
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 3513–3523
November 7–11, 2021. ©2021 Association for Computational Linguistics

3513

Learning and Analyzing Generation Order for
Undirected Sequence Models

Yichen Jiang and Mohit Bansal
UNC Chapel Hill

{yichenj, mbansal}@cs.unc.edu

Abstract

Undirected neural sequence models have
achieved performance competitive with the
state-of-the-art directed sequence models that
generate monotonically from left to right in
machine translation tasks. In this work, we
train a policy that learns the generation or-
der for a pre-trained, undirected translation
model via reinforcement learning. We show
that the translations decoded by our learned
orders achieve higher BLEU scores than the
outputs decoded from left to right or decoded
by the learned order from Mansimov et al.
(2019) on the WMT’14 German-English trans-
lation task. On examples with a maximum
source and target length of 30 from De-En
and WMT’16 English-Romanian tasks, our
learned order outperforms all heuristic gen-
eration orders on three out of four language
pairs. We next carefully analyze the learned
order patterns via qualitative and quantitative
analysis. We show that our policy generally
follows an outer-to-inner order, predicting the
left-most and right-most positions first, and
then moving toward the middle while skipping
less important words at the beginning. Further-
more, the policy usually predicts positions for
a single syntactic constituent structure in con-
secutive steps. We believe our findings could
provide more insights on the mechanism of
undirected generation models and encourage
further research in this direction.1

1 Introduction

Directed neural sequence models such as the Trans-
former (Vaswani et al., 2017) with causal self-
attention masks have been widely used for lan-
guage generation tasks like machine translation
and summarization. In such models, each token
only depends on the left context and thus they can
be naturally applied in the monotonic left-to-right

1Our code is publicly available at
https://github.com/jiangycTarheel/
undirected-generation

generation scheme. On the other hand, in the undi-
rected sequence models such as the Transformer
without the causal mask, each token depends on
the full left and right context. The application of an
undirected sequence model in language generation
is not straightforward, as it can simply peek into
the future for the target token if trained in the same
way as a directed model. To circumvent this prob-
lem, previous works (Ghazvininejad et al., 2019;
Mansimov et al., 2019) trained undirected Trans-
former models using the masked language mod-
eling (MLM) (Devlin et al., 2019) objective with
the masking ratio randomly varying in the range of
(0%, 100%]. At test time, the model first predicts
the length T of the sequence to be generated and
begins with a sequence of T mask tokens. Then,
at each step, the model selects one or more posi-
tions to update, masks the original tokens at those
positions, and predicts the target tokens to replace
the original ones there. However, how to select this
order of tokens to update throughout the process
still remains an open and interesting question for
the research community.

In this work, we study this question in a focused
setting where the model can only replace one mask
token per step for T steps.2 Under this linear-time
decoding setup, we can easily compare the genera-
tion model’s behaviors when decoding in different
orders. Previously, Mansimov et al. (2019) de-
signed and bench-marked various heuristic orders
under this setting. They further built and trained a
policy network with reinforcement learning (RL)
to predict the target generation order for the pre-
trained masked language model dynamically for
each example. We aim to learn better generation
orders by improving upon the previous RL objec-
tive. First, instead of using the change in the edit
distance between the partially generated sequence
and the ground-truth sequence as the reward func-

2In this setting, the model cannot re-mask and re-generate
an already-predicted token.

https://github.com/jiangycTarheel/undirected-generation
https://github.com/jiangycTarheel/undirected-generation


3514

tion for the order policy, we directly use the BLEU
scores of the ultimate sequence generated in the or-
der sampled from the policy network as the reward
because edit distance is too rigid and evaluates a se-
quence as individual tokens instead of n-grams, and
thus cannot reflect the actual quality of a generated
sequence order. Furthermore, on the De−→En task,
the learned policy by Mansimov et al. (2019) either
follows the left-to-right order or generates the fi-
nal punctuation first and then proceeds from left to
right in around 75% of the generations. Therefore,
this might indicate that the policy converges pre-
maturely to the left-to-right order which is a strong
local optimum. And hence, to encourage the policy
to better explore the entire action space instead of
putting all weights on one position at every step
too early, we add a negative entropy penalty to the
policy’s output distribution. When sampling an or-
der during the training, a larger entropy means that
the policy can explore and evaluate more possible
orders and hence lead to a better policy ultimately.

On the WMT14’ English↔German translation
tasks, using the same pre-trained undirected Trans-
former fixed during the learning of the policy,
the sequences decoded in the orders predicted
by our policy receive higher BLEU scores than
the outputs decoded in the order learned in the
previous work (Mansimov et al., 2019). On the
De−→En task, our learned order also beats the
Left2Right baseline on the test set. On the WMT16’
Romanian−→English task, our learned order again
outperforms the Left2Right order and is competi-
tive with the best heuristic Easy-First order. More-
over, our learned policy performs strongly when
trained and evaluated on examples with the source
and target shorter than 31 tokens, outperforming all
heuristic generation orders (Uniform, Left2Right,
Easy-First, Least2Most) on the dev sets of WMT14’
En↔De and WMT16’ Ro−→En tasks. Therefore,
while our learned policy achieves the best overall
scores on more than 2/3 of all En↔De examples
and 1/2 of all Ro−→En examples, it is expectedly
harder for the policy to learn an optimal order on
the remaining very long sequences, which is an
interesting direction for future works.

Next, we focus on a detailed and important qual-
itative analysis (and human study) to reveal that,
interestingly, our policy in general follows an outer-
to-inner order, predicting the left-most and right-
most positions first and move toward the middle. In
Table 5, we show that when decoding from left to

right, the Transformer model generates two “gas"
at the end that makes the sentence ungrammatical.
This error is due to the poor space planning from
the model: when the decoding proceeds until “us-
ing" is sampled, the model finds that there are three
spaces (masks) left but only two tokens (“gas .")
are actually needed. Instead, when decoding by the
policy’s order, the last three tokens (“tear gas .")
are generated within the first eight steps, therefore
avoiding the space issue early in the generation. We
also show that our learned outer-to-inner order out-
performs several heuristic ones with fixed strides.
Additionally, we perform a loss function ablation
study to understand that both the BLEU reward
and the entropy penalty contribute to our learned
order’s convergence to an outer-to-inner pattern.
Furthermore, as shown in Table 7, the policy tends
to skip some less important tokens (e.g., determiner,
suffix) at first and come back to them at the last
few steps. This helps the planning of the entire
sequence as more important words are generated
earlier and can provide more useful context infor-
mation in the following de-masking steps. Finally,
we observe that the learned policy usually predicts
positions for a single syntactic constituent structure
in consecutive steps. We believe our quantitative
results and qualitative findings could provide more
insights on the mechanism of undirected generation
models.

2 Background

Directed Sequence Generation Models. Most
generation models nowadays are directed as they
are trained and decode exclusively from left to
right. The widely-used Transformer (Vaswani et al.,
2017) decoder employs a causal self-attention layer
to mask out the attention to the future tokens dur-
ing the training. At the test time, the decoder takes
the previously generated tokens as the input and
predicts the next token from left to right.

Undirected Sequence Generation Models.
Other than training the auto-regressive Trans-
former model with causal self-attention in a
monotonic direction, previous works (Ghazvinine-
jad et al., 2019; Mansimov et al., 2019) have
tried to enable a decoder to generate tokens in
non-monotonic orders. We follow the training
procedure on the En↔De task from Mansimov
et al. (2019), where they first initialize from
a Transformer-based cross-lingual language
model (Lample and Conneau, 2019) pre-trained on



3515

the large monolingual corpus in both English and
German. They then train the Transformer as a con-
ditional masked language model (MLM) (Devlin
et al., 2019), where it is trained to predict some
randomly masked tokens from the target sequence,
given the complete source sequence and other
non-masked tokens of the target sequence. The
input is constructed by concatenating the German
and English sequences separated by a special
token. At each iteration, the sentence in one
language is randomly selected as the source and the
corresponding sentence in the other language is the
target and is masked in random positions. Instead
of masking the tokens with a fixed probability (e.g.,
0.15 in BERT (Devlin et al., 2019)), they randomly
vary the masking masking probability from (0%,
100%] in order to mimic all possible partially
generated sequences the model might face during
the test time: at the beginning, the model sees a
fully masked sequence (100% masks) and predicts
the token at a selected position; at the final step,
there is only one remaining mask (close to 0%)
and the model replace it with a predicted token.

Decoding MLM with Pre-defined Order. Be-
cause the target sequence tokens are randomly
masked, the model is trained to generate in all pos-
sible orders and therefore is undirected. Hence,
a generation order is needed at test time in or-
der to decode this conditional masked language
model auto-regressively (token by token). Previ-
ous works (Ghazvininejad et al., 2019; Mansimov
et al., 2019) have explored a range of heuristic
generation orders, including random order (Uni-
form), left-to-right, first replacing the least-likely
masked token (Least-to-Most), and first replacing
the masked token where the model is the most cer-
tain (judging by the entropy of the model’s output
distribution) about the actual token (Easy-First),
etc. It was shown that the Easy-First performs the
best in greedy search and the Left-to-Right order
outperforms the other in beam search. All three de-
terministic heuristic orders achieved significantly
higher BLEU scores than the random order. The
results suggest that, even though the Transformer
model is trained to follow all possible generation
orders, it still prefer some orders over the others to
achieve higher BLEU scores at the test time. There-
fore, there remains a question: is there an optimal
order for the MLM Transformer in achieving the
highest BLEU scores, possibly beating all these
pre-defined, heuristic orders?

Decoding MLM with Predicted Order. In the
quest for generation orders that adapt to the trained
masked language model optimally, Mansimov et al.
(2019) trained a policy that predicts the position
of the next masked token to be replaced with re-
inforcement learning (RL). Specifically, they use
the change in edit distance between the partial se-
quence and the ground-truth sequence after sub-
stituting a masked token as the reward function,
and optimize the policy with the proximal policy
optimization (PPO) (Schulman et al., 2017). The
order learned by their RL policy underperforms the
Left2Right order on the En−→De translation task
in both greedy and beam search. On the De−→En
translation task, the learned order marginally out-
performs the Left2Right order but falls short of
the Easy-First order in the greedy search scenario.
Most importantly, on the De−→En task, in around
75% of the generations, the learned policy either
follows the left-to-right order or generates the fi-
nal punctuation first and then proceeds from left to
right. Therefore, we think this policy converges to
a local optimum because Left2Right is already a
strong order that beats the starting point (a ran-
dom order). For this reason, in our work, we
aim to train the policy to better explore the ac-
tion space by improving the training objective. We
show that by following the generation order pre-
dicted by our policy, the translations generated by
the masked-language-model Transformer receive
higher BLEU scores than following the previous
learned or heuristic (Mansimov et al., 2019) orders;
and our learned policy predicts a wide variety of
orders that deviate from the left-to-right baseline.

3 Methods

In this section, we introduce our policy network
(Sec. 3.1) that predicts the generation order for a
pre-trained conditional MLM and our reinforce-
ment learning (RL) objective (Sec. 3.2). We visual-
ize our models and the RL procedure in Fig. 1.

3.1 Predicting Generation Order

Same as the setup in Mansimov et al. (2019), we
use a pre-trained, dual-lingual, conditional masked
language model Transformer as the generation
model and freeze its parameters during the follow-
ing training. To learn the generation order for this
model, we follow Mansimov et al. (2019) to con-
struct two separate networks, a policy network and
a value network, which are two separate 2-layer



3516

0.21 0.01 0.12 0.06 0.09 0.51

Transformer (fixed)

Policy Network

[BOS] Der Bau und die Reparatur der Autostraßen [SEP] [Mask] [Mask] [Mask] [Mask] [Mask] road [EOS]

Transformer (fixed)

Policy Network

0.62 0.02 0.1 0.06 0.2 1e-30

[BOS] Der Bau und die Reparatur der Autostraßen [SEP] Construction [Mask] [Mask] [Mask] [Mask] road [EOS]

Der Bau und die Reparatur der Autostraßen [SEP] Construction and repair of highspeed road

...

BLEU:
61.5

i = 1

i = 2

[BOS] Der Bau und die Reparatur der Autostraßen [SEP] [Mask] [Mask] [Mask] [Mask] [Mask] [Mask] [EOS]

i = 6

Figure 1: A visualization of our model and the RL procedure adapted from Mansimov et al. (2019). At every step,
the policy network samples a masked position and the Transformer model generates a token for that position. At
the end, the BLEU score for the fully-generated translation is fed back to the policy network as the reward.

MLPs added on top of the Transformer’s output of
the last layer. The policy network projects the out-
put vectors at all positions to scalar logits, which
are fed to the softmax to produce the distribution
Ppol over all masked positions.

3.2 Reinforcement Learning Objectives

We use the Advantage Actor-Critic Algorithm
(A2C) to optimize the order policy. The model
starts with a target sequence of all masks as the in-
put. At every step i, we sample one position pi with
a mask from Ppol and replace it with the greedily
generated token from the Transformer model. The
updated target sequence is then fed to the model
at the next step. For the example in Fig. 1, at
step 1 we first sample the right-most position from
the policy, where the generation model predicts
the word “road" to replace the mask. At step 2,
the left-most position is sampled from the policy
and the model predicts “Construction" at this po-
sition. When the entire target translation is gen-
erated, we calculate its BLEU score as the over-
all reward R for the sampled order [p1, p2, ..., pT ].
At every step i, the value network also outputs
the critic vi. The advantage for the step i is
then calculated as: Ai = γT−iR − vi, where γ
is the discount factor. The RL loss function is:
LRL = − 1

T

∑T
i=1 log(Ppol(pi))Ai.

Entropy Penalty. In order to encourage our pol-
icy to better explore the action space, we addition-
ally minimize the negative entropy of the policy’s
output probability Ppol. The final loss function is

the weighted sum of the two losses:

Lent = −
1

T 2

T∑
i=1

T∑
j=1

Ppol(p
j
i )log(Ppol(p

j
i ))

Ltotal = LRL + λLent
(1)

where λ is the entropy loss coefficient. When sam-
pling an order during the RL training, a larger en-
tropy means that the policy can better explore and
evaluate more possible orders and hence lead to a
better policy ultimately. Empirically, we found that
the model converges quickly to a left-to-right order
without this negative entropy penalty.

4 Experiments

4.1 Experimental Setup

Datasets. We train and evaluate our order pol-
icy on WMT’14 English-German and WMT’16
English-Romanian translation datasets. The former
contains 4.5M sentence pairs and the latter contains
2.8M sentence pairs. More details of our experi-
mental setup and hyperparaters are discussed in
supplementary.

4.2 Heuristic Order Baselines

To demonstrate the strength of our learned order
policy, we compare it against four heuristic orders
introduced in previous works (Ghazvininejad et al.,
2019; Mansimov et al., 2019).

Uniform. We randomly samples a masked posi-
tion at every step.



3517

Task Uniform Left2Right Easy-First Least2Most Learned Learned (Ours)

De−→En test 26.01 28.34 29.00 28.85 28.47 28.64
dev 25.70 28.21 28.19 27.30 - 27.92

En−→De test 21.01 24.27 23.73 23.08 24.10 24.19
dev 20.75 23.60 23.27 22.61 - 23.66

Ro−→En test 30.62 31.82 32.47 31.60 - 32.18
dev 30.95 32.79 33.22 32.69 - 33.23

En−→Ro test 32.75 35.55 35.18 34.59 - 35.38
dev 33.43 36.38 36.34 35.14 - 36.13

Table 1: Results (BLEU) on the test sets of WMT’14 En↔De and WMT’16 En↔Ro translation tasks. The model
is decoded with greedy search and different decoding orders. The heuristic and learned orders are from Mansimov
et al. (2019) while the last column is the results of our learned orders.

Left2Right. We select the left-most masked po-
sition at every step.

Least2Most. At the step i, we pass the current in-
put sequence to the generation model and, for each
position j, evaluate how unlikely the current to-
ken yij is under the source X and current target:
φlogp = −logp(yj = yij |yi<j , 〈mask〉, yi>j , X).
We then select and replace the mask at the posi-
tion with the largest φlogp.

Easy-First. Other than φlogp, we further consider
the negative entropy of the generation model’s
output distribution at every position: φnegent =
−H(yi+1

j |yi<j , 〈mask〉, yi>j , X) Intuitively, we
want to replace the mask with a new word that
the model is highly certain of (low entropy). We
then select and replace the mask at the position
with the largest αlogp · φlogp + αnegent · φnegent.3

4.3 Main Results
We present our evaluation results by BLEU (Pap-
ineni et al., 2002) in Table 1. 4 On the De−→En test
set, the Easy-First generation order achieves the
highest BLEU scores among all orders, while the
translations decoded by our learned orders receives
higher BLEU scores compared to the ones decoded
from left to right and the ones decoded by previous
learned orders (Mansimov et al., 2019). On the
En−→De test set, the translations generated from
left to right outperforms the translation decoded
by any other heuristic or learned orders. Here, our
learned order again beats the previous learned or-
der and is on par with the Left2Right baseline on
the dev set. For the Ro−→En task, our learned order

3We set αlogp = 1, αnegent = 0.9 for En−→De and αlogp =
1, αnegent = 1 for the other three tasks.

4We can only report the test-set accuracy of the learned
order in Mansimov et al. (2019) for the En↔De as they did
not release the code for learning the generation order.

achieves the highest BLEU scores among all gener-
ation orders on the dev set and only falls behind the
Easy-First on the test set. On the En−→Ro task, the
Left2Right and Easy-First order marginally outper-
forms our learned order.5 We calculate the statisti-
cal significance between our learned order and the
Left2Right order on the full dev sets. For De−→En,
En−→De, and En−→Ro, the difference between the
Left2Right heuristic and our learned order is in-
significant. On the Ro−→En task, our learned order
achieves significant (p-value < 0.05) improvement
compared to the Left2Right heuristic. Therefore,
our learned order achieves better or equal perfor-
mances to the Left2Right on full dev sets.

We further compare our learned orders, which
are trained on the training examples with a maxi-
mum source and target length of 30, against all
heuristic orders on the dev-set examples where
the source and target sequences have a maximum
length of 20/30. As shown in Table 2, in three
(De↔ En, Ro−→En) out of four tasks, translations
decoded by our learned orders achieve the high-
est BLEU scores compared to all heuristic orders.
This suggests that our order policy can learn effec-
tive generation orders better on upto medium and
above-average length sequences (24.21 on avg. for
De-En and 27.62 on avg. for Ro-En). For the ex-
amples with very long source and target sentences,
the task of learning an optimal generation order
expectedly becomes more challenging. To under-
stand the lower performance there, we examine
100 examples with length 30 or more where our
learned policy underperforms a left-to-right heuris-
tic. One observation is that the model is still prone
to making mistakes at the final steps when the re-

5We are also working on generalizing our method to more
language pairs (e.g., English↔Chinese). We will add the
results in a future archive update.



3518

max length Uniform Left2Right Easy-First Least2Most Learned (Ours)

De−→En 20 27.22 28.48 28.96 28.14 29.57
30 26.90 28.89 29.21 28.12 29.40

En−→De 20 22.50 23.83 24.06 23.08 24.32
30 21.67 23.86 23.80 22.88 24.02

Ro−→En 20 30.53 30.63 30.92 30.89 31.09
30 30.14 31.26 31.49 31.27 31.46

En−→Ro 20 33.68 34.74 35.67 34.37 34.65
30 33.09 34.77 35.22 33.96 34.88

Table 2: Results (BLEU) on the partial dev sets with both source and target with a maximum length of 20/30, from
WMT’14 En↔De and WMT’16 En↔Ro translation tasks.

Task / λ 0.01 0.001 0.0005 0.0001 0

De−→En 28.56 29.40 28.98 28.74 28.46
Ro−→En 31.41 31.46 31.46 31.20 30.92

Table 3: Ablation BLEU with different λ, evaluated on
the dev sets with source&target shorter than 31 tokens.

maining space is tight, similar to how the model
makes errors when generating from left to right.
This indicates that this fixed-length setting might
be a bottleneck and we should look for a more flex-
ible approach that allows the model to dynamically
adjust the length when necessary.

4.4 The Effects of the Entropy Penalty

We present an ablation study on different λ values
we used in Eqn. 1. A larger coefficient λ means a
stronger penalty that encourages the policy’s output
distribution to have a larger entropy. As shown in
Table 3, the best λ value is 0.001 for the De−→En
task and 0.001/0.0005 for the Ro−→En task. We ob-
serve that with this negative entropy penalty added
to the RL loss, the learned policy achieves signifi-
cantly better BLEU scores than without the penalty
(λ=0), suggesting that the penalty can indeed make
the policy to better explore its action space instead
of converging to a local minimum prematurely.

4.5 Reward Function

The experiments we present above are conducted
by using the BLEU scores of the sequence greed-
ily decoded by the sampled order. We also ex-
plore using the overall likelihood of the generated
sequence measured by the pre-trained undirected
model, as the reward. This approach avoids the
hand-crafted BLEU metric and directly uses the
undirected model as the source of critic. As shown
in Table 4, using BLEU as the reward function is

Reward / λ 0.01 0.001 0.0005 0.0001

BLEU 28.56 29.40 28.98 28.74
Likelihood 29.02 29.17 29.16 28.85

Table 4: BLEU with different reward function and λ,
evaluated on the De−→En dev set with source&target
shorter than 31 tokens.

slightly better than the likelihood reward. Thus,
we experiment with BLEU as the reward function
consistently in this work.

5 Analysis Studies

Generation using undirected sequence model has
been an under-explored area compared to the con-
ventional directed generation. There are few stud-
ies that analyze the mechanism of this process and
its difference with directed sequence generation.
Hence, to shed some light on the order preferences
developed by the model when trained with con-
ditional masked language modeling, we present
multiple qualitative and quantitative analyses on
our learned generation orders and try to understand
what causes the model to adapt such orders.

5.1 Human Study on Learned Generation
Order

We randomly sample 100 examples from the dev
sets of De−→En and Ro−→En respectively and sum-
marize our order-pattern findings here.

1. The learned policy starts from the left-
most and right-most positions, and gradually
moves toward the middle. As shown in Table 5,
the order policy first predicts the four head (left-
most) positions at the first four steps and then pre-
dicts the three tail (right-most) positions in the re-
versed order in the next four steps. After the head
is extended till position 10 (“some") and the to-
kens “after the use of" are prepended to the tail,



3519

Step Translation decoded by our learned order

(source) Nu exista rapoarte privind eventuale raniri , insa unele persoane lacrimau, dupa utilizarea gazelor lacrimogene .
(target) There are no reports of any injuries , but some people were crying after the use of teargas .
(L2R) There are no reports of any injuries , but some people are crying foul after using tear gas gas .

4 [There are no reports]
6 [There are no reports] {gas .}
8 [There are no reports] of tear {gas .}
13 [There are no reports] of [any injuries] {, but} some {tear gas .}
17 [There are no reports] of [any injuries] {, but} some {after the use of} tear {gas .}
20 [There are no reports] of [any injuries] {, but} some [people are crying] {after the use of} tear {gas .}

Table 5: An Example of Ro−→En translation generated by our learned order. The words in [] are generated in
consecutive steps from left to right; the words in {} are generated in consecutive steps from right to left.

Task Length Outer-to-Inner Learneds=1 s=2 s=3

De−→En < 30 28.73 28.86 28.55 29.40
full 27.86 27.81 27.78 27.92

En−→De < 30 23.36 23.26 23.19 24.02
full 22.97 22.91 23.01 23.66

Ro−→En < 30 31.05 31.04 31.04 31.46
full 32.91 32.91 32.85 33.23

En−→Ro < 30 34.23 34.15 33.95 34.88
full 35.71 35.64 35.60 36.13

Table 6: Ablation comparison between learned order
and heuristic outer-to-inner orders with different strides
(1, 2, 3). Evaluated on the full dev sets of WMT’14
En↔De and WMT’16 En↔Ro translation tasks and
partial dev sets with a maximum length of 30. All mod-
els are decoded with greedy search.

the last three positions in the middle are filled and
the entire sentence is generated. On the other hand,
when decoding from left to right, the Transformer
model generates two “gas" at the end that makes
the sentence ungrammatical. This error is due to
the poor space planning from the model: when the
decoding proceeds until “using" is sampled, the
model finds that there are three spaces (masks) re-
maining but only two tokens (“gas .") are needed.
However, when decoding by the policy’s order,
the last three tokens (“tear gas .") are generated
within the first eight steps and thus prevents the
incompatibility between the space and generation.
Among the 200 examples analyzed, we identify
195 examples that follow this outer-to-inner order.
The remaining 5 examples follow either a mostly
left-to-right (as shown in Table 8) or right-to-left
generation order. For this study, we additionally
sample 100 generations from En−→De and En−→Ro
each. We observe the same outer-to-inner order
in 86% of the samples. Therefore, we believe this
learned outer-to-inner order is a preference first

intrinsically developed by the Transformer during
the masked language modeling training. It is then
effectively extracted by our order policy during
reinforcement learning.

To demonstrate the advantage of the learned or-
der that can flexibly control the generation process,
we implement several outer-to-middle baselines
with fixed strides of 1, 2, 3. A stride of 2 means that
the left-most 2 tokens will be generated first, then
the right-most 2 tokens will be generated followed
by the 3rd and 4th tokens from the left, and so on.
As shown in Table 6, among all four translation
tasks, neither of the outer-to-middle heuristics can
achieve better BLEU scores than our learned order.
On De−→En, the heuristic achieves a best of 28.86
BLEU (versus 29.4 from our learned policy) among
three strides on the dev set of length < 30; and 27.81
(versus our 27.92) on the full dev set. On Ro−→En,
the heuristic achieves a best of 31.05 (versus our
31.46) on the dev set of length < 30 and 32.91 (ver-
sus our 33.23) on the full dev set. The same trend
holds on En−→De and En−→Ro tasks. Therefore, we
believe that it is crucial that our learned policy can
execute the outer-to-middle order in a more flexible
way. For example, our learned policy sometimes
fills in a long sub-sequence consecutively before
jumping to the other end.

2. The learned policy sometimes skips the de-
terminer and suffix tokens at first and predicts
them at the end. For example in Table 7, when
generating the sentence, the 2nd position (“the")
and the 8-th position (suffix “x") are ignored by the
policy when their surrounding contexts are gener-
ated, until the 5-th last and 4-th last steps. We argue
that by delaying the generation of such less impor-
tant tokens to the end, the model can better plan the
overall structure of the sentence by generating the
key parts first. Instead, when generating from left
to right, the model could face space issues at the



3520

Step Translation decoded by our learned order

(source) Gleichzeitig ist es Afflecks erster Film , der nicht im heimatlichen Boston des Regisseurs spielt .
(target) It is also Aff@ leck ’s first picture , which does not take place in the director ’s hometown of Boston .
(L2R) At the same time , Aff@ leck ’s first film is not to be shown in Boston ’s native director ’s .

8 {place in the director ’s native Boston .}
13 At [same time , Aff@] {place in the director ’s native Boston .}
15 At [same time , Aff@] le@ ’s {place in the director ’s native Boston .}
17 At [same time , Aff@] le@ ’s [first film] {place in the director ’s native Boston .}
19 At the [same time , Aff@] le@ x ’s [first film] {place in the director ’s native Boston .}
22 At the [same time , Aff@] le@ x ’s [first film] [does not take] {place in the director ’s native Boston .}

Table 7: An Example of De−→En translation generated by our learned order. The words in [] are generated in
consecutive steps from left to right; the words in {} are generated in consecutive steps from right to left.

Step Translation decoded by our learned order

(source) Doch alles wurde besser , als der " geliebte Vater " Heydar Aliyew das Ruder übernahm .
(target) However , everything became better when the " beloved father " Hey@ dar Ali@ yev took the ru@ dder .
(L2R) But everything went well when Hey@ dar Ali@ ye@ v took over the " beloved father " of Ukraine .

2 {over .}
4 [everything went] {over .}
7 But [everything went] [well when] {over .}
11 But [everything went] [well when] [" beloved father "] {over .}
12 But [everything went] [well when] the [" beloved father "] {over .}
18 But [everything went] [well when] the [" beloved father "] [Hey@ dar Ali@ ye@ v took] {over .}
20 But [everything went] [well when] the [" beloved father "] [Hey@ dar Ali@ ye@ v took] {the lead} {over .}

Table 8: A De−→En example where our learned order runs from left to right mostly. The words in [] are generated
in consecutive steps from left to right; the words in {} are generated in consecutive steps from right to left.

end as shown in the example in Table 5. To further
solidify this argument, we automatically analyze
100 random samples each for De−→En and Ro−→En
dev sets, where every sample has at least one suffix.
We find that in 33% of De−→En examples and 56%
of Ro−→En examples, a suffix is filled in later than
both of its left and right neighbors, which means it
is skipped at the first. Therefore, we conclude that
it is a frequent behavior of our model to skip suffix
at first and predict it later.

3. The learned policy predicts n consecutive
positions in n consecutive steps to generate a
constituent structure, instead of frequently jump-
ing back and forth between the head and tail. Con-
sider the example in Table 5, where the first sub-
sentence is decoded except for the preposition
phrase (PP: “of any injuries") after four iterations.
The positions and tokens predicted at the 7-th, 9-
th and 10-th steps then complete this PP. For the
second sub-sentence, the noun phrase “tear gas" is
predicted first at iteration 6-8. The entire preposi-
tion phrase (PP: “after the use of tear gas") is then
completed from the 14-th to 17-th steps consecu-
tively. Finally, the model fills in the subject noun
phrase “Some people" and the verb phrase “are
crying [PP]" to finish the generation process. We

quantitatively evaluate this claim by annotating the
same 200 random samples. We manually inspect
each example as we find that automatic matching
can’t provide a straightforward estimate and spo-
radic parser errors further add on to the difficulty.
As a result, we observe that among the 195 exam-
ples following an outer-to-inner order, 172 of them
have at least one constituent structure finished in
consecutive steps.

5.2 Ablation of Cause of Outer-to-Inner
Order

As we observe that our learned order converges to
an outer-to-middle trend while the learned order
in Mansimov et al. (2019) prefers a left-to-right
order, we want to understand whether this is solely
because of the entropy penalty we added, or the
shift from edit-distance to BLEU reward also plays
a part in this change of behavior. We conduct the
ablation study and find that when we use BLEU
reward with no entropy penalty, the learned order
quickly converges to an almost left-to-right policy.
When we use entropy penalty but with edit-distance
metric, the learned order converges to a combina-
tion of left-to-right and outer-to-inner policy, but
with lower BLEU scores (27.68 for full De−→En



3521

dev set vs 27.92 from our policy). Therefore, we
believe it is the combination of BLEU and entropy
penalty that makes the model fully explore the ac-
tion space and finally converge to the outer-to-inner
pattern.

6 Related Works

Undirected Generation with Iterative Refine-
ment in Token Space. Wang and Cho (2019)
also explored approaches for generating text
from a masked language model (MLM), such as
BERT (Devlin et al., 2019), by seeing it as a
Markov random field language model and samples
one token at a time. Their setting differs from ours
in that they used a pretrained MLM for uncondi-
tional language modeling. Other than replacing one
token at a time that result in a linear-time genera-
tion scheme, multiple previous works have tried to
replace more than one token at time in a constant-
time, non-autoregressive generation scheme. Lee
et al. (2018) proposed a model that replaces the
tokens at all positions and keeps refining the pre-
vious outputs for multiple iteration. Ghazvinine-
jad et al. (2019) extended on this thread and in-
troduced Mask-Predict that keeps replacing the to-
kens with low likelihood. They showed that, after
10 iterations, the quality of the generated trans-
lations is competitive with the conventional au-
toregressive models on the WMT’14 En↔De and
WMT’16 En↔Ro tasks. Liao et al. (2020) also in-
vestigated generation using masked language mod-
els and proposed a probabilistic masking scheme
(PMLM). Wang et al. (2018) proposed a semi-
autoregressive generation scheme by predicting a
consecutive chunk of tokens in parallel and repeats
until the entire sequence is predicted. Kreutzer
et al. (2020) studied the Mask-Predict process in a
similar semi-autoregressive setup and identified a
thresholding strategy to improve upon the previous
heuristics. Mansimov et al. (2019) proposed a gen-
eralized framework for generating using masked
language models by casting the generation as a
Gibbs sampling process. Under this framework,
they proposed a log-linear model with different
features (φlogp, φnegent explained in Sec. 4.2) for
non-uniform position selection at every step. They
also trained a RL policy that selects one position
to update at every step. We build upon the same
RL setup and further improve their objectives to
achieve better BLEU scores as well as explore dif-
ferent and more effective generation orders.

Undirected Generation with Iterative Refine-
ment in Continuous Vector Space. Other than
iteratively refining the output tokens from the pre-
vious pass, another line of work used continuous
latent variables and the distribution of the target
sentence can be factorized over time given these
variables (Ma et al., 2019; Shu et al., 2020). Lee
et al. (2020) further improve the speed and perfor-
mance of the EM-like inference procedure by train-
ing an inference network using the latent variable
only. Most recently, Gu and Kong (2020) improved
the single-pass, fully non-autoregressive models by
reducing the dependency in the output space.

Insertion-based Generation with Arbitrary Or-
ders. Another generation scheme that is closely
related to our work is the insertion-based genera-
tion (Gu et al., 2019; Stern et al., 2019). They also
decode one token at a time within a linear-time
generation scheme, and the insertion order is either
some human-designed pre-defined order (e.g., left-
to-right, balanced-tree, etc.) or a searched adaptive
order found via beam search. Recently, Zhang
et al. (2020) pre-trained an insertion-based model
to generate text under specified lexical constraints.
Similar to the monotonic left-to-right generation,
the insertion-based model also operates autoregres-
sively and the length of the output is dynamically
decided by predicting an end-of-sentence token.
We instead opt for using a masked language model
and the output sequence length is fixed before the
decoding starts. We further learn the generation
order using Reinforcement Learning instead of re-
lying on pre-defined heuristics.

7 Conclusion

In this work, we train a policy network with rein-
forcement learning to predict the generation order
for an undirected sequence models. It outperforms
the Left2Right orders and previous learned orders
on the De−→En task. When trained and evaluated
on examples with source and target sequences of
length 30 or less, our learned order receives the
highest BLEU scores compared to all heuristic or-
ders on three translation tasks. We show that our
learned policy follows an outer-to-inner order and
skips some less important words at first. Moreover,
it usually completes an entire constituent in consec-
utive steps. We hope our results and analyses could
provide insights on undirected generation models
and encourage future works on this topic.



3522

Acknowledgements

We thank the reviewers for their helpful comments.
This work was supported by NSF-CAREER Award
1846185, DARPA YFA17-D17AP00022, and ONR
Grant N00014-18-1-2871. The views are those of
the authors and not of the funding agency.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6112–
6121, Hong Kong, China. Association for Computa-
tional Linguistics.

Jiatao Gu and Xiang Kong. 2020. Fully non-
autoregressive neural machine translation: Tricks of
the trade. arXiv preprint arXiv:2012.15833.

Jiatao Gu, Qi Liu, and Kyunghyun Cho. 2019.
Insertion-based decoding with automatically in-
ferred generation order. Transactions of the Asso-
ciation for Computational Linguistics, 7:661–676.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In ICLR
(Poster).

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Julia Kreutzer, George Foster, and Colin Cherry. 2020.
Inference strategies for machine translation with
conditional masking. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 5774–5782, On-
line. Association for Computational Linguistics.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. Advances in
Neural Information Processing Systems (NeurIPS).

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1173–
1182, Brussels, Belgium. Association for Computa-
tional Linguistics.

Jason Lee, Raphael Shu, and Kyunghyun Cho. 2020.
Iterative refinement in the continuous space for
non-autoregressive neural machine translation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1006–1015, Online. Association for Computa-
tional Linguistics.

Yi Liao, Xin Jiang, and Qun Liu. 2020. Probabilisti-
cally masked language model capable of autoregres-
sive generation in arbitrary word order. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 263–274, On-
line. Association for Computational Linguistics.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neu-
big, and Eduard Hovy. 2019. FlowSeq: Non-
autoregressive conditional sequence generation with
generative flow. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 4282–4292, Hong Kong, China. As-
sociation for Computational Linguistics.

Elman Mansimov, Alex Wang, Sean Welleck, and
Kyunghyun Cho. 2019. A generalized framework of
sequence generation with application to undirected
sequence models. arXiv preprint arXiv:1905.12790.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal
policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Raphael Shu, Jason Lee, Hideki Nakayama, and
Kyunghyun Cho. 2020. Latent-variable non-

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.1162/tacl_a_00292
https://doi.org/10.1162/tacl_a_00292
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/P07-2045
https://www.aclweb.org/anthology/P07-2045
https://doi.org/10.18653/v1/2020.emnlp-main.465
https://doi.org/10.18653/v1/2020.emnlp-main.465
https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.18653/v1/2020.emnlp-main.73
https://doi.org/10.18653/v1/2020.emnlp-main.73
https://doi.org/10.18653/v1/2020.acl-main.24
https://doi.org/10.18653/v1/2020.acl-main.24
https://doi.org/10.18653/v1/2020.acl-main.24
https://doi.org/10.18653/v1/D19-1437
https://doi.org/10.18653/v1/D19-1437
https://doi.org/10.18653/v1/D19-1437
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162


3523

autoregressive neural machine translation with deter-
ministic inference using a delta posterior. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pages 8846–8853.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In Pro-
ceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 5976–5985. PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Alex Wang and Kyunghyun Cho. 2019. BERT has
a mouth, and it must speak: BERT as a Markov
random field language model. In Proceedings of
the Workshop on Methods for Optimizing and Eval-
uating Neural Language Generation, pages 30–36,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Chunqi Wang, Ji Zhang, and Haiqing Chen. 2018.
Semi-autoregressive neural machine translation. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
479–488, Brussels, Belgium. Association for Com-
putational Linguistics.

Yizhe Zhang, Guoyin Wang, Chunyuan Li, Zhe
Gan, Chris Brockett, and Bill Dolan. 2020.
POINTER: Constrained progressive text generation
via insertion-based generative pre-training. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 8649–8670, Online. Association for Compu-
tational Linguistics.

Appendix

A Experimental Setup

Datasets. We train and evaluate our order pol-
icy on WMT’14 English-German and WMT’16
English-Romanian translation datasets. The for-
mer contains 4.5M sentence pairs and the latter
contains 2.8M sentence pairs. We follow the pre-
processing steps in previous works (Lample and
Conneau, 2019; Mansimov et al., 2019) to first tok-
enize each sentence using the Moses (Koehn et al.,
2007) tokenizer and then segment each word into
BPE (Sennrich et al., 2016) subword tokens. For
the English-German task, we use the newstest-2013
and newstest-2014 as the dev and test sets. For the
English-Romanian task, we use the newsdev-2016
and newstest-2016 as the dev and test sets.

Translation Models. Our core translation model
has the same setup as those of previous
works (Lample and Conneau, 2019; Mansimov
et al., 2019). Specifically, we use a single stack
of Transformer (Vaswani et al., 2017) layers with
1024 hidden units, 6 layers, and 8 heads per
layer. The model is first pretrained (Lample and
Conneau, 2019) using a masked language model-
ing objective on 5M monolingual sentences from
WMT NewsCrawl 2007-2008. The model is fur-
ther finetuned by Mansimov et al. (2019) with a
masked translation objective, where a pair of paral-
lel English and German sentences are concatenated.
Then, tokens from a random language are masked
uniformly with a ratio varying from 0%-100% and
the model is supervised to predict the masked to-
kens. We evaluate the quality of the translations
using the BLEU-4 (Papineni et al., 2002) metric,
following the setup of Ghazvininejad et al. (2019)
and Mansimov et al. (2019).

Training Details. We train the order policy us-
ing Adam optimizer (Kingma and Ba, 2015) with
a constant learning rate of 10−4, β1 = 0.9,
β2 = 0.98. It is trained on 4 Nvidia V100
GPUs for ∼72 hours with the batch size of 32
per GPU and fp16. Other training hyperparame-
ters were selected based on BLEU score on the
dev set with grid search: discount factor γ ∈
{0.9, 0.99, 0.999} and the negative entropy coef-
ficient λ ∈ {0.01, 0.001, 0.0005, 0.0001}. We end
up using γ = 0.999 and λ = 0.001 for all models.

The Maximum Decoding Length When we
started this project, we found that the cost for run-
ning our model on the full training set is too high:
using the full training set (as in Table 1) requires
4 V100 GPUs running for > 6 days. To select
the length threshold N, we first calculate the av-
erage target sequence length for De−→En (24.21)
and Ro−→En (27.62). Therefore we select an above-
average threshold value of 30 that would cover
more than 2/3 of the De−→En task and only takes
3 days to train. All our model development/tuning
are performed on the shorter subsets of the dataset.

http://proceedings.mlr.press/v97/stern19a.html
http://proceedings.mlr.press/v97/stern19a.html
https://doi.org/10.18653/v1/W19-2304
https://doi.org/10.18653/v1/W19-2304
https://doi.org/10.18653/v1/W19-2304
https://doi.org/10.18653/v1/D18-1044
https://doi.org/10.18653/v1/2020.emnlp-main.698
https://doi.org/10.18653/v1/2020.emnlp-main.698

