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Abstract
Knowledge Distillation (KD) is extensively
used in Natural Language Processing to com-
press the pre-training and task-specific fine-
tuning phases of large neural language mod-
els. A student model is trained to minimize
a convex combination of the prediction loss
over the labels and another over the teacher
output. However, most existing works either
fix the interpolating weight between the two
losses apriori or vary the weight using heuris-
tics. In this work, we propose a novel sample-
wise loss weighting method, RW-KD. A meta-
learner, simultaneously trained with the stu-
dent, adaptively re-weights the two losses for
each sample. We demonstrate, on 7 datasets
of the GLUE benchmark, that RW-KD outper-
forms other loss re-weighting methods for KD.

1 Introduction

Knowledge Distillation (Ba and Caruana, 2014;
Hinton et al., 2015) has proven highly effective
for compressing a large-scale NLP model (Devlin
et al., 2019; Radford et al., 2019), called teacher in
KD terms, into a smaller one, the student. A key
factor behind KD’s success is the use of teacher out-
put as soft labels for supervising the training of the
student (Müller et al., 2019; Yuan et al., 2020). The
latter model is trained by jointly minimizing the
losses on both hard and soft labels. The contribu-
tion of each loss term is conventionally controlled
by a balancing hyperparameter.

However, recent studies suggested that hard and
soft label importance is sample-wise (Tang et al.,
2020; Zhou et al., 2021), and only a subset of train-
ing samples are crucial for distillation (Li et al.,
2018; Zhang et al., 2021). For instance, teacher
outputs may be of poor quality for some sam-
ples (Ghaddar et al., 2021a,b), but highly infor-
mative for others (Cho and Kang, 2020). Also,
researchers have found that adjusting loss weights
during training greatly benefits performance of

KD (Clark et al., 2019; Mukherjee and Awadallah,
2020; Jafari et al., 2021). However, the contribu-
tion of loss terms is heuristically decayed by an
annealing factor, yet another hyperparameter.

We argue that using the same weights for all train-
ing samples, referred to in our work as single-
weight, prevents exploiting the full advantage of
KD, because each data sample might have differ-
ent optimal weights for the loss terms. We pro-
pose a meta-learning approach to learn sample-
wise weights of loss terms. We revisit learning
to weight approaches (Ren et al., 2018; Shu et al.,
2019), initially proposed for noisy sample down-
weighting, and adapt it for loss terms weighting in
KD.

Experimental results show that our KD loss weight-
ing scheme consistently outperforms its counter-
parts on 7 tasks from the GLUE benchmark (Wang
et al., 2019). A fine-grained analysis of the learned
weights shows that, compared to the baselines,
our meta-learner explores a greater range of KD
weights to find the sample-wise optimal values.

2 Related Work

In recent years, Knowledge Distillation for BERT-
like models (Devlin et al., 2019; Liu et al., 2019)
has been extensively studied, leveraging intermedi-
ate layer matching (Ji et al., 2021; Wu et al., 2020;
Passban et al., 2021), data augmentation (Fu et al.,
2020; Jiao et al., 2020; Rashid et al., 2021; Ka-
malloo et al., 2021), adversarial training (Zaharia
et al., 2021; Rashid et al., 2020, 2021), and lately
loss terms re-weighting (Clark et al., 2019; Zhou
et al., 2021; Jafari et al., 2021). In this work, we
explore the latter direction with a meta learning
approach (Li et al., 2019; Fan et al., 2020).

Learning to weight approaches (Ren et al., 2018;
Zhang et al., 2020) were mainly proposed to
learn per-sample loss weights in order to discount
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noisy samples thanks to an auxiliary meta-learner
which re-weights training samples of the main
model. Such approaches often train a meta-learner
on a clean validation set, or on small-loss train-
ing samples if no clean data is available. The
meta-learner architecture varies from a simple
multi-layer perceptron (MLP) as in Meta-Weight-
Net (Shu et al., 2019) to LSTM-based encoder as
in MentorNet (Jiang et al., 2018).

The work of Jin et al. (2021) on multi-modal model
compression with KD is the most similar to ours.
The authors train a MLP meta learner (Shu et al.,
2019), on the validation set, which assigns sample-
level weights for 3 loss terms that are calculated
when text, image, and both modalities are given
as input. In our work, we use a transformer-based
meta learner to estimate the sample-wise optimal
weights for KD with gradient similarity (see Sec-
tion 3.2).

3 Methodology

Let T p¨q be a fine-tuned fixed teacher, and Sθp¨q
the student model parameterized with θ. Given a
training set of txi, yiu|Ni“1 samples where xi is a
data sample and yi is the respective label, vanilla
KD (Hinton et al., 2015) consists of minimizing a
weighted combination of two different losses:

L “ 1

N

N
ÿ

i“1

rp1´ αq ¨ LCEpyi, Sθpxiqq (1)

`α ¨ LKDpT pxiq, Sθpxiqqs

where LCE is a cross-entropy (CE) loss on hard
labels, and LKD is the Kullback-Leibler diver-
gence (Kullback, 1997) between teacher and stu-
dent logits. α P r0, 1s is a hyperparameter control-
ling the contribution of both losses. For simplic-
ity, we refer to LCEpyi, Sθpxiqq as LCEpxiq and
LKDpT pxiq, Sθpxiqq as LKDpxiq hereafter.

Reweighting KD We propose a sample-wise
reweighting method for KD to learn a balance be-
tween the CE and KD loss for every training sam-
ple. The new training loss is computed as follows:

L “ 1

N

N
ÿ

i“1

rλCEi ¨ LCEpxiq (2)

`λKDi ¨ LKDpxiqs

where λCEi ` λKDi “ 1.

Update the meta student with a GD step:
  

Meta        
Student       

Teacher         

X

X
+

Meta       
Student       

Normalization
Function

 Student           

Estimate the weight with the
negative gradient :

Stage 2

Stage 1

Figure 1: Meta-reweight Module. In Stage 1, the pa-
rameter θ of the meta student is updated to be a func-
tion of ε. In Stage 2, the optimal weights tλCE , λKDu

are estimated with the negative gradient of Lmeta w.r.t
ε.

Finding the optimal weights for each loss is in-
tractable. Our solution is inspired by Koh and
Liang (2017) and Ren et al. (2018). These works
investigate which training samples are most respon-
sible for the generalization performance. We follow
this line of works and perturb different losses in KD
training to identify which loss is more influential
and informative.

3.1 Meta-reweight KD

We define our problem as a meta-learning one and
use the validation set to define a meta-learning loss
function. Our meta-reweight module is depicted in
Figure 1.

Meta-objective. The optimal selection of λ “
tλCEi , λKDi u|Ni“1 is derived from its performance
on the meta dataset of M samples1:

λ˚ “ argmin
λě0

1

M

M
ÿ

j“1

Lmetapθ˚pλqq (3)

where Lmeta is the loss computed on samples from
the meta dataset. Since computing the optimal λ˚

and θ˚ need two nested optimization loops, we
adopt an online strategy to estimate λ and update θ
respectively.

1We consider the validation dataset as the meta dataset.
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Meta-reweighting In order to derive the optimal
weights on two different losses for each sample
before updating the student, we use a meta model
to compute the weight taking a gradient step on the
meta loss. First, we initialize a meta-student Ŝθp¨q
with the same parameters of the student model
Sθp¨q at the beginning of every iteration.

Next, we feed a mini-batch of n training samples
Xpnq “ txi, yiu|

n
i“1 to the meta-student and com-

pute the CE and KD losses, then perturb their
weights by εCEi and εKDi respectively for each ex-
ample and calculate the weighted loss:

L̂pXpnq; θt, εq “
n
ÿ

i“1

εCEi LCEpxiq ` εKDi LKDpxiq

(4)

where ε “ tεCEi , εKDi u|ni“1 is the collection of all
perturbations. We then take a gradient step update
on the current parameter θt:

θ̂t “θt ´ α∇θtL̂pXpnq; θt, εq (5)

where α is the step size of the gradient descent.
Next, we feed a mini-batch of meta examples
Xpmq “ txj , yju|

m
j“1 to the meta-student Ŝθ̂tp¨q

and compute the meta loss LmetapXpmq; θ̂tq as:

1

m

m
ÿ

j“1

rLCEpxjq ` LKDpxjqs (6)

Since the parameter θ̂t of the meta-student becomes
a function of ε as ∇θtL̂ is a function of ε, we can
directly compute the gradient of meta loss w.r.t ε
via the chain rule, which is implemented in practice
by automatic differentiation of deep learning frame-
works such as Pytorch (Paszke et al., 2019). Here
we take the negative gradients as the estimation of
weights:

uCEi “´ β
B

BεCEi
LmetapXpmq; θ̂tq (7)

uKDi “´ β
B

BεKDi
LmetapXpmq; θ̂tq (8)

where β is a scaling factor. We then normalize the
weights tuCEi , uKDi u for each training sample xi
to make them positive and ensure they sum to 1,
leading to:

λCEi “
maxpuCEi , δq

maxpuCEi , δq `maxpuKDi , δq
(9)

λKDi “
maxpuKDi , δq

maxpuCEi , δq `maxpuKDi , δq
(10)

Algorithm 1: Knowledge Distillation with
Meta-reweighting
input :Dtrain, Dmeta, Sθp¨q, T p¨q

1 Sθp¨q initialization;
2 for iÐ 1 to N_epoch do
3 for tÐ 1 to T do

// Meta-reweighting

4 Ŝθtp¨q Ð Sθtp¨q;
5 tXf , yfu ÐMiniBatch(Dtrain, n);
6 ŷf , ŷ

T
f Ð ŜθtpXf q, T pXf q;

7 tεCEi , εKDi u|ni“1 Ð 0;
8 L̂i Ð εCE

i LCEpyf,i, ŷf,iq `
εKD
i LKDpŷT

f,i, ŷf,iq;

9 θ̂t Ð θt ´ α∇θt

n
ř

i“1
L̂i;

10 tXg, ygu ÐMiniBatch(Dmeta, m) ;
11 ŷg, ŷ

T
g Ð Ŝθ̂tpXgq, T pXgq;

12 Lmetai Ð

LCEpyg,i, ŷg,iq ` LKDpŷT
g,i, ŷg,iq;

13 ∇εÐ ´β ¨∇ε
1
m

m
ř

i“1
Lmetai ;

14 λCEi Ð
maxp∇εCE

i ,δq

maxp∇εCE
i ,δq`maxp∇εKD

i ,δq
;

15 λKDi Ð
maxp∇εKD

i ,δq

maxp∇εCE
i ,δq`maxp∇εKD

i ,δq
;

// Knowledge-Distillation
16 LÐ λCEi LCEpyf,i, ŷf,iq `

λKDi LKDpŷT
f,i, ŷf,iq;

17 θt`1 Ð θt ´∇θt
1
n

n
ř

i“1
L;

where δ = 1e-8 is a hyperparameter for helping
training stability. In the end, we compute the fi-
nal loss with locally optimal weights for the two
losses for each sample in the training mini-batch
and update our student model Sθp¨q.

The weight is estimated by computing gradients of
meta loss w.r.t the perturbation on different losses
and these gradients can indicate the sensitivity of
the meta loss when we perturb each loss used for
training. By using these gradients as the weight of
different losses, we can adjust the impact of differ-
ent losses towards better performance on the pre-
defined meta-dataset. The detailed pseudo-code is
presented in Algorithm 1.
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Model CoLA SST-2 MRPC RTE QNLI QQP MNLI-m/mm Avg.

BERT-base 51.6 92.9 87.8 65.5 89.9 71.3 83.5/82.1 78.1

w/o KD 49.1 91.4 86.0 57.6 87.9 67.7 80.1/79.6 74.9
Vanilla-KD 49.4 91.2 86.3 58.4 88.2 68.6 80.4/79.5 75.2
ANL-KD 49.1 91.2 86.6 59.1 88.1 68.4 80.9/79.7 75.4
WLS-KD 50.0 91.8 87.0 59.6 88.3 68.9 81.8/80.2 75.9

RW-KD (our) 50.5 92.5 87.2 60.5 88.5 69.5 82.1/80.8 76.5

Table 1: Performance of the teacher and students with different loss re-weighting methods on GLUE test sets.

3.2 Weight Estimation via Gradient
Similarity

Next, we show the relation between the weight es-
timation and the gradient similarity. To save space,
we omit uKDi . The weight on the CE loss of i-th
example is the similarity between the gradient of
the i-th example on CE loss and the average gra-
dient of mini-batch of the meta data computed for
the meta loss at time step t. The computation of
Eq 7 by backpropagation can be rewritten as 2:

uCEi “ αβ ¨ xJ1,J2y (11)

where J1 is the Jacobian vector of Lmeta w.r.t θ̂
which indicates the direction of decrease in loss on
a mini-batch of meta data, and J2 is the Jacobian
vector of LCE of i-th sample w.r.t θ which indicates
the direction of decrease of the CE loss of i-th
sample. Larger weights mean that moving along
the J2 direction is likely to not only reduce the
training loss, but also reduce the meta loss.

4 Experiments

4.1 Dataset and Evaluation
We run experiments on 7 tasks from the GLUE
benchmark (Wang et al., 2019): 2 single-sentence
(CoLA and SST-2) and 5 sentence-pair (MRPC,
RTE, QQP, QNLI, QQP, and MNLI) classification
tasks. Following prior works, we report Matthews
correlation on CoLA, F1 score on MRPC and QQP,
and accuracy for the other tasks on their correspond-
ing test sets.

4.2 Baselines
We compare RW-KD to 4 losses re-weighting meth-
ods:

• w/o KD In this setting, the KL loss weight (α)
is always set to zero.

2Derivation can be found in Appendix A.

• Vanilla-KD Here, we select the best perform-
ing α value for each task.

• ANL-KD In Annealing KD (Clark et al.,
2019), α is gradually decreased from 1 to 0.

Finally, we consider the recent WLS-KD (Zhou
et al., 2021) dynamic re-weighting method, where
α is calculated as follow:

α “ 1´ exp

ˆ

´
Lsce
Ltce

˙

(12)

where Lsce and Ltce are loss values on the hard label
for the student and teacher respectively.

4.3 Implementation

All models use a 12-layer BERT-base-uncased
model (Devlin et al., 2019) as teacher, and the pre-
trained 6-layer distillBERT (Sanh et al., 2019) as
initialization for the students. We perform hyperpa-
rameter tuning, and select best performing models
using early stopping on dev sets.

4.4 Results

Table 1 shows the performances of the teacher,
baselines, and our method on the GLUE test sets.
First, we notice that ANL-KD fails to perform as
we expected (only 0.2% gain on top of Vanilla-KD),
although we extensively tested different α decay
schedules.

It is worth mentioning that this approach was suc-
cessful in multi-task KD when the teacher and the
student are of same size. Second, we observe
that RW-KD outperforms single-weight weight-
ing schemes (Vanilla and ANL), and sample-wise
WLS-KD method by 1.3%,1.1% and 0.6% respec-
tively on all tasks. We plot the weights learned by
the meta-learner to better understand why RW-KD
performs better. Figure 2 shows the distribution of
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training sample weights on 4 GLUE tasks for WLS-
KD and RW-KD. Similar figures are observed on
the remaining 3 tasks.
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Figure 2: KL loss weight distributions of WLS-KD
(blue) and RW-KD (orange) on 4 GLUE tasks. x-axis
indicates the weight values, and y-axis shows percent-
age of samples.

On one hand, we observe that the majority of WLS
weights are concentrated below 0.3 and that the
best α values were around 0.5 for Vanilla KD. On
the other hand, we observe that our meta-learner
mostly produces weights with either very high or
very low values, and less frequently weights around
0.5 (e.g. CoLA and RTE). Interestingly, this sug-
gests that for many samples, either one of the hard
or soft label loss is informative for the student. Con-
sequently, a sample-wise loss weighting method
seems a key component of KD.

5 Conclusion

In this paper, we show the importance of sample-
wise loss term weighting in Knowledge Distillation
and propose RW-KD a method which does this and
leads to better distillation performance on 7 GLUE
tasks. Future work involves combining RW-KD
with state of the art KD methods that use extra loss
terms such as intermediate layer similarity (Sanh
et al., 2019; Jiao et al., 2020), attention match-
ing (Sun et al., 2020; Wang et al., 2021), and adver-
sarial (Rashid et al., 2021) losses. We expect that
these methods can take full advantage of RW-KD,
since they use single-weight loss terms weights. In
addition to KD training, we will investigate apply-

ing our reweighting method to Multi-task Learning
(MTL) scenarios (Caruana, 1997; Lu et al., 2019;
Stickland and Murray, 2019), where learning to bal-
ance losses from different tasks is critical to benefit
all tasks involved.
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A Derivation of the gradients

We show how to compute the gradient of meta loss
w.r.t εCEi at time step t:

uCEi “´ β
B

BεCEi
LmetapXpmq; θ̂tq

“ ´ β
K
ÿ

j“1

Bθ̂t,j

εCEi

BLmeta

Bθ̂t,j

whereK is the number of parameters of the student.
Since θ̂t is a function of ε:

θ̂t “θt ´ α∇θtL̂pXpnq; θt, εq

We continue to expand the middle part Bθ̂t,j
BεCE

i
:

Bθ̂t,j

BεCEi
“
Bpθt,j ´ α

BL̂pXpnq;θt,εq
Bθt,j

q

BεCEi

“´ α
Bp
BL̂pXpnq;θt,εq

Bθt,j
q

BεCEi

and we have

L̂pXpnq; θt, εq “
n
ÿ

i“1

εCEi LCEpxiq`εKDi LKDpxiq

Then we can continue to expand:

“´ α ¨
Bp
B
řn

i“1 ε
CE
i ¨LCEpxiq`ε

KD
i ¨LKDpxiq

Bθt,j
q

BεCEi

“´ α ¨
Bp
BεCE

1 ¨LCEpx1q
Bθt,j

` ¨ ¨ ¨ `
BεCE

n ¨LCEpxnq
Bθt,j

q

BεCEi

“´ α ¨
BLCEpxiq
Bθt,j

Therefore, the local optimal weight uCEi represents
the similarity between the two Jacobian vectors .

uCEi “αβ
K
ÿ

j“1

BLmeta

Bθ̂t,j

BLCEpxiq
Bθt,j

“αβ ¨ xJ1,J2y

where J1 “ r
BLmeta

Bθ̂t,1
, ¨ ¨ ¨ , BL

meta

Bθ̂t,K
sT is the Jacobian

vector of Lmeta w.r.t θ̂ on a mini-batch of meta data,
J2 “ r

BLCEpxiq
Bθt,1

, ¨ ¨ ¨ , BLCEpxiq
Bθt,K

sT is the Jacobian
vector of LCE w.r.t θ of the i-th training sample.


