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Abstract

Recent progress in pretrained Transformer-
based language models has shown great suc-
cess in learning contextual representation of
text. However, due to the quadratic self-
attention complexity, most of the pretrained
Transformers models can only handle rela-
tively short text. It is still a challenge when it
comes to modeling very long documents. In
this work, we propose to use a graph atten-
tion network on top of the available pretrained
Transformers model to learn document embed-
dings. This graph attention network allows
us to leverage the high-level semantic struc-
ture of the document. In addition, based on
our graph document model, we design a sim-
ple contrastive learning strategy to pretrain our
models on a large amount of unlabeled corpus.
Empirically, we demonstrate the effectiveness
of our approaches in document classification
and document retrieval tasks.

1 Introduction

Document representations that capture the seman-
tics are crucial to various document-level Natural
Language Processing (NLP) tasks, including sen-
timent analysis (Medhat et al., 2014), text clas-
sification (Kowsari et al., 2019) and information
retrieval (Lin et al., 2020). In recent years, an in-
creasing volume of work has focused on learning
a task-agnostic universal representation for long
documents. While improved performance in down-
stream tasks have been achieved, there are two chal-
lenges towards learning a high quality document
representation: (1) absence of document struc-
ture. Most works treat the document as a sequence
of tokens without considering high-level structure.
(2) data scarcity. Existing methods in document
representation learning are significantly affected by
the scarcity of document-level data.

Transformers-based pretrained language mod-
els are ubiquitously state-of-the-art across many
NLP tasks. Transformer models such as BERT

(Devlin et al., 2019) and its variants have shown
great success in learning contextual representation
of text. Representation from large language models
can partially mitigate the data scarcity issue due to
pretraining on a large amounts of unlabeled data.
However, those models mostly consider token-level
information and their pretraining tasks are not di-
rectly targeting long document representations. An-
other issue of directly applying transformer-based
models is the limit of the input text length. Due to
the quadratic complexity of self-attention, most of
the pretrained transformers models can only handle
a relatively short text. A wide spectrum of efficient,
fast transformer models (collectively called “X-
formers”) have been proposed to tackle this prob-
lem; e.g., Longformer (Beltagy et al., 2020) and
Bigbird (Zaheer et al., 2020) use sparse attention to
improve the computational and memory efficiency
for long sequence text. Nevertheless, these mod-
els still focus on token-level interactions without
considering high-level semantic structure of the
document.

Recently, there is a resurgence of interest in Con-
trastive Learning (CL) due to its success in self-
supervised representation learning in computer vi-
sion (Chen et al., 2020; He et al., 2020). Con-
trastive Learning offers a simple method to learn
disentangled representation that encodes invariance
to small and local changes in the input data without
using any labeled data. In NLP domain, contrastive
learning has been employed to learn sentence rep-
resentation (Wu et al., 2020; Qu et al., 2020) under
either self-supervised or supervised settings.

In this work, we propose a Graph Attention Net-
work (GAT) based model that explicitly utilizes the
high-level semantic structure of the documents to
learn document embeddings. We model the docu-
ment as not just a sequence of text, but a collection
of passages or sentences. Specifically, the pro-
posed model introduces a graph on top of the docu-
ment passages (Fig. 1) to utilize multi-granularity
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information. First, passages are encoded using
RoBERTa (Liu et al., 2019) to collect word-level
knowledge. Then passages are connected to lever-
age the higher-level structured information. At last,
a graph attention network (Veličković et al., 2017)
is applied to obtain the multi-granularity document
representation. To better learn the document em-
bedding, we propose a document-level contrastive
learning strategy to pretrain our models. In our
contrastive learning framework, we split the doc-
ument into random sub-documents and train the
model to maximize the agreement over the repre-
sentations of the sub-documents that come from
the same document. This simple strategy allows us
to pretrain our models on a large unlabelled corpus
without any additional priors. As we will see, this
simple pretraining task indeed helps the model on
the downstream tasks.

The contributions of this paper can be summa-
rized as follows.

• We propose to a graph document model with
graph attention networks that can not only ex-
plicitly utilize the high-level structure of the
document but also leverage pretrained Trans-
former encoders to obtain low-level contex-
tual information.

• We propose a simple document-level con-
trastive learning strategy, which does not re-
quire any handcrafted transformations and is
suitable for large-scale pretraining.

• We conduct empirical evaluations on our mod-
els and contrastive pretraining strategy. We
show that our graph-roberta models achieve
great performance on both document classi-
fication and retrieval tasks. Specifically we
demonstrate that our contrastive pretraining
helps the model learn a meaningful document
representation even without fine-tuning, and
improve both the training convergence speed
and final performance during end-to-end fine-
tuning on downstream classification tasks. For
document retrieval tasks, we demonstrate that
our graph-roberta models have great seman-
tic matching performance, compensating the
typical lexical matching system.

2 Methodology

In this section, we describe our main model and
contrastive pretraining strategy.
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Figure 1: An example of the Graph-Roberta architec-
ture for the document representation.

2.1 Graph Document Architecture
In this work, we model a document as graph over
passages. Given a document D with passages
{p1, . . . , p|D|}, we define an undirected graph
G : (V, E), where V consists of n + 1 nodes
(vD, vp1 , · · · , vpn) and the graph edges E are con-
structed based on the document structure. An exam-
ple of a document graph is shown in Fig. 1. Once
the document graph is defined, we can instantiate a
neural network model based on the graph structure.

Passage Node Initialization First, we use the
state-of-the-art contextual language models to
encode each passage text, since each pas-
sage is relatively short. Specifically, given a
passage pi consists of a sequence of words
{wi,1, wi,2, · · · , wi,|pi|}, we use Roberta(Liu et al.,
2019) as the encoder model for the passage node
and project the [CLS] vector into fixed embedding
space as the initial passage node representation.

v(0)
pi = tanh(wφ(wi,·) + b), (1)

where φ is RoBERTa with [CLS] vector.

Document Node Initialization For the docu-
ment node, we simply use the average of all the
passage node embeddings as the initial representa-
tion.

v
(0)
D =

1

n

n∑
i=1

v(0)
pi . (2)

Graph Attention Layers Finally, we apply T
Graph Attention Layers (GAL)1 to aggregate all
the information from different nodes.

v
(t+1)
i = GAL(v

(t)
k |k ∈ N (i)), (3)

where N (i) is the neighbour node set of passage
node pi on the given graph structure. The step t
counts from 1 to T and the final document node
representation is v(T )

D .
1Refer to Veličković et al. (2017) for the details of GAL.
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Figure 2: A simple contrastive learning strategy for
document representation.

2.2 Contrastive Pretraining for Document
Representation Learning

We design a simple contrastive learning task to pre-
train our graph document models. The main idea
follows from the contrastive learning framework
in (Chen et al., 2020), where the task is to learn
an encoder function to maximize the agreement be-
tween augmented views of the same image. Here
we consider that any proportions inside the same
document are the different “views”. The task is to
maximize the agreement between different propor-
tions that come from the same document. Since our
document has been represented as a list of passages,
a proportion of a document would be any subset of
passages, which we call a sub-document. During
training time, we randomly sample a mini-batch of
N documents D = {Di}Ni=1. For each document
Di, we randomly split passages to two subsets as
sub-documents:

Di −→ D̃i, D̃
′
i, (4)

where Di is the union set of D̃i and D̃′i.
We treat D̃i and D̃′i as the positive pair. Any pair

of sub-documents that come from different docu-
ments are negative pairs. Then the noise contrastive
loss function for a positive pair is defined as

`(D̃i) = − log
exp(vD̃i

· vD̃′
i
)∑N

j=1 exp(vD̃i
· vD̃′

j
)
,

`(D̃′i) = − log
exp(vD̃i

· vD̃′
i
)∑N

j=1 exp(vD̃j
· vD̃′

i
)
,

(5)

where vD̃i
is the encoding of the sub-document D̃i

based on the proposed graph document model.
The final loss is computed across all the pairs.

`(D) = 1

2N

N∑
i=1

`(D̃i) + `(D̃′i). (6)

3 Experiments

We experiment on two popular applications, text
classification and document retrieval to evaluate
the proposed approach. The experimental results
show that the graph based document representa-
tion could capture long document information and
the contrastive learning strategy could utilize unla-
beled data to further improve the performance and
training efficiency.

Model details Throughout the paper, we use
roberta-base model (Liu et al., 2019) as our pas-
sage node encoder. On top of that, we add 2 graph
attention layers with 2 heads and skip connections.
Specifically, we utilize the Deep Graph Library2

for GAT implementation. The embedding size for
passage and document nodes is 512. We refer this
model as graph-roberta model.

3.1 Datasets

In this section, we describe all the datasets we use
in this paper.

OpenWebText (Gokaslan et al., 2019) is an
open-source recreation of the Webtext corpus in
Radford et al. (2019). The text was extracted from
Reddit post urls, which produces around 8M docu-
ments.

arXiv (He et al., 2019) is a collection of
33,388 arXiv scientific papers from 11 cate-
gories. The average document length exceeds
5,000 words. We create a random train/dev/test
split of 25,568/3,196/3,197.

Newsgroup (Lang, 1995) a collection of news-
group documents, partitioned (nearly) evenly
across 20 different newsgroups. It contains 11,314
training and 7,532 test samples. We sample 10%
of the training data for validation.

IMDB (Maas et al., 2011) is a dataset for bi-
nary sentiment classification. It contains 25,000
labeled movie reviews as the training set and an-
other 25,000 movie reviews as the test set. We
random sample 1,000 examples from the training
set for validation.

Hyperpartisan (Kiesel et al., 2019) is a binary
classification dataset for hyperpartisan news detec-
tion. It consists of 645 documents in total. We
use the same train/dev/test split (516/64/65) from
(Beltagy et al., 2020).

Robust04 (Voorhees, 2005) is the news collec-
tion from the TREC 2004 Robust track. It is a doc-

2https://github.com/dmlc/dgl
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ument retrieval dataset consisting of 249 queries
with relevance labels on a corpus of 528K docu-
ments.

MSMARCO DR (Bajaj et al., 2016) is a docu-
ment ranking dataset with about 3.2M documents.
It provides over 367K training queries and an offi-
cial dev set of 5,193 queries. The Trec 2019 Deep
Learning track (Craswell et al., 2020) also provides
an additional test set of 43 queries.

WIKIR3 (Frej et al., 2019) is an open-source
toolkit to create large-scale information retrieval
datasets based on Wikipedia. In this work, we use
the English Wikipedia dump from 2020/12/204 and
following the the same settings in Frej et al. (2019)
except for that we preserve the punctuation and
section information in the document. We obtain
two datasets, WIKIR62K and WIKIRS62K, both
of which contain around 60k training queries, 1k
dev queries and 1k test queries. The queries in
WIKIR62K are built based on titles and the ones in
WIKIRS62K are based on the first sentences. The
processed document corpus size is around 2.4M
documents.

Since graph-roberta models take a document in-
put as a graph over passages, we split each docu-
ment into passages with around 100 words while
respecting the sentence boundary. For WIKIR doc-
uments, we also respect the section boundaries.
Without additional specification, we use the fully-
connected graph structure by default.

3.2 Document Classification
In this section, we conduct empirical evaluation of
our models on document classification tasks. We
consider 4 datasets, arXiv, Hyperpartisan, IMDB
and Newsgroup. We compare our graph-roberta
models with the baseline model Roberta (Liu et al.,
2019), as well as Longformer (Beltagy et al., 2020)
and BigBird (Zaheer et al., 2020), two state-of-
the-art transformer models that handle long text
input5. In our experiments, we only consider the
base version of those models.

Contrastive Pretraining We pretrain our graph-
roberta models on OpenWebText dataset. Dur-
ing the training process of contrastive learning, for
each document, we keep up to 50 passages and we
randomly select half the number of passages as the

3https://github.com/getalp/wikIR
4https://archive.org/download/enwiki-20201220/enwiki-

20201220-pages-articles-multistream.xml.bz2
5We take the [CLS] embedding from those models as the

document representation.

sub-document and the rest of the half as the other
sub-document. We train for 10 epochs with batch
size 1,536, using Adam (Kingma and Ba, 2014)
optimizer with a learning rate 5e-5 and warm up
rate 0.1.

Finetuning For graph-roberta models, we keep
up to 50 passages per document during training and
at inference time, we keep up to 100 passages per
document. For the other models, we truncate the
document text up to the maximum sequence length
they are allowed to handle; Roberta’s maximum
input length is 512, and Longformer and BigBird’s
maximum input length is 4,096. The detailed train-
ing configurations are shown in appendix.

Clustering First, we evaluate the capability of
our graph-roberta model as an off-the-shelf doc-
ument encoder through document clustering. We
take the document node representation with the
pretrained graph-roberta model and [CLS] em-
beddings from the other three models. We run
k-means clustering methods on the training set and
run inference on the test set. We compute the nor-
malized mutual information (NMI) and Purity to
evaluate the clustering quality. We report the re-
sults on arXiv and Newsgroup dataset in Table 1.
As we can see, our pretrained graph-roberta model
clearly outperforms the other three models by a
large margin. This is expected that the other three
models are not pretrained on any document-level
tasks. Fig. 3 & 4 showcase that the simple unsu-
pervised contrastive learning strategy indeed helps
graph-roberta model learn meaningful document
representations.

model arXiv Newsgroup
NMI Purity NMI Purity

Roberta 0.267 0.327 0.116 0.160
Longformer 0.168 0.241 0.084 0.133
Bigbird 0.180 0.261 0.059 0.119
Graph-roberta 0.437 0.558 0.516 0.475

Table 1: Clustering performance with different docu-
ment embeddings on the test sets.

End-to-end Classification To evaluate the full
capability of the graph-roberta model, we also con-
duct end-to-end finetuning on the 4 datasets. In
addition to 4 pretrained models, we also report the
performance of graph-roberta without contrastive
learning. The results are shown in Table 2. First,
we can see that graph-roberta model outperforms
all the other methods on 3 out of 4 datasets. The
exception is IMDB dataset, which has relatively
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Figure 3: TSNE visualization of different representations on 1000 documents sampled from Newsgroup dataset.
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Figure 4: TSNE visualization of different representations on 1000 documents sampled from arXiv dataset.

Model arXiv Newgroup IMDB Hyperpartisan avg

Roberta 89.99 86.22 95.63 90.77 90.65
Longformer 90.90 86.42 95.77 92.31 91.35
BigBird 88.99 81.41 95.32 89.23 88.74
Graph-roberta w/o CL 86.83 85.36 94.32 94.12 90.16
Graph-roberta 91.21 86.66 94.26 96.15 92.07

6Longformer (Beltagy et al., 2020) - - 95.70 94.80 -
6BigBird (Zaheer et al., 2020) 92.31 - 95.20 92.20 -

Table 2: End-to-end classification performance of different models on the test set. The numbers are in percent.
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Figure 5: Validation accuracy over the training process.

short text. Also we see that contrastive learn-
ing indeed helps improve the final performance.
Fig. 5 shows the end-to-end training processes of
graph-roberta models on arXiv and Newsgroup
datasets. It demonstrates that contrastive learning
task speeds up the finetuning progress and helps
learn a better model.

6The reported numbers from Beltagy et al. (2020); Zaheer
et al. (2020) on arXiv and Hyperpartisan datasets are not

3.3 Document Retrieval
In this section, we extend our model to embedding-
based document retrieval task. In this case, we
consider the query as a single-node graph, where
the representation is computed by the initial node
representation. With that, we apply dot-product
similarity to retrieve relevant documents. Our ap-
proach is essentially representation-based model.

Contrastive Pretraining To better align with the
retrieval tasks, during pretraining, we sample one
passage from each document as the sub-document
and the rest as the other sub-document instead of
an even random split, and we only compute the
contrastive loss over the long sub-documents. In
addition, we set 50% of the time we select the first
passage of each document and 50% of the time

comparable with ours because they did not release the train/test
split of the data.
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we sample uniformly from the document. This is
very similar to the Inverse Cloze Task (ICT) intro-
duced from Lee et al. (2019), except for the differ-
ence that ICT randomly selects one sentence from
the passage whereas we randomly selects passages
from the document. We pretrain the graph-roberta
model on the OpenWebText data for 10 epochs
with batch size 1,024, using Adam (Kingma and
Ba, 2014) optimizer with learning rate 5e-5 and
warmup rate 0.1.

Finetuning To finetune the model on ranking
datasets, we use the similar training loss in the
contrastive pretraining except we use the actual
training queries-documents pairs. Besides in-batch
negatives, we also sample additional negative can-
didates either uniformly or from some hard nega-
tives such as the top BM25 retrieval pool for each
training query.

First, we run the experiment with Robust04
dataset. We train and cross-validate machine learn-
ing models on the given 5 folds. During each run,
we finetune the model 10 epochs with batch size
32, using Adam optimizer with learning rate 5e-5
and warmup rate 0.1. We sample additional 8 ran-
dom negatives uniformly for each training query.
We compare our models with BM25 baseline. The
results are shown in Table 3. First we can see that
the contrastive pretraining significantly improves
the graph-roberta model performance (e.g. P@20
improves by over 100%). Still as a retrieval model,
graph-roberta underperforms BM25. We conjec-
ture that there are two reasons. (1) robust04 query
set is too small to train such a complex neural repre-
sentation model. (2) robust04 queries are all short
key word queries, which favor lexical-matching
methods such as BM25 over contextual transformer
models. Nevertheless, we combine the retrieval re-
sults from graph-roberta model and BM25 through
a weighted average of their scores (the weight is
selected through cross-validation), we improve the
nDCG@20 by 2% in absolute value over BM25,
which indicates our model compensates BM25 re-
sults for semantic matching.

Now we present the experiment on much larger
document ranking dataset MSMARCO. We fine-
tune graph-roberta models on MSMARCO training
set with batch size 128 for 10 epochs. For each
training query, we also sample one hard negative
in addition to the batch negatives. For the first 5
epochs, we randomly sample one negative from
the top 100 BM25 retrieval results. For the latter

Model Robust04
nDCG@20 P@20

BM25 41.63 35.68

Graph-roberta w/o CL 13.97 11.39
Graph-roberta 20.02 23.89
Graph-roberta +BM25 43.90 37.21

Table 3: Document retrieval on the test set of Robust04
dataset. The numbers are in percent.

5 epochs, we randomly sample one from the top
100 results retrieved using the 5-epoch checkpoint
model. We also sample 100 queries from the offi-
cial training set as our own validation set to monitor
the training progress. We report the retrieval per-
formance (without reranking) in Table 4.

Model Dev Trec DL
MRR nDCG@10

BM25 25.87 52.97
DE-Hybrid-E (Luan et al., 2020) 28.70 59.50
ME-Hybrid-E (Luan et al., 2020) 31.00 61.00
ACNE FirstP (Xiong et al., 2020) 37.40 61.50

Graph-roberta w/o CL 33.69 50.95
Graph-roberta 34.85 54.05
Graph-roberta +BM25 37.60 61.44

Table 4: Document retrieval on the test set of MS-
MARCO document dataset. The numbers are in per-
cent.

Similarly to Robust04 experiment, contrastive
learning as a pretraining strategy again improves
the graph-roberta model performance. Note the im-
provement on MSMARCO is not as significant as
in Robust04. Considering the fact that MSMARCO
has a much larger training set, it is expected that
the benefit of pretraining is less. Comparing with
BM25, graph-roberta as a dense retrieval method
achieves almost 9 points better in MRR@100 on
the official dev set. We also list the performance of
the state-of-the-art neural retrieval methods. DE-
Hybrid-E and ME-Hybrid-E methods (Luan et al.,
2020) are the two hybrid sparse-dense models that
combining BM25 and BERT encoded dense pre-
sentations. Note that graph-roberta already outper-
forms the hybrid models on the official dev set,
indicating that the representation learned by the
graph-roberta model is very effective. Lastly, com-
bining graph-roberta and BM25 retrieval results
through simple weighted average, gives us the sim-
ilar performance by the SOTA method ACNE 7

(Xiong et al., 2020). Furthermore, we believe that
7ACNE MaxP which produces the best numbers (MRR
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Model Graph WIKIR62K (Title) WIKIRS62K (First Sentence)

P@5 P@10 P@20 P@5 P@10 P@20

BM25 - 28.66 22.17 16.62 22.20 16.74 12.65
MatchPyramid (Pang et al., 2016) - 20.76 16.83 13.11 20.74 16.76 12.89
ConvKNRM (Dai et al., 2018) - 17.46 14.87 12.16 18.94 16.51 13.05

Graph-roberta w/o CL full 20.68 16.66 12.86 20.92 17.39 13.51
Graph-roberta full 22.98 18.46 14.19 24.02 19.65 15.39
Graph-roberta + BM25 full 39.38 30.52 21.98 35.24 27.53 19.74

Graph-roberta w/o CL section 20.16 16.07 12.56 21.98 17.93 13.86
Graph-roberta section 23.32 18.69 14.16 23.78 19.78 15.27
Graph-roberta + BM25 section 39.70 30.64 22.13 35.40 27.45 19.86

Table 5: Document retrieval benchmark on the test sets of WIKIR datasets. The numbers are in percent.

the training strategy introduced in ACNE can also
be applied on graph-roberta model training and we
leave it to the future work.

To further demonstrate the effectiveness of
graph-roberta models for document retrieval task,
we evaluate our models on the two large document
retrieval datasets created via WIKIR (Frej et al.,
2019), namely WIKIR62K and WIKIRS62K. In
this experiment, we also consider different graph
structures in modeling the Wikipedia documents.
Besides the default fully-connected graph, we also
consider the section structure information in the
documents. Specifically, we consider the structure
that all the passages within each section are mutu-
ally connected. The document node and the first
passage nodes are connected with each other. We
denote this graph as the section graph. We finetune
the models on the training data for 5 epochs with
batch size 128, using Adam optimizer with learn-
ing rate 2e-5 and warmup rate 0.1. For each query,
we also sample one hard negative from the top
100 BM25 retrieved candidates. The final retrieval
benchmark is shown in Table 5.

In Table 5, we see that contrastive pretraining
consistently helps improve the model performance
in both title queries and first-sentence queries.
BM25 performs much better for title queries than
the first-sentence queries, as observed in Frej et al.
(2019) since title queries are usually keyword
queries. Our graph-roberta model outperforms
MatchPyramid (Pang et al., 2016) and ConvKRNM
(Dai et al., 2018), and performs consistently on
both title and first-sentence queries. We further
combine the results of graph-roberta and BM25.
Overall, the ensemble of BM25 and graph-roberta

38.38% on the official dev set) is not based on learned docu-
ment embeddings, but on a set of passage representations for
each document.

gives the best results.
We notice that for graph-roberta models, utiliz-

ing the section graph as described earlier performs
slightly better than the default fully-connected
graph, although the difference is small. We conjec-
ture that on this dataset, the document representa-
tion does not rely much on the interaction between
passages. We look into the graph attention pat-
terns by the two models (graph-roberta with fully-
connected graph and graph-roberta with section
graph). We compute the average attention weights
of the last graph attention layer. We observe that on
both models, the document node usually attends to
similar passages. As an example, we plot the graph
attention weights on both models. Fig. 6 shows the
attention weights of the document node. As we can
see, for this example, both models attend to simi-
lar passages besides the document node. In Fig. 7,
we observe that for graph-roberta with the fully-
connected graph, all the other passage nodes have
similar attention patterns as the document node,
while for graph-roberta with the section graph, the
passage nodes can actually learn some nontrivial
patterns, which we believe could be beneficial for
more complex tasks.

4 Related work

Document Representation Learning One line
of related work is to utilize the successful pre-
trained Transformer models (Radford et al., 2018;
Devlin et al., 2019) to obtain contextual text rep-
resentations. It has been shown to be successful
on sentences and short passages in textual similar-
ity tasks and passage retrieval tasks (Reimers and
Gurevych, 2019; Minaee et al., 2021; Karpukhin
et al., 2020; Liang et al., 2020). He et al. (2019);
Dai et al. (2019); Zaheer et al. (2020) propose
sparse attention to enable the transformer models to



3881

0 5 10 15 20 25
Node index

0.0

0.1

0.2

0.3

0.4

0.5

at
te

nt
io

n 
we

ig
ht

doc node attention

(a) Fully-connected graph

0 5 10 15 20 25
Node index

0.0

0.1

0.2

0.3

0.4

0.5

at
te

nt
io

n 
we

ig
ht

doc node attention

(b) section graph

Figure 6: An example of the document node attention
patterns on graph-roberta models. The axis is the graph
node index. Node index 0 is the document node and the
rest are passage nodes.
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Figure 7: An example of the graph attention pattern on
graph-roberta models. The axes are graph node index.
Node index 0 is the document node and the rest are
passage nodes.

handle long text sequences more efficiently. How-
ever these pretrained models still focus on token-
level interactions. Jiang et al. (2019) proposed a
hierarchical attention model on top of recurrent
neural network to tackle text matching of long doc-
uments, which later was extended by Yang et al.
(2020) to transformer architectures. Both works
only focus on the text matching task. Pappagari
et al. (2019) proposed a hierarchical transformer
model to encode long documents, where they apply
a recurrent network or transformer layer on top of
the original BERT model. In our work, we use a
GAT network which can better leverage the exist-
ing document structure and we design a simple and
effective contrastive learning framework based on
our graphic model.

Another line of related work is to use graph neu-

ral network for document modeling. Peng et al.
(2018, 2019) proposed to use graph convolutional
networks (GCN) to model document as a graph
of words, which allows the model to capture long-
distance semantics. Yao et al. (2019) built a single
graph for a whole corpus based on both word-to-
word and document-to-word relations, which is
learned by a GCN model.

Contrastive Learning Contrastive learning used
as a self-supervised pretraining method has been
widely used in NLP models (Rethmeier and Augen-
stein, 2021). Token or sentence-level contrastive
learning tasks have been shown to be very useful
in learning better contextual presentations (Clark
et al., 2020; Giorgi et al., 2020; Meng et al., 2021).
There also have been works that propose data aug-
mentations for contrastive learning. Fang et al.
(2020) proposed to use back-translation to con-
struct positive sentence pairs in their contrastive
learning framework. Wu et al. (2020); Qu et al.
(2020) proposed multiple sentence-level augmen-
tations strategies to do sentence contrastive learn-
ing. Most of these work still focus on either lo-
cal token-level tasks or short sentence-level tasks.
In our work, we directly work on document-level
contrastive learning task. More recently Luo et al.
(2021) proposed to use multiple data augmentations
such as synonym substitution and back-translation
to do unsupervised document representation learn-
ing. The difference in our work is that we have
a much simpler framework that does not require
those hand-craft transformations and we demon-
strate that our contrastive learning strategy as a pre-
training task can help the downstream tasks across
various datasets.

5 Conclusions

In this work, we propose a simple graph attention
network model to learn document embeddings. Our
model not only can leverage the recent advance-
ment of pretrained Transformer models as building
blocks, but also explicitly utilize the high-level
structure of the documents. In addition, we pro-
pose a simple document-level contrastive learning
strategy that does not require handcraft transforma-
tions. With this strategy, we conduct large scale
contrastive pretraining on a large corpus. Empir-
ically we demonstrate our methods achieve great
performance on both document classification and
document retrieval tasks.
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A Training details for document
classification

We list the hyperparameters for finetuning the mod-
els on 4 document classification datasets in Table 6.

hyperparameters arXiv Newsgroup IMDB Hyperpartisan

learning rate 1.00E-04 5.00E-05 5.00E-05 3.00E-05
batch size 32 32 32 32
epoch 20 20 20 15
warmup 0.1 0.1 0.1 0.1
weight decay 0.01 0.01 0.01 0.01

Table 6: Hyperparameters for document classification.


