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Abstract

It is widely accepted that fine-tuning pre-
trained language models usually brings about
performance improvements in downstream
tasks. However, there are limited studies on
the reasons behind this effectiveness, particu-
larly from the viewpoint of structural changes
in the embedding space. Trying to fill this
gap, in this paper, we analyze the extent to
which the isotropy of the embedding space
changes after fine-tuning. We demonstrate
that, even though isotropy is a desirable geo-
metrical property, fine-tuning does not neces-
sarily result in isotropy enhancements. More-
over, local structures in pre-trained contextual
word representations (CWRs), such as those
encoding token types or frequency, undergo a
massive change during fine-tuning. Our ex-
periments show dramatic growth in the num-
ber of elongated directions in the embedding
space, which, in contrast to pre-trained CWRs,
carry the essential linguistic knowledge in the
fine-tuned embedding space, making existing
isotropy enhancement methods ineffective.

1 Introduction

Recently, several studies have focused on the re-
markable potential of pre-trained language models,
such as BERT (Devlin et al., 2019), in capturing
linguistic knowledge. They have shown that pre-
trained representations are able to encode various
linguistic properties (Tenney et al., 2019a; Talmor
et al., 2020; Goodwin et al., 2020; Wu et al., 2020;
Zhou and Srikumar, 2021; Chen et al., 2021; Ten-
ney et al., 2019b), among others, syntactic, such as
part of speech (Liu et al., 2019a) and dependency
tree (Hewitt and Manning, 2019), and semantic,
such as word senses (Reif et al., 2019) and seman-
tic dependency (Wu et al., 2021).

Despite their significant potential, pre-trained
representations suffer from important weaknesses.
Frequency and gender bias are two well-known
problems in CWRs. While the former hurts the

semantic expressiveness of embedding space, the
latter reflects the unwanted social bias in training
data (Li et al., 2020; Garg et al., 2018; Gonen and
Goldberg, 2019). The representation degeneration
problem is another issue that limits their linguistic
capacity. Gao et al. (2019) showed that the weight
tying trick (Inan et al., 2017) in the pre-training
procedure is mainly responsible for the degener-
ation problem in the embedding space. In such
a case, the embeddings occupy a narrow cone in
the space (Ethayarajh, 2019). Several approaches
have been proposed to improve the isotropy of
pre-trained models, which in turn boosts the rep-
resentation power and downstream performance
of CWRs (Zhang et al., 2020; Wang et al., 2020).
However, previous studies have mainly focused
on the anisotropy of pre-trained language models.
Here, we investigate the impact of fine-tuning on
isotropy. Specifically, We try to answer the follow-
ing questions:

• Can the improved performance achieved
by fine-tuning pre-trained language models
(LMs) be attributed to the increased isotropy
of the embedding space?

• Does isotropy enhancement (using methods
that null out dominant directions) have the
same positive outcome for the fine-tuned mod-
els as it has for the pre-trained ones?

• How does the distribution of CWRs change
upon fine-tuning?

To answer these questions, we consider the
semantic textual similarity (STS) as the target
task and leverage the metric proposed by Mu and
Viswanath (2018) for measuring isotropy. The pre-
trained BERT and RoBERTa (Liu et al., 2019b)
underperform static embeddings on STS, while
fine-tuning significantly boosts their performance,
suggesting the considerable change that CWRs un-
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dergo during fine-tuning (Reimers and Gurevych,
2019; Rajaee and Pilehvar, 2021).

Our analysis on the fine-tuned embedding space
of BERT and RoBERTa demonstrates that word
representations are highly anisotropic across all
layers. An evaluation specifically carried out on
the [CLS] tokens approves a similar pattern but to
a greater extent. Moreover, experimental results
show fading of local clustered areas in pre-trained
CWRs during fine-tuning, which could be a pos-
sible reason for the improved performance. Inter-
estingly, the fine-tuning procedure can change the
linguistic knowledge encoded in dominant direc-
tions of embedding space from unnecessary infor-
mation to the essential knowledge for the target task
such that eliminating them toward making isotropic
space hurts the performance of contextual represen-
tations.

2 Related Work

Following the research line in understanding the
reasons behind the outstanding performance of
pre-trained language models and their capabilities,
most recent investigations on fine-tuning have been
done through probing tasks and by evaluating the
encoded linguistic knowledge (Merchant et al.,
2020; Mosbach et al., 2020; Talmor et al., 2020;
Yu and Ettinger, 2021). These studies demonstrate
that most changes in fine-tuning are applied to the
upper layers, such that those layers encode task-
specific knowledge, while lower layers are respon-
sible for the core linguistic phenomenon (Durrani
et al., 2021). Moreover, the results show that some
linguistic information is surprisingly eliminated by
this procedure (Mosbach et al., 2020). Studies on
the multi-head attention structure suggest a similar
trend in their patterns during fine-tuning; in higher
layers, attention weights experience more signifi-
cant changes (Hao et al., 2020). More detailed anal-
ysis on self-attention modules indicates that dense
and value projection matrices have heavily been
affected by fine-tuning (Radiya-Dixit and Wang,
2020). However, geometric analysis on the em-
bedding space and changes applied to the structure
of embeddings during fine-tuning are aspects that
have not been properly understood. Furthermore,
evaluating the fine-tuning effect on frequency bias
in CWRs is another aspect that distinguishes our
work from previous studies.

3 Methodology

3.1 Background

Fine-tuning is a straightforward yet quite effec-
tive process for taking advantage of the linguis-
tic knowledge encoded in pre-trained models and
for achieving high performance on different down-
stream tasks (Peters et al., 2019). The [CLS] em-
bedding or other strategies in calculating sentence
representations (e.g., max- or mean-pooling) can
be considered as the input to the classifier layer,
which is jointly trained with the parameters of the
pre-trained model on a specific task (Devlin et al.,
2019).

Isotropy is a geometrical assessment of the dis-
tribution of data points in a feature space, which is
ideally uniform (Gao et al., 2019). An embedding
space is considered isotropic if the word embed-
dings are not biased towards a specific direction
(feature). In other words, in isotropic space, word
embeddings are uniformly distributed in the space,
leading to low correlation and near-zero cosine sim-
ilarity for randomly sampled words.

Contextual embedding spaces are known to lack
the desirable isotropy property (Rajaee and Pile-
hvar, 2021; Ethayarajh, 2019). Gao et al. (2019)
called the defect the representation degeneration
problem and attributed it mainly to the weight ty-
ing trick (Press and Wolf, 2017) and the language
modeling as the objective of the training. Under
such a circumstance, random word embeddings
are highly similar to one another while shaping a
narrow cone in the space. Clearly, anisotropic dis-
tribution hurts the expressiveness of the embedding
space, especially for semantic downstream tasks.

Cosine similarity-based metrics have usually
been employed for assessing the isotropy of em-
bedding spaces where a near-zero cosine similarity
between random embeddings indicates isotropic
distribution. However, Rajaee and Pilehvar (2021)
demonstrated that these metrics might not be reli-
able for calculating isotropy since, in some cases,
the cosine similarity of random words is zero while
their distribution is not uniform. Hence, we uti-
lize another metric based on Principal Components
(PCs).

As we mentioned before, anisotropic embedding
spaces have unusual elongations toward different
directions. Using the eigenvectors calculated in
Principal Component Analysis (PCA) procedure,
we can find the most elongated directions of the



3044

space, which are the reason for anisotropic distribu-
tion. The distribution is more uniform and isotropic
if the extent of elongation is similar across differ-
ent directions (the most and the least elongated
directions). With this in mind, Mu and Viswanath
(2018) proposed a measurement to quantify the em-
bedding space isotropy employing PCs as follows:

I(W) =
minu∈UF (u)

maxu∈UF (u)
(1)

where U is the set of all eigenvectors of the word
embedding matrix, and F (u) is the following parti-
tion function:

F (u) =
N∑
i=1

eu
Twi (2)

where N is the number of word embeddings and
wi is the ith word embedding. Arora et al. (2016)
demonstrated that for a perfectly isotropic embed-
ding space, F (u) could be approximated by a con-
stant. The value of I(W) is closer to one for the
more isotropic embedding spaces.

3.2 Methodology
We study the changes applied to the embed-
ding space by fine-tuning from the perspective of
isotropy. In this regard, we take several approaches
explained as follows.

Zero-mean. This method simply transfers all the
embeddings to the center.

Clustering+ZM. Here, we first cluster embed-
dings and then separately make each cluster zero-
mean (Cai et al., 2021).

These two approaches give us a precise picture
of the extent of isotropy in the fine-tuned embed-
ding space, globally and locally, since making zero-
mean is a prerequisite for measuring isotropy (Mu
and Viswanath, 2018).

Global app. This is a simple and effective post-
processing algorithm for improving the isotropy of
embedding space proposed by Mu and Viswanath
(2018). In this method, after making embeddings
zero-mean, a few top dominant directions calcu-
lated using PCA are being discarded.

Cluster-based app. Based on the clustered struc-
ture of pre-trained LMs (Michael et al., 2020; Reif
et al., 2019), this method can significantly improve
the performance of contextual embedding spaces as
well as their isotropy (Rajaee and Pilehvar, 2021).

Here, we first cluster embeddings and then make
each cluster zero-mean individually. At the last
step, dominant directions are calculated in each
cluster and discarded.

The last two approaches help us make the em-
bedding space isotropic and potentially attain per-
formance improvement. Moreover, they give us an
insight into the changes of clustered structure of
pre-trained models during fine-tuning.

3.3 Target Task
To analyze changes in a fine-tuned model, we
choose Semantic Textual Similarity (STS) as the
target task considering STS-Benchmark dataset
(Cer et al., 2017). STS is a semantic regression
task in which the model needs to determine the
similarity of two sentences in a paired sample. The
label is a continuous range in 0 to 5.

The interesting point about STS, which makes
it a reasonable choice for our analyses, is that the
performance of pre-trained LMs is drastically low
on this task (Reimers and Gurevych, 2019). In
fact, BERT and RoBERTa’s contextual represen-
tations under-perform static embeddings, such as
Glove (Pennington et al., 2014) in this task. More-
over, the [CLS] token, which is usually consid-
ered a sentence representation for classification
tasks, has a lower performance than simple aver-
aging over all tokens of a sentence. However, fine-
tuning, whether with [CLS] token or mean-pooling
method, can dramatically enhance the performance
(Reimers and Gurevych, 2019).

3.4 Experimental Setup
We analyze the influence of fine-tuning on the em-
bedding space of the base versions of BERT and
RoBERTa. Both models have similar transformer-
based architectures, while RoBERTa has been
trained with more training data and a slight dif-
ference in the optimization procedure. For the pre-
trained setting, we use the models as feature extrac-
tors (the weights are frozen in this phase). Apply-
ing the mean-pooling method over the word em-
beddings, we obtain a sentence representation for
every sample and consider the cosine similarity of
the sentence representations as the textual similar-
ity score. In the fine-tuning scenario, we fine-tune
the models with a Siamese architecture introduced
by Reimers and Gurevych (2019) that uses cosine
similarity and the mean-pooling method for sen-
tence representation. In our experiments, the batch
size is set to 32, the learning rate is set to 7E-5, and
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Baseline Zero-mean Clustering+ZM Global Cluster-based

Perf. Isotropy Perf. Isotropy Perf. Isotropy Perf. Isotropy Perf. Isotropy

Pre-trained† 54.14 1.1E-5 59.70 1.1E-4 67.73 0.31 69.20 0.59 74.01 0.83
Fine-tuned† 84.41 4.1E-3 84.94 6.6E-3 80.10 0.11 82.14 0.22 64.43 0.60

Pre-trained‡ 33.99 2.5E-6 37.66 8.3E-2 60.32 0.69 65.99 0.86 73.86 0.95
Fine-tuned‡ 81.08 3.3E-4 81.34 6.1E-3 76.03 0.05 79.71 0.18 60.96 0.28

Table 1: Spearman correlation performance and isotropy for five different settings in the pre-trained and fine-
tuned BERT† and RoBERTa‡. Unlike the pre-trained models, increased isotropy does not bring about improved
performance for the fine-tuned models.

the models are fine-tuned for 3 epochs. Following
our previous work (Rajaee and Pilehvar, 2021), we
set the number of clusters and discarded dominant
directions in Global and Cluster-based approaches
to 27 and 12, respectively, for both models.

4 Findings

The embedding space of fine-tuned models is
still highly anisotropic. Figure 1 depicts our ex-
perimental results on evaluating the isotropy in
the models’ embedding spaces using I(W). We
take the pre-trained embedding space as a baseline
and compare its isotropy to the fine-tuned space
(all representations) and the [CLS] tokens in all
layers. The results demonstrate that performance
enhancements achieved after fine-tuning cannot
be attributed to the increased isotropy of the em-
bedding space. Although fine-tuning improves
isotropy, specifically in the upper layers, the distri-
bution of embeddings is still highly non-uniform.
Moreover, in most layers, the [CLS] tokens’ rep-
resentations are much more anisotropic than all
representations in the fine-tuned space. These pat-
terns hold for both BERT and RoBERTa, while the
latter tends to be more anisotropic. We also note
that although different random seeds change the
reported numbers, the difference between isotropy
of [CLS], fine-tuned, and pre-trained embedding
spaces remain.

Adjusting the fine-tuned embedding space for
isotropy hurts its performance. Several studies
have shown that isotropy has theoretical and practi-
cal benefits. A natural question that arises here is if
increasing the isotropy of a fine-tuned embedding
space would lead to further performance improve-
ments? To examine this hypothesis, we fine-tuned
the models with the Siamese architecture and con-
sidered the settings explained in Section 3.2. Re-
sults are listed in Table 1. Clearly, as opposed to

Figure 1: Negative log of isotropy for [CLS] tokens,
and all the tokens in the pre-trained and fine-tuned
embedding space in all layers of BERT (bottom) and
RoBERTa (top) using I(W) on STS-B dev set. Higher
values indicate lower isotropy.

pre-trained models, increasing isotropy of the fine-
tuned embedding space does not enhance perfor-
mance. Instead, we observe a drop in performance.
This can be attributed to the fact that fine-tuning
concentrates information about the target task in the
dominant directions, whether it is obtained during
the fine-tuning procedure or just brought up from
the encoded knowledge in the pre-trained model.

The fine-tuned models heavily rely on a few top
directions to solve the target task. To investi-
gate the sensitivity of the fine-tuned model to the
linguistic knowledge encoded in different direc-
tions, we discarded the least dominant directions
and evaluated the performance of representations.
The results of the experiment have been presented
in Table 2. By eliminating the 100 and 700 least
dominant directions from a total of 768 directions,
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Global App. Cluster-based App.

Baseline 100 least dir. 700 least dir. 100 least dir. 700 least dir.

Perf. Isotropy Perf. Isotropy Perf. Isotropy Perf. Isotropy Perf. Isotropy

BERT 84.41 4.1E-3 84.93 2.2E-3 82.93 2.2E-3 77.87 0.10 75.10 0.16
RoBERTa 81.08 3.3E-4 81.66 3.2E-4 78.59 1.4E-2 73.19 0.13 71.39 0.13

Table 2: Spearman correlation performance and isotropy after removing the least dominant directions in Global
and Cluster-based approaches on STS dev set. The results suggest the low sensitivity of the fine-tuned models to
eliminating more than 90% of directions with lower elongations.

Figure 2: Illustration of pre-trained and fine-tuned
CWRs colored based on their frequency in BERT and
RoBERTa (using Wikipedia dump as corpus). The
more frequent words have darker colors. As can be
observed, the embedding space is still anisotropic after
fine-tuning, while the frequency-based distribution of
CWRs has been remedied.

we observe a slight drop in the performance com-
pared to removing 12 top dominant directions. This
suggests that the top dominant directions carry es-
sential knowledge about the target task. We leave
further investigation of this interesting behavior to
future work.

The clustered structure of the embedding space
changes during fine-tuning. The results of the
Clustering+ZM setting and Cluster-based approach
in Table 1 show that the clustered structure of the
pre-trained embedding space (Cai et al., 2021) has
faded in the fine-tuned CWRs. These two set-
tings can improve the STS performance of the
pre-trained model by increasing isotropy. How-
ever, applying them to fine-tuned CWRs leads to
performance reduction. Moreover, as can be seen
in Figure 2, the local areas that encode frequency

information in the pre-trained CWRs have been
removed by fine-tuning, which can be a reason for
the high performance of fine-tuned representations.

The number of elongated dominant directions
significantly increases after fine-tuning. The
results of Global and Cluster-based approaches
in Table 1 reveal that with equal numbers of re-
moved directions, the fine-tuned embedding space
is less isotropic compared to the pre-trained one.
This means that to have similar embedding spaces
in terms of isotropy, we need to eliminate more
dominant directions from the fine-tuned embed-
ding space.

5 Conclusions

In this paper, we explored the effect of fine-tuning
on the structure of the embedding space of BERT
and RoBERTa. Our analysis demonstrates that the
remarkable performance usually gained as a re-
sult of fine-tuning is not due to its enhancement
of isotropy in the embedding space. Similarly to
their pre-trained counterparts, fine-tuned CWRs
have elongated directions towards different dimen-
sions across all layers, and the number of these
directions tends to increase by fine-tuning. We
have also found that fine-tuning changes the nature
of the linguistic knowledge encoded in dominant
directions such that removing them hurts the per-
formance (unlike pre-trained models for which re-
moving such directions often result in performance
improvements). Moreover, the clustered structure
of pre-trained models is entirely modified upon
fine-tuning, producing unbiased embedding space
from the viewpoint of word frequency.

As future work, we plan to experiment with more
target tasks and different fine-tuning strategies to
expand our knowledge about the fine-tuning pro-
cedure. Furthermore, we aim at exploring the type
of linguistic knowledge encoded in specific dimen-
sions or subspaces in the semantic space.
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