-

Gebühren aus
17

Hideous’ Central Coast camouflage child rapist ordered to look at victim
in court

"Hideous" Central Coast Tarnung Kindervergewaltiger bestellt, um Opfer
vor Gericht zu betrachten

20.07

A third wrote: "Don’t fall for it Khloe." Ein dritter schrieb: „Fallen Sie nicht für Khloe.“ 10.37
Parents of 5-month-old stuffed in suitcase and tossed in dumpster get 6
years in prison

Eltern von 5 Monaten in Koffer gestopft und in Müllcontainer geworfen
bekommen 6 Jahre Gefängnis

18.67

The Who STOP concert last night: Friday and Sunday shows CAN-
CELLED

Das Who STOP Konzert gestern Abend: Freitag und Sonntag zeigt
CANCELLED

13.67

Parents of 5-month-old stuffed in suitcase and tossed in dumpster get 6
years in prison

Eltern von 5-Monats-Alt in Koffer gefüllt und in Mülleimer geworfen
bekommen 6 Jahre im Gefängnis

18.67

Vulnerable Dems air impeachment concerns to Pelosi Vulnerable Dems Air Impeachment Bedenken für Pelosi 9.67
Brother Jailed For Life For Pakistan Social Media Star Qandeel Baloch’s
Honour Killing

Bruder für Leben für Pakistan Social Media Star Qandeel Baloch s Ehre
Tötung inhaftiert

15.37

Vulnerable Dems air impeachment concerns to Pelosi Vulnerable Dems Air Impeachment Bedenken gegen Pelosi 9.33
"I can’t help the way I’m made," Whitehurst told the Sun. „Ich kann nicht anders, wie ich gemacht bin“, sagte Whitehurst der

Sonne.
12.67

"I can’t help the way I’m made," Whitehurst told the Sun. "Ich kann nicht anders, als ich gemacht bin", sagte Whitehurst der Sonne. 12.4
Parents of 5-month-old stuffed in suitcase and tossed in dumpster get 6
years in prison

Eltern von 5 Monaten, die in Koffer gestopft und in Müllcontainer
geworfen werden, bekommen 6 Jahre Gefängnis

18.33

Woman STRIPS TO NOTHING in Walmart to prove she didn’t steal Frau STRIPS TO NOTHING in Walmart zu beweisen, dass sie nicht
stehlen

11.33

Brother Jailed For Life For Pakistan Social Media Star Qandeel Baloch’s
Honour Killing

Bruder lebenslang für Pakistan eingesperrt Social Media Star Qandeel
Balochs Ehrenmord

14.03

Sacramento police also announced Thursday their internal investigation
did not find any policy or training violations.

Sacramento Polizei kündigte auch am Donnerstag ihre internen Ermit-
tlungen fand keine Richtlinien oder Trainingsverstöße.

18

Man pleads guilty in kidnap, torture plot of plastic surgeon Mann bekennt sich schuldig bei Entführung, Folter des plastischen
Chirurgen

11

Table 12: Worst 20 translations according to MQM scores (averaged over 3 annotators) for EN-DE, normalised by
sentence length (word number). Highlighted rows are common in both ranking approaches.
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source sentences MT sentences MQM

"[Barr has] gone rogue," Pelosi told MSNBC Friday. "I think where
they’re going is a cover-up of a cover-up. I think it’s sad, to have a
Justice Department go so rogue. Well, they have been for a while. And
now it just makes matters worse."

„[Barr hat] gegangen Schurken“, Pelosi sagte MSNBC Freitag. „Ich
denke, wohin sie gehen, ist eine Vertuschung einer Vertuschung. Ich
denke, es ist traurig, ein Justizministerium gehen so Schurken. Nun, sie
haben für eine Weile. Und jetzt macht es die Sache nur noch schlimmer“.

22.33

Add Lancaster of Pikeville told North Carolina Education Lottery offi-
cials he used five sets of his own numbers to buy a Cash 5 ticket with
five plays for Monday night’s drawing when he stopped at Wissam &
Brothers Inc. in Pikeville.

Fügen Sie Lancaster von Pikeville sagte North Carolina Education Lot-
tery Beamten er fünf Sätze seiner eigenen Zahlen verwendet, um ein
Cash 5 Ticket mit fünf Spielen für Montag Abend Zeichnung zu kaufen,
als er bei Wissam & Brothers Inc. in Pikeville hielt.

22.33

Hideous’ Central Coast camouflage child rapist ordered to look at victim
in court

"Hideous" Central Coast Tarnung Kindervergewaltiger bestellt, um Opfer
vor Gericht zu betrachten

20.06

Trump is singing from a similar songbook. His administration’s Muslim-
majority travel ban echoes the Islamophobia that often informs Modi’s
policymaking. Its callousness toward refugees mirrors the Indian govern-
ment’s disdain for the Rohingya population’s suffering, and its detention
camps parallel the ones the Modi regime is setting up. Trump’s stirring
of racial animosity is analogous to troublesome rhetoric from a number
of Modi’s cabinet members.

Trump singt aus einem ähnlichen Liederbuch. Das Reiseverbot seiner
Regierung mit muslimischer Mehrheit spiegelt die Islamophobie wider,
die oft Modis Politik informiert. Seine Anrufung gegenüber Flüchtlingen
spiegelt die Verachtung der indischen Regierung für das Leiden der
Rohingya-Bevölkerung und ihre Gefangenenlager parallel zu denen
wider, die das Modi-Regime einrichtet. Trumps Aufregung rassischer
Feindseligkeit ist analog zur lästigen Rhetorik einer Reihe von Modis
Kabinettsmitgliedern.

19.67

"Currently we are targeting young people 18 to 24 years. For the young
people that’s the age bracket we are looking at but of course any one
above 18 and it’s because we do not have evidence of children by the
Constitution but as more evidence unfolds we are going to get there. For
the men, we give the kit to the mother and they take it to the partner,
key and priority populations such sex workers," Mr Geoffrey Tasi, the
technical officer-in-charge of HIV testing services, said yesterday.

"Derzeit richten wir uns an Jugendliche im Alter von 18 bis 24 Jahren.
Für die jungen Leute, die die Altersgruppe sind, die wir betrachten, aber
natürlich jede über 18 und es ist, weil wir keine Beweise für Kinder durch
die Verfassung haben, aber als mehr Beweise sich entfalten, werden wir
dorthin gelangen. Für die Männer geben wir das Kit an die Mutter und
sie bringen es dem Partner, Schlüssel- und Priorat solcher Sexarbeiterin-
nen", sagte Geoffrey Tasi, der für HIV-Testdienste zuständige technische
Beamte, gestern.

19.07

Parents of 5-month-old stuffed in suitcase and tossed in dumpster get 6
years in prison

Eltern von 5-Monats-Alt in Koffer gefüllt und in Mülleimer geworfen
bekommen 6 Jahre im Gefängnis

18.67

Parents of 5-month-old stuffed in suitcase and tossed in dumpster get 6
years in prison

Eltern von 5 Monaten in Koffer gestopft und in Müllcontainer geworfen
bekommen 6 Jahre Gefängnis

18.67

Parents of 5-month-old stuffed in suitcase and tossed in dumpster get 6
years in prison

Eltern von 5 Monaten, die in Koffer gestopft und in Müllcontainer
geworfen werden, bekommen 6 Jahre Gefängnis

18.33

Sacramento police also announced Thursday their internal investigation
did not find any policy or training violations.

Sacramento Polizei kündigte auch am Donnerstag ihre internen Ermit-
tlungen fand keine Richtlinien oder Trainingsverstöße.
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The 35-year-old star dumped the NBA player for good earlier this year
after he was accused of cheating on her with family friend Jordyn Woods
- having previously cheated when she was nine months pregnant with
their daughter, True.

Der 35-jährige Star warf die NBA-Spielerin Anfang des Jahres endgültig
ab, nachdem er beschuldigt wurde, sie mit Familienfreund Jordyn Woods
betrogen zu haben - nachdem sie zuvor betrogen hatte, als sie im neunten
Monat mit ihrer Tochter True schwanger war.

17.67

Vulnerable Dems air impeachment concerns to Pelosi Anfällige Dems Luft Amtsenthebungsbedenken an Pelosi 17.67
It comes just days after Tristan wrote: "Perfection" alongside the heart
eye emojis underneath one of the reality stars other photos, which saw
her modelling for Guess Jeans.

Es kommt nur wenige Tage, nachdem Tristan geschrieben hat: "Perfec-
tion" neben den Herzaugen-Emojis unter einem der Reality-Stars andere
Fotos, die sie für Guess Jeans modellieren sah.

17.43

"You’re going out a youngster, but you’ve got to come back a star!"
Blanks wrote in an Instagram caption on Wednesday, quoting the film
"42nd Street."

"Du gehst als Jugendlicher aus, aber du musst einen Stern zurückkom-
men!" Blanks schrieb am Mittwoch in einem Instagram-Titel den Film
"42nd Street".

17.43

"Sounding more and more like the so-called whistle-blower isn’t a
whistle-blower at all," he tweeted. "In addition, all second-hand in-
formation that proved to be so inaccurate that there may not have been
somebody else, a leaker or spy, feeding it to him or her? A partisan
operative?"

"Immer mehr nach dem sogenannten Whistleblower zu klingen, ist
überhaupt kein Whistleblower", twitterte er. "Außerdem alle Informa-
tionen aus zweiter Hand, die sich als so ungenau erwiesen haben, dass
möglicherweise nicht jemand anderes, ein Leckerbissen oder ein Spion,
sie ihm oder ihr gefüttert hat? Ein Partisanen-Agent?"

17.43

"Currently, 86 per cent people living with HIV know their status; that
means it leave us with 14 per cent of those living with HIV and do not
know their status. So how do we now utilise that additional innovation.
Really for me this is it ... how do we now move from this kit and create
demand, especially for that 14 per cent that are sick and they need care
and they are not getting care," Dr Atwine said.

"Derzeit kennen 86 Prozent der HIV-Infizierten ihren Status; Das be-
deutet, dass wir bei 14 Prozent der HIV-Infizierten leben und ihren Status
nicht kennen. Wie können wir nun diese zusätzliche Innovation nutzen?
Wirklich für mich ist es ... Wie können wir jetzt von diesem Kit wegkom-
men und Nachfrage schaffen, vor allem für die 14 Prozent, die krank sind
und Pflege brauchen und sie nicht versorgt werden", sagte Dr. Atwine.

17.4

Sacramento police also announced Thursday their internal investigation
did not find any policy or training violations.

Sacramento Polizei kündigte auch am Donnerstag ihre interne Unter-
suchung keine Politik oder Ausbildung Verstöße gefunden.

17.33

"Currently we are targeting young people 18 to 24 years. For the young
people that’s the age bracket we are looking at but of course any one
above 18 and it’s because we do not have evidence of children by the
Constitution but as more evidence unfolds we are going to get there. For
the men, we give the kit to the mother and they take it to the partner,
key and priority populations such sex workers," Mr Geoffrey Tasi, the
technical officer-in-charge of HIV testing services, said yesterday.

„Gegenwärtig richten wir uns an junge Menschen zwischen 18 und
24 Jahren. Für die jungen Menschen ist das die Altersgruppe, die wir
betrachten, aber natürlich jede über 18, und das liegt daran, dass wir
keine Beweise für Kinder durch die Verfassung haben, aber wenn sich
mehr Beweise entwickeln, werden wir dorthin gelangen. Für die Männer
geben wir das Kit an die Mutter und sie bringen es an den Partner,
Schlüssel- und Prioritätspopulationen wie Sexarbeiter“, sagte gestern
Geoffrey Tasi, der zuständige technische Offizier für HIV-Tests.

17.33

Vulnerable Dems air impeachment concerns to Pelosi Anfällige Dems Luft-Impeachment Bedenken gegen Pelosi 17.33

Table 13: Worst 20 translations according to MQM scores (averaged over 3 annotators) for EN-DE. Highlighted
rows are common in both ranking approaches.


