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Abstract

Weakly supervised semantic parsing (WSP)
aims at training a parser via utterance-
denotation pairs. This task is challenging be-
cause it requires (1) searching consistent log-
ical forms in a huge space; and (2) dealing
with spurious logical forms. In this work, we
propose Learning from Mistakes (LFM), a sim-
ple yet effective learning framework for WSP.
LFM utilizes the mistakes made by a parser
during searching, i.e., generating logical forms
that do not execute to correct denotations,
for tackling the two challenges. In a nut-
shell, LFM additionally trains a parser using
utterance-logical form pairs created from mis-
takes, which can quickly bootstrap the parser
to search consistent logical forms. Also, it
can motivate the parser to learn the correct
mapping between utterances and logical forms,
thus dealing with the spuriousness of logical
forms. We evaluate LFM on WikiTableQues-
tions, WikiSQL, and TabFact in the WSP set-
ting. The parser trained with LFM outperforms
the previous state-of-the-art semantic parsing
approaches on the three datasets. Also, we find
that LFM can substantially reduce the need for
labeled data. Using only 10% of utterance-
denotation pairs, the parser achieves 84.2 de-
notation accuracy on WikiSQL, which is com-
petitive with the previous state-of-the-art ap-
proaches using 100% labeled data.

1 Introduction

Semantic parsing is the task of mapping a natu-
ral language utterance to a logical form that can
be executed against a knowledge base to obtain
a denotation. Much progress has been made in
this area, thanks to the emergence of datasets that
include a large number of utterance-logical form
pairs. However, collecting such pairs at scale is
generally expensive, because annotators must be
skilled at programming. By contrast, collecting
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Rank Nation Gold Silver Bronze

1 France 3 1 1

2 Ukraine 2 1 2

3 Turkey 2 0 1

4 Sweden 2 0 0

5 Iran 1 2 1

Utterance: Who won the most silver medals?

Denotation: Iran

Logical Form Consistent Spurious

(hop Nation (argmax Silver rows)) ✓

(hop Nation (argmax Rank rows)) ✓ ✓

(hop Nation (argmin Gold rows)) ✓ ✓

(hop Nation (first rows)) ✕

(hop Nation (argmin Silver rows)) ✕

Figure 1: An illustrative example of weakly supervised
semantic parsing.

utterance-denotation pairs is much cheaper, be-
cause it can be performed by non-experts. Hence, it
is tempting to train a semantic parser via utterance-
denotation pairs, framing a weakly supervised
semantic parsing problem (WSP) (Clarke et al.,
2010; Liang et al., 2013; Zhang et al., 2017).

Training a parser from denotations rather than
logical forms complicates training in two ways.
First, training a parser requires exploring the huge
space of logical forms to find those that execute
to correct denotations, which we call “consistent”
logical forms. This is a very difficult search prob-
lem due to the combinatorial nature of the search
space. Figure 1 presents five logical forms for an
utterance-denotation pair, among which the first
three are consistent and the rest are mistake logical
forms (they do not execute to the correct deno-
tation). Second, consistent logical forms can be
“spurious”. Spurious logical forms accidentally ex-
ecute to correct denotations, but they do not reflect
the meaning of utterances. For example, two of the
three consistent logical forms in Figure 1 are spuri-
ous, and only the first one is “correct”, reflecting
the utterance’s meaning. The presence of spurious
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logical forms severely hinders a parser from learn-
ing the correct mapping between utterances and
logical forms.

Existing approaches for WSP can be catego-
rized into static and dynamic, according to whether
they perform searching at training time. Static
approaches heuristically search consistent logical
forms offline (Krishnamurthy et al., 2017; Wang
et al., 2019a; Min et al., 2019). They assume that
there are correct logical forms in the search re-
sults, and they do not perform searching at train-
ing time. However, this assumption may not hold
when the spuriousness is severe. Considering a
binary denotation (TRUE or FALSE), 50% of syn-
tactically valid logical forms execute to the correct
denotation, regardless of their semantics. Dynamic
approaches do not make this assumption. They
iteratively search consistent logical forms using a
parser and train the parser with the search result
in turn (Guu et al., 2017; Liang et al., 2017, 2018;
Agarwal et al., 2019). But dynamic approaches
generally suffer from a cold-start problem, because
it is challenging for a randomly initialized parser to
search consistent logical forms in an exponentially
large space. Hence, most dynamic approaches re-
quire a set of pre-searched consistent logical forms
to bootstrap the training.

In this work, we propose Learning from
Mistakes (LFM for short), a simple yet effective
dynamic learning framework for WSP. The core
insight of LFM is that a parser will generate a huge
number of mistake logical forms during searching.
These mistake logical forms can be fully utilized
to overcome the cold-start and spuriousness prob-
lems. In a nutshell, every time a parser makes a
mistake, LFM synthesizes a faithful utterance for
the mistake logical form. Then, LFM trains the
parser with this utterance-logical form pair, so that
the parser is taught the correct meaning of the mis-
take logical form. In addition, LFM also trains the
parser like existing dynamic approaches, using con-
sistent logical forms with learning objectives such
as REINFORCE (Williams, 1992) and Maximum
Marginal Likelihood (MML).

LFM has two major advantages over existing dy-
namic approaches. First, LFM does not need to
pre-search consistent logical forms to warm start
the training. Instead, it creates utterance-logical
form pairs from mistakes on the fly to overcome
the cold-start problem. Second, LFM can facilitate
a parser learning the correct mapping between ut-

terances and logical forms. Since the synthesized
utterances are guaranteed to reflect the meaning of
logical forms, a parser can learn the correct map-
ping from the synthesized utterance-logical form
pairs. The idea of LFM is inspired by our human
beings. Every time we make a mistake, we try to
modify our knowledge to avoid suffering again in
the future for the same reason (Giordana and Serra,
2001). Similarly, every time a parser makes a mis-
take, we try to teach the parser the correct meaning
of the mistake logical form and help it avoid the
mistake in the next round of searching.

To demonstrate the effectiveness of LFM, we
conduct experiments on three challenging semantic
parsing datasets in the WSP setting. The neural
semantic parser trained with LFM achieves a de-
notation accuracy of 52.3 on WikiTableQuestions,
86.9 on WikiSQL, and 68.2 on TabFact, which all
surpass previous state-of-the-art approaches in the
same setting. Through a fine-grained analysis, we
show that LFM is effective in addressing the cold-
start and spuriousness problems, and LFM is more
effective than prior data augmentation techniques
for WSP. Also, we find that LFM can substantially
reduce the need for labeled data to train a good
parser. For example, the parser achieves an ac-
curacy of 84.2 on WikiSQL using only 10% of
utterance-denotation pairs, which already performs
on par with previous state-of-the-art approaches.

2 Related Work

2.1 Weakly Supervised Semantic Parsing

As mentioned in the previous section, prior ap-
proaches for WSP can be categorized into static
and dynamic. Static approaches, such as Krishna-
murthy et al. (2017), heuristically search consistent
logical forms offline and train a parser with the
MML objective. When there are too many consis-
tent logical forms for an utterance-denotation pair,
they only consider top K shortest logical forms
(typically K ≤ 100) and perform a beam search to
approximate the sum in MML. Wang et al. (2019a)
introduce an alignment model to distinguish be-
tween spurious and correct logical forms. The
alignment model is jointly optimized with a parser
via MML. Min et al. (2019) replace MML with a
discrete hard EM objective and observe improve-
ments on WikiSQL and some reading comprehen-
sion datasets.

Dynamic approaches iteratively search consis-
tent logical forms using a parser and optimize the
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parser via the search result in turn. For example,
Liang et al. (2013) and Berant et al. (2013) perform
a beam search on a parser at each training step to
search consistent logical forms, and they optimize
the parser with an approximated MML that sums
over consistent logical forms in the beam. Guu
et al. (2017) propose a randomized beam search
and a β-meritocratic update strategy to improve the
searching of consistent logical forms. Instead of
using MML, Liang et al. (2017) optimize a parser
with the REINFORCE algorithm (Williams, 1992).
They sample logical forms at each training step
to compute an unbiased estimate of the gradient.
Liang et al. (2018) leverage a memory buffer of
consistent logical forms to reduce the variance of
policy gradient estimate. Agarwal et al. (2019)
introduce an auxiliary reward function to provide
fine-grained feedback for dealing with spurious
logical forms. Our LFM framework also falls into
this dynamic category. Unlike the approaches in-
troduced above that primarily leverage consistent
logical forms for optimization, LFM fully utilizes
the mistakes made by a parser during searching to
address the cold-start and spuriousness problems.
Hence, LFM can be considered orthogonal to prior
dynamic approaches.

There is another line of work that tackles WSP
without logical forms (Neelakantan et al., 2017;
Mou et al., 2017; Herzig et al., 2020). Neelakan-
tan et al. (2017) propose a neural model that se-
quentially predicts symbolic operations over semi-
structured tables, and the model can be trained
end-to-end with utterance-denotation pairs. Herzig
et al. (2020) and Eisenschlos et al. (2020) pre-train
a language model for table understanding. They
show that the pre-trained model can be used to ad-
dress WSP with a simple cell selection module and
a set of differentiable aggregation operators.

2.2 Data Augmentation for Semantic Parsing

Our work also closely relates to the area of data
augmentation for semantic parsing, since LFM syn-
thesizes utterance-logical form pairs. Jia and Liang
(2016) induce a synchronous context-free gram-
mar (SCFG) (Chiang, 2005) from manually labeled
utterance-logical form pairs. They randomly sam-
ple new pairs from the SCFG and train a parser
using both labeled and sampled data, leading to sig-
nificant improvements on several fully supervised
semantic parsing tasks. Goldman et al. (2018) man-
ually induce an SCFG and pre-train a neural seman-

Semantic 
Parser

# Logical Form Consistent

𝑧1 (hop Nation (argmax Silver rows)) ✓

𝑧2 (hop Nation (argmax Rank rows)) ✓

𝑧3 (hop Nation (argmin Gold rows)) ✓

𝑧4 (hop Nation (first rows)) ✕

𝑧5 (hop Nation (argmin Silver rows)) ✕

𝑧1 (hop Nation (argmax Silver rows))

𝑧2 (hop Nation (argmax Rank rows))

𝑧3 (hop Nation (argmin Gold rows))

Consistent Logical Forms

ො𝑥4 Which nation is listed first?

𝑧4 (hop Nation (first rows))

Synthesized Utterance-Logical 
Form Pairs from Mistakes

ො𝑥5 Which nation has the least silver?

𝑧5 (hop Nation (argmin Silver rows))

𝓙𝒄

𝓙𝒆

Sample

(𝑥, 𝜔, 𝑦)

Text 
Generator

Figure 2: Visualization of a training step in LFM. The
input utterance is “Who won the most silver medals?”.

tic parser using data sampled from the SCFG. The
parser is then finetuned via utterance-denotation
pairs using MML. Similar ideas have also been
adopted to address the Text-to-SQL problem (Iyer
et al., 2017; Yu et al., 2018, 2021). Instead of using
SCFG, Guo et al. (2018), Zhong et al. (2020a), and
Wang et al. (2021) train a SQL-to-question neural
model via utterance-logical form pairs. They syn-
thesize more training data by randomly sampling
SQL queries and generating corresponding ques-
tions with the model. One shortcoming of the data
augmentation work above is that they need to care-
fully design logical form sampling procedures and
pre-define the amount of data to synthesize. It has
been found that over-extensive data augmentation
will cause a deep-learning model to overfit, leading
to even worse performance than that without data
augmentation (Shorten and Khoshgoftaar, 2019).

In LFM, the mistakes made by a parser serve as
the source for data augmentation, and therefore, we
do not need extra logical form sampling procedures.
Also, we do not need to pre-define the amount
of data to synthesize, because synthesis data are
created at each training step. As we will show in
Section 5.2, LFM is more effective than the other
data augmentation techniques in WSP.

3 Learning Framework

In this section, we formally define the task of WSP
and describe LFM in detail.

3.1 Preliminaries
Task Formulation Given a training set of N ex-
amples {(xi, ωi, yi)}Ni=1, where xi is an utterance,
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ωi is the knowledge base that xi is interested in
(e.g., the semi-structured table in Figure 1), and yi
is the denotation of xi, the goal of WSP is to learn
a parser (with parameter θ) that can map an unseen
utterance x to a logical form z, such that z executes
to the correct denotation y in the knowledge base
ω, i.e., JzKω = y. The parser defines a distribution
over logical forms conditioned on the given x and
ω: P (z|x, ω;θ).

Text Generator Suppose that we have access to
a text generator G(z, ω), which generates a faithful
utterance for a given logical form z and its knowl-
edge base ω. The text generator can be imple-
mented with either an SCFG or a neural network.

3.2 LFM: Learning from Mistakes
The learning objective J in LFM is made up of two
sub-objectives: Jc and Je.

J = Jc + γJe (1)

Like prior dynamic approaches (Guu et al., 2017;
Liang et al., 2017), Jc primarily leverages con-
sistent logical forms searched during training to
optimize a parser. Jc can be instantiated as MML
or REINFORCE. By contrast, Je leverages the
mistakes made by the parser to overcome the cold-
start problem and facilitate the parser learning the
correct mapping between utterances and logical
forms. γ is a hyper-parameter to blend the two
sub-objectives.

Figure 2 visualizes a training step in LFM. Given
a training example (x, ω, y), a set of K logical
forms Z = {zj}Kj=1 are sampled from a parser via
beam search or Monte Carlo sampling. Suppose
that among the K logical forms, only a subset of
them Zc are consistent (JzjKω = y, z1-z3 in Fig-
ure 2), and the remaining Ze = Z − Zc logical
forms are mistakes (JzjKω 6= y, z4-z5 in Figure 2).

If Jc is instantiated as MML, Jc is derived as
follows:

Jc(θ) = logP (y|x, ω) = log
∑

JzKω=y

P (z|x, ω;θ)

(2)

≈ log
∑
zj∈Zc

P (zj |x, ω;θ)

∇θJc ≈
∑
zj∈Zc

q(zj)∇θlogP (zj |x, ω;θ), (3)

where q(zj) =
P (zj |x, ω;θ)∑

zi∈Zc
P (zi|x, ω;θ)

.

If Jc is instantiated as REINFORCE, Jc is de-
rived as follows:

Jc(θ) = Ez∼P (·|x,ω;θ)R(z) (4)

∇θJc ≈
1

K

∑
zj∈Z

R(zj)∇θlogP (zj |x, ω;θ), (5)

where R(z) is a reward function. Following prior
REINFORCE-based WSP approaches (Liang et al.,
2017, 2018; Agarwal et al., 2019), R(z) is set to 1
if JzKw = y; otherwise 0. To this end, equation 5
can be re-written as follows:

∇θJc ≈
1

K

∑
zj∈Zc

∇θlogP (zj |x, ω;θ) (6)

It is clear from Equation 3 and 6 that Jc primar-
ily leverages consistent logical forms to optimize
a parser. However, at the early stage of training, a
randomly initialized parser hardly samples consis-
tent logical forms in an exponentially large space,
rendering a severe cold-start problem.

To overcome this problem, LFM fully utilizes
the large number of mistake logical forms gener-
ated by the parser and introduces an extra training
objective Je. Although a mistake logical form
zj ∈ Ze fails to execute to y and does not reflect
the meaning of x, we can leverage a text generator
G to generate an utterance x̂ = G(zj , ω), such that
zj reflects the meaning of x̂. By optimizing the
parser’s likelihood of generating zj given x̂ and ω,
we can bootstrap the parser and overcome the cold-
start problem. Also, we can motivate the parser to
learn the correct mapping between utterances and
logical forms. Formally, the objective Je is defined
as follows:

Je(θ) =
∑
zj∈Ze

logP (zj |G(zj , ω), ω;θ) (7)

∇θJe =
∑
zj∈Ze

∇θlogP (zj |G(zj , ω), ω;θ) (8)

Algorithm 1 summarizes the training procedure
of LFM. In each training step, LFM first searches
consistent logical forms for a given utterance-
denotation pair (Line 4). Then, it optimizes the
parser using consistent logical forms with objec-
tive Jc (Line 5). For the remaining mistake logical
forms, LFM synthesizes their corresponding utter-
ances and optimizes the parser with Je (Line 6-10).



2607

Algorithm 1: Learning from Mistakes
Input: training data {(xi, ωi, yi)}Ni=1

Output: final parameters θ of the parser
1 repeat
2 Get a batch B from training data;
3 for (x, ω, y) ∈ B do
4 Sample logical forms Z = Ze ∪ Ze from

P (z|x, ω, y;θ);
5 dθ ← dθ +∇θJc ; // Jc

6 for z ∈ Ze do
7 ẑ ← FixAndDiversify(z, ω);
8 x̂← GenerateUtterance(ẑ, ω);
9 dθ ← dθ + γ∇θJe ; // Je

10 end
11 end
12 Update θ using dθ;
13 until converge or early stop;

Fix Logical Form
z1 (hop Nation (filter_num_larger Gold “won” rows))
ẑ1 (hop Nation (filter_num_larger Gold “2.0” rows))

Diversify Logical Form
z2 (hop Gold (filter_in Nation “France” rows))
ẑ2 (hop Silver (filter_in Nation “Turkey” rows))

Table 1: Examples of fixing and diversifying logical
forms. zi is the original logical form, while ẑi is the
fixed or diversified logical form.

3.3 Fixing and Diversifying Logical Forms

At the early stage of training, mistake logical forms
are prone to violating semantic constraints. Con-
sider the logical form z1 in Table 1. The predicate
filter_num_larger expects a number as its second
argument, but a string “won” is given in z1, thus
violating the predicate’s semantic constraint. The
text generator cannot generate meaningful utter-
ances for such invalid logical forms. Hence, to
improve the utilization of mistakes, LFM tries to
pinpoint the source of violations and automatically
fixes them. For example, z1 is fixed by replacing

“won” with a randomly generated number “2.0”.
In addition, LFM attempts to enrich the diversity

of mistake logical forms by randomly replacing a
logical form’s entities with proper ones in its asso-
ciated knowledge base. For example, the logical
form ẑ2 in Table 1 is generated by (1) replacing the
column Gold in z2 with Silver which has the same
data type with Gold; and (2) replacing the value

“France” in z2 with another cell value (“Turkey”) in
the Nation column.

We perform this fixing and diversifying proce-
dures for mistake logical forms before synthesizing
their utterances (Line 7 in Algorithm 1).

WikiTQ WikiSQL TabFact

Logical Form 7 3 7
Binary Denotation 7 7 3
# Tables 2,108 24,241 16,573
# Examples 18,496 80,654 118,275

Train 11,321 56,355 92,283
Dev 2,831 8,421 12,792
Test 4,344 15,878 12,779

Table 2: Dataset statistics.

4 Experimental Setup

In this section, we present the experimental setup
for LFM, including datasets, implementations of
the semantic parser and text generator.

4.1 Dataset and Metric
We evaluate LFM on the three challenging seman-
tic parsing datasets in the WSP setting. Table 2
summarizes their statistics and characteristics.
WikiTableQuestions (Pasupat and Liang, 2015)
WikiTableQuestions (WikiTQ for short) contains
semi-structured tables extracted from Wikipedia
and crowdsourced question-answer (utterance-
denotation) pairs about the tables. The questions
involve a wide variety of operations such as com-
parisons, superlatives, and aggregations.
WikiSQL (Zhong et al., 2017) WikiSQL is to date
the largest dataset for the Text-to-SQL problem. It
consists of 24,241 tables extracted from Wikipedia
and 80,654 question-SQL pairs. To experiment in
the WSP setting, we obtain question-answer pairs
by executing each SQL query.
TabFact (Chen et al., 2020) TabFact is a large-scale
fact verification dataset with 118,275 examples.
Each example consists of an utterance, a Wikipedia
table, and a binary label indicating whether the
facts described in the utterance are supported by the
table. This verification problem can be formulated
as a semantic parsing problem: an utterance is
entailed if its corresponding logical form executes
to True on the table. Unlike WikiTQ and WikiSQL,
denotations in TabFact are binary, and thus, the
spuriousness is much more severe.

Metric Following prior WSP work (Liang et al.,
2013; Krishnamurthy et al., 2017), we evaluate the
performance of a semantic parser via Denotation
Accuracy: a predicted logical form is considered
correct if it executes to the correct denotation.

4.2 Neural Semantic Parser
We develop a simple neural semantic parser for
experiments. Given an utterance and a table, the
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parser jointly encodes them via an input encoder
and generates a logical form with a decoder.

Input Encoder The goal of an input encoder is
to obtain distributed representations for a given ut-
terance and table. To achieve the goal, the encoder
concatenates the utterance with all columns in the
table and jointly encodes them with BERT (Devlin
et al., 2019). Since a column may be composed of
multiple tokens, the encoder obtains its representa-
tion by taking the average of its tokens’ represen-
tations (Yin et al., 2020). In addition, following
prior WSP work (Krishnamurthy et al., 2017; Liang
et al., 2018; Wang et al., 2019b), we add binary in-
dicator features to specify (1) whether a token in
the utterance appears in the table and (2) whether
a column is mentioned in the utterance. These
features are mapped to learnable embeddings and
concatenated to the output of BERT.

Decoder We employ a grammar-based de-
coder (Yin and Neubig, 2017) with LSTM cells.
It interacts with three types of actions to generate a
logical form, namely, APPLYRULE, SELCOLUMN,
and SELVALUE. APPLYRULE selects a production
rule from the query language’s context-free gram-
mar (CFG) and applies it to the abstract syntax tree
of a logical form. SELCOLUMN employs a pointer
network (Vinyals et al., 2015) to select a column
from the table. SELVALUE employs two pointer
networks to select a span (beg token, end token)
from the utterance. Interested readers can refer
to (Yin and Neubig, 2017) for more details about
the grammar-based decoder.

Logical Form For WikiTQ and WikiSQL, we
use the domain-specific query language proposed
by Liang et al. (2018). The language is tailored
for answering compositional questions on semi-
structured tables. To support TabFact, we extend
the query language with the predicates designed
by Chen et al. (2020). The query language’s CFG is
available in Section A.2 of supplementary material.

4.3 Text Generator

We implement the text generator using SCFG.
An SCFG consists of a set of production rules:
N → 〈α,β〉, where N is a non-terminal, and α
and β are sequence of terminals and non-terminals.
Non-terminals in α and β are aligned. Due to the
absence of utterance-logical form pairs, we manu-
ally induced the SCFG by composing related utter-
ances for each predicate in the query language and

summarizing production rules accordingly. Since
α can follow the query language’s CFG, we only
need to summarize β. About 200 utterances were
composed to induce the SCFG. Here is a subset of
production rules in the SCFG, which are used to
synthesize the canonical utterances for the mistake
logical forms (z4 and z5) shown in Figure 2.

Root → 〈Project , Project〉
Project → 〈(hop Col Target) , “which Col Target”〉
Target → 〈Arg , Arg〉 | 〈Retrieve , Retrieve〉

Arg → 〈(argmin Col Filter) , “has the least Col Filter”〉
Retrieve → 〈(first Filter) , “is listed first Filter”〉

Filter → 〈rows , “”〉
Col → 〈nation , “nation”〉 | 〈silver , “silver”〉

The production rules of Col are determined by the
columns of a given table. Since most predicates are
shared among three datasets, we can re-use their
production rules in SCFG.

4.4 Implementation

We implement LFM and the semantic parser based
on Pytorch (Paszke et al., 2019), AllenNLP (Gard-
ner et al., 2018), and the Transformers library (Wolf
et al., 2020). We instantiate Jc in LFM as REIN-
FORCE.1 Sample size K is set to 5. γ is set to 1
initially and decays exponentially in each training
step. We use the uncased base version of BERT
in the parser. We use an AdamW (Loshchilov and
Hutter, 2019) optimizer with learning rate 2e-5 and
a linear decay scheduler to optimize the parameters
in BERT. All remaining parameters are optimized
with Adam (Kingma and Ba, 2015) using a con-
stant learning rate 5e-4. At inference time, follow-
ing prior WSP work (Liang et al., 2018), we apply
a beam search of size 5, and we do not use ensem-
ble. For all experiments, we report the averaged
denotation accuracy of 5 independent runs. Sec-
tion A.1 and A.3 in supplementary material provide
more details about the implementation and hyper-
parameters. Our source code are publicly avail-
able at https://github.com/JasperGuo/
LFM.

5 Experimental Result

5.1 Main Results

Table 3 and Table 4 compare the denotation accu-
racy of our parser (trained using LFM) with pre-
vious approaches on WikiTQ and WikiSQL. On

1We have tried to instantiate Jc as MML, but we did not
observe significant improvements over REINFORCE.

https://github.com/JasperGuo/LFM
https://github.com/JasperGuo/LFM
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Weakly Supervised Approach Dev Test

w/o Pre-trained LM
Pasupat and Liang (2015)† 37.0 37.1
Zhang et al. (2017)† 40.4 43.7
Krishnamurthy et al. (2017)‡ 42.7 43.3
Liang et al. (2018)† (MAPO) 42.3 43.1
Agarwal et al. (2019)† 43.2 44.1
Dasigi et al. (2019)† 42.1 43.9
Wang et al. (2019b)‡ (STRUCTALIGN) 43.7 44.5
w/ Pre-trained LM
Herzig et al. (2020)¶♦ - 48.8
Yin et al. (2020)†♦ (MAPO + BERT) 50.3 49.6
Yin et al. (2020)†♦ (MAPO + TaBERT) 52.2 51.8
Yu et al. (2021)‡♦ (STRUCTALIGN + ROBERTA) 50.7 50.9
Yu et al. (2021)‡♦ (STRUCTALIGN + GRAPPA) 51.9 52.7
LFM†♥ 53.6 ±0.4 52.3 ±0.2

Table 3: WikiTQ denotation accuracy. † indicates dy-
namic approaches, ‡ denotes static approaches, and ¶
denotes approaches without generating logical forms.
♥ and ♦ indicate approaches using base and large pre-
trained LM, respectively.

WikiTQ, our parser improves the state-of-the-art
(SOTA) from 51.9 to 53.6 on the development set,
and it performs on par with the SOTA on the test set
(52.3 vs. 52.7). On WikiSQL, our parser improves
the SOTA from 85.9 to 87.4 on the development
set, and from 84.7 to 86.9 on the test set. It is worth
noting that previous approaches with pre-trained
LM, such as STRUCTALIGN + GRAPPA (Yu et al.,
2021) and MAPO + TaBERT (Yin et al., 2020),
leveraged a wealth of external corpus to pre-train
larger LMs for table understanding. Although our
parser only uses the base version of BERT, it still
rivals or even outperforms them on both datasets.

Table 5 compares our parser with previous ap-
proaches on TabFact. Due to the binary denotations
of TabFact, previous approaches can be categorized
into two groups: Semantic Parsing and Classifica-
tion. While the former generates and executes a
logical form to verify the facts described in an ut-
terance, the latter sacrifices the interpretability and
directly verifies the facts via a neural classification
model. We can observe from the table that our
parser significantly surpasses previous semantic
parsing approaches, but there is still a large gap
compared with the SOTA in classification.

5.2 Analysis

Effect of Learning from Mistakes To obtain an
in-depth understanding of LFM, we train the parser
without utterance-logical form pairs created from
mistakes, which amounts to training with REIN-
FORCE. Table 6 presents the experimental results
on three datasets (w/o Mistake). We can observe
that the parser’s performance drops significantly,

Fully Supervised Approach Dev Test

w/ Pre-trained LM
He et al. (2019)♦ 89.5 88.7
Lyu et al. (2020)♦ 89.1 89.2
Lin et al. (2020)♦ 91.7 91.1
Hui et al. (2021)♦ 91.8 91.4

Weakly Supervised Approach Dev Test

w/o Pre-trained LM
Liang et al. (2018)† (MAPO) 71.8 72.4
Agarwal et al. (2019)† 74.9 74.8
Wang et al. (2019b)‡ (STRUCTALIGN) 79.4 79.3
w/ Pre-trained LM
Min et al. (2019)‡♦ 84.4 83.9
Herzig et al. (2020)¶♦ 85.1 83.6
Yu et al. (2021)‡♦ (STRUCTALIGN + ROBERTA) 82.3 82.3
Yu et al. (2021)‡♦ (STRUCTALIGN + GRAPPA) 85.9 84.7
Shao et al. (2021)‡♦ 85.9 85.6
LFM†♥ 87.4 ±0.2 86.9 ±0.1

Table 4: WikiSQL denotation accuracy of approaches
without execution-guided decoding.

Classification Approach Dev Test

w/ Pre-trained LM
Chen et al. (2020)♥ 66.1 65.1
Zhong et al. (2020b)♥ 71.8 71.7
Shi et al. (2020)♥ 72.5 72.3
Yang et al. (2020)♥ 74.9 74.4
Eisenschlos et al. (2020)♦ 81.0 81.0

Semantic Parsing Approach Dev Test

w/ Pre-trained LM
Chen et al. (2020)†♥ (NSM) 63.2 63.5
Chen et al. (2020)‡♥ (LPA-Ranking) 65.2 65.0
LFM†♥ 68.7 ±0.5 68.2 ±0.4

Table 5: TabFact denotation accuracy.

and it lags behind SOTA approaches presented in
Table 3 to Table 5 by a large margin. This result
shows that jointly training with utterance-logical
form pairs created from mistakes is crucial for LFM

to achieve the SOTA. Figure 3 presents the denota-
tion accuracy curves on the development set of Wik-
iTQ. It is clear that the parser trained using LFM

bootstraps and converges quickly, while the w/o
Mistake variant converges much slower and ends
up with lower accuracy.

To assess the effectiveness of LFM in dealing
with the spuriousness of logical forms, we translate
golden SQL queries in the development set of Wik-
iSQL to corresponding logical forms in our query
language, and we compare the parser’s predictions
with golden logical forms. For the w/o Mistake
variant, among the predictions that execute to cor-
rect denotations, 79.0% of them are semantically
equivalent to golden logical forms. This number is
improved from 79.0% to 87.3%, when the parser is
trained using LFM, indicating that LFM can facili-
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WikiTQ WikiSQL TabFact

LFM 53.6 87.4 68.7
w/o Mistake 47.2 (−6.4) 79.8 (−7.6) 65.1 (−3.6)
w/o Fixing 53.2 (−0.4) 87.0 (−0.4) 67.5 (−1.2)

Table 6: Ablation study results on development sets.
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Figure 3: Dev accuracy curves of LFM and the w/o Mis-
take variant on WikiTQ.

tate a parser learning the correct mapping between
utterances and logical forms.

Lastly, we ablate the fixing and diversifying
mechanism described in Section 3.3 to understand
its contribution in LFM. Experimental results are
shown in Table 6 (w/o Fixing), from which we can
observe that this mechanism consistently improves
the parser’s performance on three datasets.

Comparison with Data Augmentation We
compare LFM with other data augmentation tech-
niques for WSP. Prior work explores data augmen-
tation in two primary ways. (1) PRE-TRAIN. Gold-
man et al. (2018) first pre-train a parser with synthe-
sized utterance-logical form pairs and then finetune
the parser via utterance-denotation pairs. (2) JOINT-
TRAIN. Guo et al. (2018) obtain extra utterance-
denotation pairs from synthesized utterance-logical
form pairs, and they jointly train the parser with
original utterance-denotation pairs and the extra
ones. Both PRE-TRAIN and JOINT-TRAIN synthe-
size utterance-logical form pairs once in offline,
while LFM synthesizes pairs from mistakes in each
training step.

In experiments, we synthesize a various number
of utterance-logical form pairs using the SCFG
(from ×0.5 to ×4 size of training data in Wik-
iTQ).2 Figure 4 presents the experimental results,
from which we can make two main observations.
First, PRE-TRAIN improves the parser’s accuracy

2We randomly sample logical forms in a top-down manner
according to the query language’s CFG. Sampled logical forms
must execute to non-empty denotations. Utterances are then
synthesized for each logical form based on the SCFG.
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Figure 4: Dev accuracy on WikiTQ with a various num-
ber of synthesized utterance-logical form pairs.
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Figure 5: Dev accuracy of parsers trained with a vari-
ous number of utterance-denotation pairs.

from 47.2 (×0.0) to 50.5 (×1.5) on WikiTQ, when
×1.5 size of training data are synthesized for pre-
training, but it is still lower than that achieved
by LFM (53.6). Adding more synthesized data
cannot further improve the accuracy, and it even
hurts the performance, which is consistent with
the findings in (Shorten and Khoshgoftaar, 2019).
Second, JOINT-TRAIN cannot improve the parser’s
performance, and we observe that training becomes
very unstable when less than ×2.0 size of training
data are synthesized. These observations suggest
that LFM is more effective than the prior data aug-
mentation techniques for WSP.

We also compare a variant of LFM (LFM-
RANDOM) that randomly synthesizes utterance-
logical forms in each training step rather than syn-
thesizing from mistakes. LFM-RANDOM achieves
an accuracy of 53.0 on the development set of Wik-
iTQ, which is slightly worse than LFM. This result
suggests that the mistake logical forms generated
by a parser during searching serve as a good source
for data augmentation.

Data Efficiency Since LFM creates utterance-
logical form pairs from mistakes to facilitate train-
ing, we study whether it can reduce the need for
labeled data (i.e., utterance-denotation pairs).
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Figure 5 presents the parser’s accuracy achieved
by using various proportions of labeled data. On
WikiSQL, our parser achieves an accuracy of 84.5
using only 10% of labeled data, which already per-
forms on par with the previous SOTA (85.9). With
70% of labeled data, the parser performs compa-
rably with the one using all labeled data. Similar
observations can also be made on TabFact. The
parser trained with 30% of labeled data already
achieves the SOTA. Adding more labeled data does
not bring significant improvements. In terms of
WikiTQ, our parser achieves an accuracy of 42.3
using 10% of labeled data, surpassing STRUCTAL-
IGN+GRAPPA (Yu et al., 2021) in the same setting,
which achieves 40.7 accuracy. The parser trained
with 30% of labeled data performs on par with the
w/o Mistake variant (47.7 vs. 47.2). Also, with
70% of labeled data, the parser performs compa-
rably with the one using all labeled data. Hence,
LFM can substantially reduce the need for labeled
data to train a good semantic parser.

6 Conclusion & Future Work

In this work, we present LFM, a simple yet effec-
tive dynamic learning framework for WSP. LFM

fully utilizes the mistake logical forms generated
by a parser during searching to overcome the major
challenges in WSP. Experimental results on three
semantic parsing datasets show that LFM can ef-
fectively address the challenges, and LFM can sub-
stantially reduce the need for utterance-denotation
pairs to train a good parser.

This work also opens up several avenues for
future work. First, further improvements could
be made by using a more advanced text generator
in LFM. The generator is currently implemented
using a hand-crafted SCFG, which often gener-
ates unnatural utterances. Second, LFM can be
extended to other weakly supervised learning prob-
lems where synthesizing inputs (e.g., utterances)
from latent variables (e.g., logical forms) is trivial.
Consider the problem of learning to solve math
word problems via utterance-answer pairs. It is
trivial to synthesize an utterance from a math equa-
tion. Therefore, LFM could be applied to solve this
learning problem.
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A Supplementary Material

A.1 Implementation Details

Data Pre-processing Following Wang et al.
(2019b), we identify mentions of entities (includ-
ing table names, column names, and cell values) in
an utterance via a string-match based method. We
also identify numbers and dates in both utterances
and tables using the CoreNLP toolkit. The identi-
fication results are converted to indicator features
for the input encoder, as described in Section 4.2.

Sampling Logical Forms Since we instantiate
Jc as REINFORCE in experiments, we use the
Monte Carlo sampling method to sample logical
forms. During sampling, when the current action
is SELVALUE, the sampled span is constrained to
be mentions of cell values, numbers, or dates in
an utterance. In this way, the parser is more likely
to sample logical forms that meet the query lan-
guage’s semantic constraints. Such a constraint
has been widely used in prior WSP approaches to
search consistent logical forms (Wang et al., 2019b;
Min et al., 2019). Note that this constraint is not
used during training and testing.

A.2 Context-Free Grammar

We present the context-free grammar (CFG) of our
query language for each dataset. It is used in the
grammar-based decoder to generate a logical form.
All Col and V alue rules in the three CFGs are
determined by a given table and utterance.

WikiSQL

Root → Project | Meta

Project → (hop Col Target)

Meta → (count Col Target)

Meta → (max Col Target)

Meta → (min Col Target)

Meta → (sum Col Target)

Meta → (average Col Target)

Target → rows

Target → Filter

Target → (intersect Filter Filter)

Target → (intersect Filter (intersect Filter F ilter))

Target → (intersect Filter (intersect Filter

(intersect Filter Filter)))

Filter → (filter_in Col V alue rows)

Filter → (filter_number_less Col V alue rows)

Filter → (filter_number_larger Col V alue rows)

Filter → (filter_number_equals Col V alue rows)

Col → nation | silver

V alue → “franece” | “turkey”

TabFact

Root → CmpDate | CmpNumber | CmpString

| CmpPosition | BoolLogic

CmpDate → (date_greater Date Date)

CmpDate → (date_equals Date Date)

CmpDate → (date_not_equals Date Date)

CmpDate → (all_date_equals Col V alue Target)

CmpDate → (all_date_not_equals Col V alue Target)

CmpDate → (all_date_greater Col V alue Target)

CmpDate → (all_date_greater_equals Col V alue Target)

CmpDate → (all_date_less Col V alue Target)

CmpDate → (all_date_less_equals Col V alue Target)

Date → MinMax | Hop | V alue

CmpNumber → (num_greater Number Number)

CmpNumber → (num_equals Number Number)

CmpNumber → (num_not_equals Number Number)

CmpNumber → (all_num_equals Col V alue Target)

CmpNumber → (all_num_not_equals Col V alue Target)

CmpNumber → (all_num_greater Col V alue Target)

CmpNumber → (all_num_greater_equals Col V alue Target)

CmpNumber → (all_num_less Col V alue Target)

CmpNumber → (all_num_less_equals Col V alue Target)

Number → MinMax | Hop | Agg | CountRow | V alue

CmpString → (is_empty Col Target)

CmpString → (str_equals Hop V alue)

CmpString → (str_not_equals Hop V alue)

CmpString → (mode_equals Col V alue Target)

CmpString → (mode_not_equals Col V alue Target)

CmpString → (all_str_equals Col V alue Target)

CmpString → (all_str_not_equals Col V alue Target)

Hop → (hop Col Target)

MinMax → (max Col Target) | (min Col Target)

CountRow → (count_distinct Col Target)

CountRow → (count Target) | (half Target)

| (one_third Target)

Agg → (sum Col Target) | (average Col Target)

Agg → (diff Col Target Target)

Target → Arg | Filter | rows

Filter → (union Filter F ilter)

Filter → (intersect Filter Filter)

Filter → (filter_in Col V alue rows)

Filter → (filter_not_in Col V alue rows)

Filter → (filter_number_less Col V alue rows)

Filter → (filter_number_less_equals Col V alue rows)

Filter → (filter_number_larger Col V alue rows)

Filter → (filter_number_larger_equals Col V alue rows)

Filter → (filter_number_equals Col V alue rows)

Filter → (filter_date_less Col V alue rows)

Filter → (filter_date_less_equals Col V alue rows)

Filter → (filter_date_larger Col V alue rows)

Filter → (filter_date_larger_equals Col V alue rows)

Filter → (filter_date_equals Col V alue rows)

Arg → (argmax Col Filter)

Arg → (argmin Col Filter)

Col → nation | silver

V alue → “franece” | “turkey”
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WikiTableQuestions

Root → Project | Meta

Project → (hop Col Target)

Project → (mode Col Target)

Meta → (count Col Target)

Meta → (max Col Target)

Meta → (min Col Target)

Meta → (sum Col Target)

Meta → (average Col Target)

Meta → (diff Col Target Target)

Meta → (column_diff Col Col Target)

Target → Filter | Retrieve | Arg | Consecutive

Filter → rows

Filter → (union Filter F ilter)

Filter → (intersect Filter F ilter)

Filter → (filter_empty Col rows)

Filter → (filter_not_empty Col rows)

Filter → (filter_in Col V alue rows)

Filter → (filter_not_in Col V alue rows)

Filter → (filter_number_less Col V alue rows)

Filter → (filter_number_less_equals Col V alue rows)

Filter → (filter_number_larger Col V alue rows)

Filter → (filter_number_larger_equals Col V alue rows)

Filter → (filter_number_equals Col V alue rows)

Filter → (filter_date_less Col V alue rows)

Filter → (filter_date_less_equals Col V alue rows)

Filter → (filter_date_larger Col V alue rows)

Filter → (filter_date_larger_equals Col

V alue rows)

Filter → (filter_date_equals Col V alue rows)

Retrieve → (previous Filter)

Retrieve → (next Filter)

Retrieve → (first Filter)

Retrieve → (last Filter)

Arg → (argmax Col Filter)

Arg → (argmin Col Filter)

Consecutive → (consecutive Filter)

Col → nation | silver

V alue → “franece” | “turkey”

A.3 Hyper-Parameters
Table 7 lists the hyper-parameters of our neu-
ral semantic parser on three datasets. Most
hyper-parameters are shared among three datasets.
Experimental results reported in Section 5 are
averaged over 5 random runs using seeds
{100, 200, 300, 400, 500}. Experiments are con-
ducted on P40 GPUs with 24GB memory.
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Parameter WikiTQ WikiSQL TabFact

Input Encoder
Pre-train LM BERT-base BERT-base BERT-base
Indicator Feature Embedding Size 10 10 10
Input Encoder Output Size 256 256 256
Use Indicator Features for Synthesized Data 3 3 7
Grammar-based Decoder
Decoder Layer 1 1 1
Decoder RNN Cell LSTM LSTM LSTM
Decoder Input Dropout 0.5 0.5 0.5
Decoder Hidden Size 256 256 256
Production Rule Embedding Size 256 256 256
Non-Terminal Embedding Size 64 64 64
Decoder Attention Hidden Size 128 128 128
APPLYRULE Classifier Dropout 0.2 0.2 0.2
SELCOLUMN Pointer Network Hidden Size 128 128 128
SELCOLUMN Pointer Network Dropout 0.5 0.5 0.5
SELVALUE Pointer Network Hidden Size 128 128 128
SELVALUE Pointer Network Dropout 0.5 0.5 0.5
Maximum Decode Step 25 25 30
LFM
K 5 5 5
γ 1.0 1.0 1.0
γ decay rate 5e-5 5e-5 2e-4
Others
Epsilon Greedy Rate for Sampling 0.15 0.15 0.0
Batch Size 16 64 64
Learning Rate 5e-4 5e-4 5e-4
Pre-Train LM Learning Rate 2e-5 2e-5 2e-5
Pre-Train LM Learning Rate Freeze Step 3000 1500 0
Pre-Train LM Learning Rate Warmup Step 1500 1500 518
Entropy Regularization 7 7 3
Entropy Regularization Weight - - 0.1
Gradient Clip 5 5 5
Beam Size 5 5 5

Table 7: Hyper-Parameters of our neural semantic parser on three datasets.


