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Abstract

Emotion recognition in multi-party conversa-
tion (ERMC) is becoming increasingly pop-
ular as an emerging research topic in natu-
ral language processing. Prior research fo-
cuses on exploring sequential information but
ignores the discourse structures of conversa-
tions. In this paper, we investigate the im-
portance of discourse structures in handling in-
formative contextual cues and speaker-specific
features for ERMC. To this end, we pro-
pose a discourse-aware graph neural network
(ERMC-DisGCN) for ERMC. In particular,
we design a relational convolution to lever
the self-speaker dependency of interlocutors
to propagate contextual information. Further-
more, we exploit a gated convolution to se-
lect more informative cues for ERMC from de-
pendent utterances. The experimental results
show our method outperforms multiple base-
lines, illustrating that discourse structures are
of great value to ERMC.

1 Introduction

In the past few years, emotion recognition in con-
versation (ERC) has become increasingly popular
in natural language processing (NLP) with the pro-
liferation of open conversational data on social me-
dia platforms (Poria et al., 2019a). Similar to text
sentiment analysis, ERC is a task to determine the
emotion of each utterance within a conversation, as
shown in Fig. 1, and plays important role in many
NLP applications, such as opinion mining in con-
versation (Cambria et al., 2017), social media anal-
ysis (Majumder et al., 2019) and emotion-aware
dialogue systems (Ghosal et al., 2019). However,
ERC, particularly the emotion recognition in multi-
party conversation (ERMC), often exhibits more
difficulties than traditional text sentiment analysis
due to the emotional dynamics of conversations
(Poria et al., 2019b). Consequently, recognizing
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surprise (1) A: How does she do that?  

(2) B: I cannot sleep in a public place.  

(3) A: Would you look at her? She...   

(4) C: Oh! What what what! ...Hi.  

(5) A: It’s ok, y’know, you just... 

surprise 

neutral 

joy

neutral 

QAP  

Ack  

Expl  

Ela  

Figure 1: An example of the ERC task, the gold labels
are different emotions of the utterances, and the dis-
course structure is shown on the left. QAP, Ack, Ela,
and Expl respectively represent the Question-Answer
Pair, Acknowledgment, Elaboration, and Explanation
relations.

the emotion of an utterance in a multi-party conver-
sation primarily depends on not only the utterance
itself and its context but also the self and inter-
personal dependencies and the emotions expressed
in the preceding utterances (Poria et al., 2017; Ma-
jumder et al., 2019; Jiao et al., 2019; Zhong et al.,
2019; Shen et al., 2021).

Many approaches have been proposed for ERC
with a focus on conversational context representa-
tion and speaker-specific modeling. While earlier
works on ERC focus on two-party conversation and
exploit recurrent neural networks (RNNs) to cap-
ture sequential context features of conversations
(Poria et al., 2017; Majumder et al., 2019; Jiao
et al., 2019; Ghosal et al., 2019), recent studies
exert more efforts on ERMC and explore different
techniques such as multi-task learning (Li et al.,
2020) and pre-training language modeling (Shen
et al., 2021) to capture speaker-specific information.
Although these studies have greatly promoted the
progress of ERC, most of them ignore the impor-
tant conversational discourse structures. Therefore,
they can only leverage cues in neighboring con-
text of conversations, and are difficult to handle
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informative distant dependencies for ERC.

Actually, conversational discourse structures
contain discourse relations or discourse dependen-
cies between utterances and thus provide a straight-
forward way to capture both adjacent and distant
cues for ERMC. Fig. 1 illustrates a multi-party
conversation example with its discourse structure
obtained from the discourse parser proposed by
Shi and Huang (2019). As we can see, although
the first and the fourth utterances are distant in
position within the conversation, they have an im-
mediate discourse relation and are thus annotated
with the same emotion type surprise. Therefore,
such discourse relations offer important contextual
cues for ERMC. On the other hand, discourse struc-
tures have proven to be useful for document-level
sentiment analysis (Bhatia et al., 2015; Märkle-
Huß et al., 2017; Kraus and Feuerriegel, 2019) and
we believe that they are also beneficial for ERMC.
Moreover, recent progress in conversational dis-
course parsing (Shi and Huang, 2019; Li et al.,
2021) makes it applicable to explore discourse
structures to help model conversational contexts
and speakers for ERMC.

However, two new problems may arise when dis-
course structures are applied to ERMC. First, pre-
vious works have shown that speaker-specific infor-
mation is very important for ERMC (Zhang et al.,
2019; Li et al., 2020). So it becomes a key issue
how to incorporate conversational discourse struc-
tures into speaker-specific modeling for ERMC.
Second, discourse structures involve dependent re-
lations between utterances. However, not all in-
formation from dependent utterances is useful for
conversational emotion recognition. Therefore, an-
other important problem might be how to select
more informative cues for ERMC.

To address the aforementioned issues, we pro-
pose a discourse-aware graph neural network for
emotion recognition in multi-party conversation,
named ERMC-DisGCN. It consists of three main
modules: Firstly, a sequential context encod-
ing module exploits Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) to
capture the sequential features of utterances in a
conversation. Then, we exploit discourse depen-
dency links and discourse relations to construct a
graph, which contains two main convolution opera-
tions, namely a relational convolution and a gated
convolution. The relational convolution is used to
model the self-speaker dependency based on dis-

course structures, where individual speakers resist
the change of their own emotion against external
influence (Ghosal et al., 2019), while the gated con-
volution adopts a gated mechanism to select infor-
mative cues for ERMC from dependent utterances.
Similar to (Zhang et al., 2019), we take utterances
as nodes of the constructed graph. Finally, a de-
coding module is applied to predict the emotion
label for each utterance. In addition, we employ the
deep sequential discourse parser developed by Shi
and Huang (2019) to obtain the explicit discourse
dependency trees of input conversations.

In summary, we make the following contribu-
tions:

• We propose a discourse-aware graph neural
network for emotion recognition in multi-
party conversation (ERMC).

• We devise a discourse-based relational graph
convolution to exploit the self-speaker depen-
dency of interlocutors to propagate contex-
tual information, and further use a gated con-
volution to select more informative cues for
ERMC from dependent utterances.

• We conduct experiments on both multi-party
and two-party conversation corpora, and
demonstrate that using conversational dis-
course structures can benefit ERMC.

2 Related work

Recently, ERC has become a new trend due to
the emergence of publicly available conversational
datasets collected from social media platforms
and scripted situations (Busso et al., 2008; Za-
hiri and Choi, 2018; Poria et al., 2019a). Ear-
lier works focus on capturing sequential context
features for emotion recognition in two-party con-
versation. Poria et al. (2017) propose a LSTM-
based network to propagate contextual information
within conversations. Majumder et al. (2019) pro-
pose a recurrent-based model to track the speaker
states and global context during conversations. Jiao
et al. (2019) propose a hierarchical Gated Recur-
rent Unit (GRU) (Chung et al., 2014) structure that
trains utterance-level and conversation-level en-
coders jointly. Ghosal et al. (2019) construct a fully
connected graph within a context utterance window
to aggregate information. Zhong et al. (2019) in-
corporate external commonsense knowledge and
employ the Transformer encoder (Vaswani et al.,
2017) to capture contextual information.
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For emotion recognition in multi-party conver-
sation (ERMC), studies exert more effort in han-
dling speaker-specific information. Zhang et al.
(2019) represent the entire conversational corpus
as a large graph to model speaker-sensitive depen-
dency. Li et al. (2020) use speaker identification
as an auxiliary task to capture speaker-specific fea-
tures. Shen et al. (2021) propose an all-in-one XL-
Net (Yang et al., 2019) model with dialog-aware
self-attention to deal with the multi-party structures.
However, these studies neglect the informative dis-
course structures in multi-party conversations. To
the best of our knowledge, we are the first to in-
vestigate the importance of discourse structures in
handling informative contextual cues and speaker-
specific features for ERMC.

Discourse structures have been successfully ap-
plied to document-level sentiment analysis (Bhatia
et al., 2015; Märkle-Huß et al., 2017; Kraus and
Feuerriegel, 2019), where discourse structures are
produced by Rhetorical Structure Theory (RST)
parser (Li et al., 2014). Recently, Shi and Huang
(2019) propose a deep sequential model for conver-
sational discourse parsing and achieve new state-of-
the-art (SOTA) results. With this model, Jia et al.
(2020) transform dialogue histories into threads
for multi-turn response selection. Inspired by (Xia
et al., 2019) and (Zhang et al., 2020), we exploit dis-
course dependency links and discourse relations to
construct a graph. Especially, we stack two convo-
lutional layers to aggregate contextual and speaker-
specific information of the neighborhood for each
utterance in the graph.

3 Methodology

3.1 Problem Definition

Suppose there are N constituent utterances
u1, u2, . . . , uN from a conversation with X(X >
2) speakers s1, s2, . . . , sX . Utterance ui is uttered
by speaker Sm(ui), where the function m maps an
utterance into its corresponding speaker. ERMC is
to predict the emotion label for each utterance.

3.2 Pre-processing

Similar to most existing studies, the input of our
model is a multi-party conversation consisting of
context-independent utterance-level feature vectors.
Besides, we need to obtain discourse structures to
construct a graph. We complete these works in this
pre-processing module.

Utterance Encoding: Earlier works adopt the

Convolution Neural Network (CNN) (Kim, 2014)
to obtain the feature vectors for utterances. To com-
pare with the latest model (Shen et al., 2021) based
on XLNet (Yang et al., 2019), we use the BERT
model (Devlin et al., 2019) to extract context-
independent utterance-level feature vectors for ut-
terances. Let an utterance u consists of a sequence
of tokens x1, x2, . . . , xN . First, a special token
[CLS] is appended at the beginning of the utter-
ance to create the input sequence for the model:
[CLS], x1, x2, . . . , xN . Then, we pass the [CLS]
appended utterances to BERT and extract out ac-
tivations from the final four layers corresponding
to the [CLS] token. Finally, these four vectors are
averaged to obtain the feature vector with a dimen-
sion of 768.

Discourse Parsing: To obtain discourse depen-
dency trees, we utilize the discourse parser pro-
posed by Shi and Huang (2019). It is a deep se-
quential model that achieves SOTA performance
on the STAC corpus (Asher et al., 2016). We feed
the conversations into the discourse parser:

{(i, j, rij , pij), . . .} = Parser(u1, . . . , uN ). (1)

The quadri-tuple (i, j, rij , pij) are directed edges
of a discourse dependency tree with head i and
tail j, indicating that ui has immediate relation rij
with uj . And pij is the confidence score of the
dependency link. Notice that i, j = 1, 2, . . . , N
and j > i.

3.3 Model Overview

As illustrated in Fig. 2, there are three components
in our proposed framework: (1) sequential con-
text encoding; (2) discourse graph modeling; (3)
emotion recognition. In the following sections, we
explain each component in detail.

After the pre-processing, we obtain not only the
dependency trees of conversations, but also the
context-independent utterance-level feature vectors.
Then, we use Bi-directional LSTM to transform
these vectors into context-dependent ones. Next, a
discourse-based graph stacks two different convo-
lutional layers to aggregate contextual and speaker-
specific information. Finally, the output feature
vectors from the graph are used to recognize emo-
tions for utterances.

3.4 Sequential Context Encoding

Similar to previous strategies, the sequential con-
text encoder processes the constituent utterances
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Figure 2: Overview of our proposed model for ERMC, congruent to the illustration in Section III. Different colors
of utterances and edges respectively represent different speakers and different discourse relations.

in a conversation as a sequence according to the
timeline. Inspired by Poria et al. (2017), we use
Bi-directional LSTM to capture sequential context
information,

gi = BiLSTM
(
gi(+,−)1, ui

)
, (2)

where, i = 1, 2, . . . , N , ui and gi are context-
independent and sequential utterance representa-
tions, respectively.

3.5 Discourse Graph Modeling
Conversational discourse structures provide a
straightforward way to capture both adjacent and
distant cues for ERMC. Inspired by (Xia et al.,
2019) and (Zhang et al., 2020), we exploit dis-
course dependency trees to construct graphs to
propagate contextual and speaker-specific informa-
tion. The framework is detailed here.

3.5.1 Graph Construction
First, we introduce the following notation: a multi-
party conversation having N utterances is repre-
sented as a directed graph G = (V, E ,R,W), with
vertices/nodes vi ∈ V , labeled edges (relations)
eij ∈ E where rij ∈ R is the relation type of the
edge between vi and vj , and αij is the weight of
the labeled edge eij , with 0 6 αij 6 1, where
αij ∈ W and i, j = 1, 2, . . . , N . The graph is
constructed based on discourse dependency trees
in the following way,

Vertices: In the graph, each utterance within a
multi-party conversation is represented as a vertex
vi ∈ V . Each vertex vi is initialized with the cor-
responding sequentially encoded representation gi,
and i = 1, 2, . . . , N .

Edges: Construction of the edges E depends on
discourse dependency trees. For instance, if there
is a quadri-tuple (i, j, rij , pij) from a dependency

tree, there would be an edge eij in the graph with
head ui and tail uj . As the graph is directional, eij
is not equivalent to eji. In most cases, an utterance
only depends on its historical utterances, so the
direction of edges is often directed as a topological
sort from earlier utterances to later ones.

For speaker-specific information, Ghosal et al.
(2019) model the emotional inertia of speakers in
two-party conversations, where individual speak-
ers resist the change of their own emotion against
external influence. However, it is a challenge to
incorporate discourse structures into speaker mod-
eling for ERMC. In our model, we leverage the
self-speaker dependency of interlocutors to model
the emotional inertia of speakers by directly letting
one utterance know whether its dependent utter-
ance belongs to the same speaker. In Fig. 2, we
use a dashed line to represent discourse dependen-
cies between utterances from the same speaker and
use a solid line to denote discourse dependencies
between utterances from different speakers.

Edge Weights: The spatial graph convolutional
operation essentially propagates node information
along edges (Wu et al., 2020), thus proper edge
weights is helpful. In our graph model, we set the
edge weights statically,

αij = pij , (3)

where pij is the confidence score of edge eij ob-
tained from the discourse parser.

Relations: The relation rij of an edge eij is set
depending upon two aspects:

Discourse relations — These relations depend
on discourse dependency trees. For example, rij
is the discourse relation type of edge eij which
is the dependency link between utterance ui and
uj . According to (Shi and Huang, 2019), there are
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16 types of discourse relations: Comment, Clari-
fication question, Elaboration, Acknowledgment,
Continuation, Explanation, Conditional, Question-
Answer pair (QAP), Alternation, Question-Elab(Q-
Elab), Result, Background, Narration, Correction,
Parallel and Contrast.

Self-speaker dependency — This relation de-
pends upon speakers. If two utterances are from
the same speaker and have discourse relation rq (rq

is one of the 16 discourse relations), we transform
rq into rq

′
to model the self-speaker dependency.

3.5.2 Feature Transformation
We now describe the methodology to transform
the sequentially encoded feature vectors using the
graph network. After a two-step graph convolu-
tion process, the vertex representations gi are trans-
formed into contextual and speaker-specific ones.

In the first step, we consider discourse depen-
dencies as important cues to propagate contextual
and speaker-specific information. As there are
many types of edges, inspired by Schlichtkrull et al.
(2018), the new features h1i of utterance ui is com-
puted as:

h1i = σ(W 1
0 gi +

∑
r∈R

∑
j∈Nr

i

αij

ci,r
W 1

r gj), (4)

where, αij is edge weight, N r
i represents the neigh-

boring indices of node gi under relation r ∈ R.
And ci,r is a problem specific normalization con-
stant which is set in advance (ci,r = |N r

i |). σ is an
activation function such as ReLU, W 1

0 and W 1
r are

trainable parameters, only edges of the same rela-
tion type r are associated with the same projection
weight W 1

r .
In the second step, to select more informative

cues from dependent utterances, another residual
gated convolutional layer (Bresson and Laurent,
2018) is applied over the output of the first step,

h2i = σ(W 2
0 h

1
i +

∑
j∈Nr

i

ηi,j �W 2
1 h

1
j ), (5)

ηi,j = sigmoid(W 2
2 h

1
i +W 2

3 h
1
j ), (6)

where W 2
0 , W 2

1 , W 2
2 , and W 2

3 are trainable pa-
rameters. This stack of graph convolutional layers
effectively aggregates normalized contextual and
speaker-specific information of the neighborhood
for each utterance in the graph.

3.6 Emotion Recognition
After the feature transformation, we consider h2i as
the contextual and speaker-specific representations

Dataset Conversations Utterances
Train Val Test Train Val Test

MELD 1038 114 280 9989 1109 2610
EmoryNLP 713 99 85 9934 1344 1328
IEMOCAP 120 31 5810 1623

Table 1: The statistics of three datasets

of utterances. Then, we classify each utterance
using a fully connected network:

Pi = softmax(Wsmaxh
2
i + bsmax), (7)

ŷi = argmax
k

(Pi[k]) . (8)

To train the model, we choose the cross-entropy
loss function:

L = −
∑
v∈yV

Z∑
z=1

Yvz lnPvz, (9)

where yV is the set of node indices that have labels
and Y is the label indicator matrix.

4 Experimental Setting

4.1 Datasets

To verify the effectiveness of integrating discourse
structures for ERMC, we evaluate our model on
both multi-party and two-party conversation cor-
pora. All these datasets contain multimodal infor-
mation for each utterance within a conversation,
while we only focus on the textual information in
this work. Table 1 shows the corpora statistics.

MELD (Poria et al., 2019a): A multi-party
conversation corpus collected from the TV show
Friends. Each utterance is annotated as one of the
seven emotion classes: neutral, surprise, fear, sad-
ness, joy, disgust, and anger.

EmoryNLP (Zahiri and Choi, 2018): A multi-
party conversation corpus collected from Friends,
but varies from MELD in the choice of scenes and
emotion labels. The emotion labels include neutral,
joyful, peaceful, powerful, scared, mad, and sad.

IEMOCAP (Busso et al., 2008): A two-party
conversation corpus. The emotion labels include
neutral, happiness, sadness, anger, frustrated, and
excited. Since this dataset has no validation set,
we follow (Shen et al., 2021) to use the last 20
dialogues in the training set for validation.
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4.2 Implementation Details

We use pre-trained BERT-Base1 to encode utter-
ances and adopt Adam (Kingma and Ba, 2015) as
the optimizer with an initial learning rate of 1e-
4 and L2 weight decay of 1e-5 for three datasets.
The batch size is set to be {32,32,16} for MELD,
EmoryNLP, and IEMOCAP respectively. The di-
mensions of gi, h1i and h2i are set to be 100, 64, and
64. The dropout (Srivastava et al., 2014) is set to
be 0.5. We train all models for a maximum of 100
epochs and stop training if the validation loss does
not decrease for 20 consecutive epochs.

4.3 Baseline Methods

For a comprehensive evaluation of our proposed
ERMC-DisGCN, we compare it with the following
baseline methods:

cLSTM (Poria et al., 2017): Contextual utter-
ance representations are generated by capturing
the content from surrounding utterances using a
Bi-directional LSTM network.

DialogueRNN (Majumder et al., 2019): It is a
recurrent network that uses three GRUs to track
individual speaker states, global context, and emo-
tional state within conversations.

HiGRU (Jiao et al., 2019): It is a hierarchi-
cal GRU structure that trains utterance-level and
conversation-level encoders jointly.

ConGCN (Zhang et al., 2019): This model rep-
resents the entire conversational corpus as a large
heterogeneous graph to capture context-sensitive
and speaker-sensitive features.

DialogueGCN (Ghosal et al., 2019): This is a
graph-based model to encode speaker dependencies
and temporal information within a window context.

KET (Zhong et al., 2019): Enriched by the ex-
ternal commonsense knowledge, KET employs the
Transformer encoder and decoder (Vaswani et al.,
2017) for ERC.

BERT-MTL (Li et al., 2020): It is a multi-task
learning framework where features extracted from
BERT are used for emotion recognition and speaker
identification.

DialogueXL (Shen et al., 2021): An all-in-one
XLNet model with dialog-aware self-attention to
deal with multi-party structures.

BERT-LSTM: A variation of cLSTM where the
CNN-based utterance-level feature vectors are re-
placed by our BERT-based feature vectors. We

1https://github.com/google-research/
bert,BERT-Base,Uncased

Model Multi-party Two-party
MELD EmoryNLP IEMOCAP

cLSTM 56.44 32.89 54.95
DialogueRNN 57.03 31.27 62.75
HiGRU 56.92 31.88 59.79
ConGCN 57.40 33.52∗ -
DialogueGCN 58.10 33.85∗ 64.18
KET 58.18 33.95 59.56
BERT-MTL 61.90 34.85 -
DialogueXL 62.41 34.73 65.94

BERT-LSTM 62.34 34.66 63.10
ERMC-GCN 62.71 34.97 63.68
ERMC-DisGCN 64.22 36.38 64.10

Table 2: Overall performance on both multi-party and
two-party conversation corpora, which is statistically
significant under the paired t-test (p<0.05). We use the
average F1 score to evaluate each model. The scores
marked by “*” are based on our re-implementation, be-
cause of the differences in datasets between the corre-
sponding work and ours.

consider this model as our strong baseline.
ERMC-GCN: A variation of our approach

where the graph modeling is based on the time-
line of conversations. It means that there are no
discourse structures in this model.

5 Results and Discussions

5.1 Comparison with Baseline Methods
We compare the performance of our proposed
ERMC-DisGCN framework with multiple base-
lines in Table 2. To verify the effectiveness of
integrating discourse structures for ERMC, we con-
duct experiments on both multi-party and two-party
conversation datasets.

MELD and EmoryNLP: On these multi-party
conversation datasets, we first report our base-
line results which achieve comparable performance
with the previous systems. Then, our proposed
ERMC-DisGCN achieves average F1 scores of
64.22% and 36.38%, which are around 2% bet-
ter than the strong baseline. Compared to ERMC-
GCN, integrating discourse structures leads to F1
improvements of around 1.5% on two datasets. We
attribute this gap in performance to the nature of
conversations. There are many utterances, like
"yeah", "okay", and "no", that can express different
emotions depending on the context within conversa-
tions. In these cases, discourse structures indicate
the most informative historical utterances, which
contributes to emotion recognition.

IEMOCAP: On this two-party conversation
dataset, we observe the inferior performance of our

https://github.com/google-research/bert, BERT-Base, Uncased
https://github.com/google-research/bert, BERT-Base, Uncased
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Figure 3: The discourse dependency rate between dis-
tant utterances on three datasets.

baseline BERT-LSTM to dialogueXL. The average
conversation length is 50 utterances in IEMOCAP
which is much longer than MELD and EmoryNLP,
so LSTM fails to propagate rich long-term informa-
tion, while DialogueXL remains the SOTA result
with enhanced memory for historical context. And
compared to ERMC-GCN, integrating discourse
structures only leads to an F1 score increase of
0.42%. In the following section, we explain the
reason for different performance of integrating dis-
course structures in these datasets.

5.2 Multi-Party vs Two-Party

According to those results shown in Table 2, we
find that integrating discourse structures in multi-
party conversations leads to more significant im-
provements than in two-party conversations. To ex-
plain this difference, it is important to understand
the nature of multi-party and two-party conversa-
tions. After examining the datasets, we report the
distant dependency rate of them in Fig. 3. As we
can see, discourse structures in multi-party conver-
sations are much more complex. About 25% utter-
ances have discourse relations with distant ones
in multi-party conversations, and this rate rises
as conversation length increases. In MELD and
EmoryNLP, there are often more than 5 interlocu-
tors within a conversation, thus speakers’ turns
change quickly and one speaker may respond to
another after many turns. However, in two-party
conversations, the distant dependency rate is only
around 11% and keeps steady when conversation
length increases. Since there are only two inter-
locutors, they tend to speak utterances cyclically,
adjacent utterances are more related. From the
above discussion, we can conclude that it is more
necessary to exploit discourse structures to handle

Speaker modeling method Average F1 score
MELD EmoryNLP

ours (based on discourse) 64.22 36.38
ours (independent of discourse) 63.69 36.02
speaker-specific GRUs 63.74 36.07
speaker role embedding 63.79 35.98

Table 3: Results of comparison between four speaker
modeling approaches on the MELD and EmoryNLP
datasets.

the rich dependencies between distant utterances
in multi-party conversations.

5.3 Different Speaker Modeling Methods

Previous studies have proven that capturing
speaker-specific features benefits emotion recog-
nition in conversation. In this section, we con-
duct experiments to answer the following two ques-
tions: (1) Is it helpful to propagate speaker infor-
mation based on discourse structures? (2) Which
speaker modeling method contributes most to our
approach?

We replace our self-speaker dependency model-
ing method with the following three methods. The
first one is a variation of ours that the self-speaker
dependency is modeled independently of discourse
structures by directly letting one utterance know
whether the adjacent one is from the same speaker.
The second method is to use speaker-specific GRUs
(Hazarika et al., 2018) to process the histories of
each speaker which represent the individual states
of speakers. The third one is speaker role embed-
ding, which maps each interlocutor to a trainable
vector (Zhang et al., 2019). These methods are
all independent of discourse structures but capture
different speaker-specific features.

The results of different speaker modeling meth-
ods are shown in Table 3. We observe that the
discourse-based self-speaker modeling method per-
forms better than the independent method. This
gap supports our hypothesis that the discourse de-
pendencies between distant utterances offer infor-
mative cues for capturing speaker-specific features.
So, it is necessary to integrate discourse structures
into speaker modeling. Besides, although the other
two methods capture different kinds of speaker-
specific features, they have similar performance
with our independent model.
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ID Speaker Text Emotion Prediction

（3） Chandler： Yeah, can you guys just throw him in the pool later? 

（6） Ross： Please! Anger Anger

…

Ross：（12）

Ross：（11） We're academics.

And most importantly I... you will have to catch us. Joy Neutral

…

Anger Neutral

Neutral Neutral

0.67

0.82

Figure 4: Results of case study, where two utterances from a conversation are provided, along with their dependent
historical utterances. We use green and red to highlight right and wrong predictions. The confidence scores of two
dependency links are shown in the left.

Method Average F1 score
MELD EmoryNLP

ERMC-DisGCN 64.22 36.38
- self-speaker dependency 63.45(↓ 0.77) 35.88(↓ 0.50)
- gated convolution 63.67(↓ 0.55) 35.89(↓ 0.49)
- relational convolution 63.01(↓ 1.21) 35.41(↓ 0.97)

Table 4: Results of ablation study on MELD and
EmoryNLP.

5.4 Ablation Study

We perform an ablation study for three components
of our model by removing them one by one at a
time. Experimental results are shown in Table 4.
First, we find that the self-speaker dependency is
of significance in our model. This phenomenon is
in tune with previous works that capturing speaker-
specific features benefits emotion recognition in
multi-party conversation, where there are often
more than 5 interlocutors. By eliminating the gated
convolutional layer in the graph, our model falls by
0.55% on MELD and 0.49% on EmoryNLP. Dis-
course structures only offer contextual cues, not
all information from dependent utterances helps
emotion recognition. Therefore, this gated convolu-
tional layer is necessary to select informative cues
in our graph modeling. Further, the relational con-
volutional layer successfully aggregates contextual
and speaker-specific information from the neigh-
borhood of each utterance according to edge types
and makes the most contribution to our approach.

5.5 Case Study

For a comprehensive understanding of our pro-
posed method, we visualize its performance by
a case study, which is selected from the MELD test
dataset. As illustrated in Fig. 4, utterance (6) is too

short to carry rich semantic features for emotion
recognition. However, its dependent utterance (3)
offers an informative cue and helps make the right
prediction. From the ablation study, we draw the
conclusion that modeling the self-speaker depen-
dency benefits ERMC, but it is not always the case.
For instance, we observe two wrong predictions
for the adjacent utterances (11) and (12), which
are from the same speaker and have a discourse
relation. Modeling the self-speaker dependency
is hard to deal with the emotional shifts (i.e., the
emotion labels of two consecutive utterances from
the same speaker are different) (Poria et al., 2019a;
Shen et al., 2021). Roughly, our model commits
mistakes for 40% of similar cases, which calls for
further investigations.

6 Conclusion

In this paper, we investigate the importance of dis-
course structures in handling informative contex-
tual cues and speaker-specific features for ERMC.
We propose a discourse-aware graph neural net-
work and devise two graph convolutional layers
to aggregate normalized contextual and speaker-
specific information for each utterance in the graph.
Experimental results show that our proposed model
outperforms all the baselines on all multi-party con-
versation datasets. Furthermore, we apply exten-
sive analyses for the proposed model and have the
following findings. First, discourse structures are
more helpful for emotion recognition in multi-party
conversation than in two-party conversation. Sec-
ond, it is important to integrate discourse structures
into speaker modeling. Third, the gated mechanism
helps select more informative cues from dependent
utterances for ERMC.

In our future work, we would like to capture
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various speaker-specific features to deal with the
emotional shifts. Since our method focuses on
using explicit discourse structures, we also plan to
employ implicit methods to avoid error propagation
and address consequent issues.
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