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Abstract

Entity Linking (EL) systems have achieved
impressive results on standard benchmarks,
mainly thanks to the contextualized represen-
tations provided by recent pretrained language
models. However, such systems still require
massive amounts of data – millions of labeled
examples – to perform at their best, with train-
ing times that often exceed several days, es-
pecially when limited computational resources
are available. In this paper, we look at how
Named Entity Recognition (NER) can be ex-
ploited to narrow the gap between EL sys-
tems trained on high and low amounts of la-
beled data. More specifically, we show how
and to what extent an EL system can ben-
efit from NER to enhance its entity repre-
sentations, improve candidate selection, select
more effective negative samples and enforce
hard and soft constraints on its output enti-
ties. We release our software – code and
model checkpoints – at https://github.

com/Babelscape/ner4el.

1 Introduction

Entity Linking (EL), also known as Named Entity
Disambiguation (NED), is the task of associating
an ambiguous textual mention with a named en-
tity in a knowledge base. Indeed, named entities
may have several surface forms – their full names,
partial names, aliases and abbreviations – making
EL a very challenging task in Natural Language
Processing (NLP). Over the years, EL systems
have achieved impressive results in standard bench-
marks, especially thanks to the advent of modern
language models (Devlin et al., 2019), and have
found innumerable applications in a wide range
of downstream tasks, including Information Ex-
traction (Lin et al., 2012; Guo et al., 2013; Rao
et al., 2013), Question Answering (Yin et al., 2016;
Dubey et al., 2018), knowledge base population (Ji
and Grishman, 2011) and recommender systems

(Musto et al., 2014; Di Noia and Ostuni, 2015;
De Gemmis et al., 2015), inter alia.

In general, EL systems are composed of two
main components: a candidate generation module
and a mention disambiguation module. The aim of
the former is to select from a knowledge base (e.g.
Wikipedia) a suitable subset of named entities that
can be associated with a given textual mention in an
input text. This set of candidates is then given to the
latter module whose objective is to choose and as-
sign the most appropriate entity to the mention. Re-
cent studies (Shahbazi et al., 2019; Broscheit, 2019;
Botha et al., 2020; Cao et al., 2021) have shown
that learning better representations of mentions and
entities is key to improving the two aforementioned
components and enabling state-of-the-art results.
However, one common issue with current EL ap-
proaches is that they require massive amounts of
training data – often millions of labeled items – in
order to perform at their best, making the develop-
ment of a high-performance EL system viable only
to a limited audience.

In this paper, we study whether it is possible
to narrow the performance gap between systems
trained on limited and large amounts of data. In
particular, we take a look at Named Entity Recogni-
tion (NER) – the task of identifying specific words
as belonging to predefined semantic types such
as Person, Location, Organization – and how this
task can be exploited to improve a strong Entity
Linking baseline in low-resource settings without
requiring any additional data. With this as our aim,
we introduce a fine-grained set of NER classes and
propose multiple approaches to the exploitation of
NER for EL, showing how a state-of-the-art model
can benefit from them. Our main contributions can
be summarized as follows:

• We introduce new fine-grained classes for
NER and use them to automatically label each
entity in Wikipedia;

https://github.com/Babelscape/ner4el
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• We show how such classes can easily be used
to integrate type information into the entity
representations of EL systems;

• We propose a NER-enhanced candidate gener-
ation module which decreases the size of the
candidate set while increasing recall;

• We present a NER-constrained decoding mod-
ule to discard unlikely outputs during mention
disambiguation;

• We demonstrate how NER-based negative
sampling helps a model produce more accu-
rate entity representations at training time;

• We assess the effectiveness of our contribu-
tions on multiple standard benchmarks for EL,
showing consistent improvements over strong
baseline systems.

We hope that our work will provide a stepping
stone for further studies on the interplay between
Entity Linking and Named Entity Recognition,
and encourage further studies on high-performance
EL systems for scenarios in which only a small
amount of labeled data is available. We release
our software – code and model checkpoints – at
https://github.com/Babelscape/ner4el.

2 Related Work

Entity Linking. Over the past few years, neural
approaches have attained strong results in EL, es-
pecially thanks to the advances in contextualized
word embedding and entity representation tech-
niques (Ganea and Hofmann, 2017; Le and Titov,
2018, 2019; Yang et al., 2019). While initial work
relied on static word embeddings such as word2vec
(Mikolov et al., 2013) and GloVe (Pennington et al.,
2014) to represent mentions and entities, recent
studies (Shahbazi et al., 2019; Broscheit, 2019;
Botha et al., 2020; Cao et al., 2021) have shown the
benefit of employing contextualized embeddings
from pretrained language models, such as ELMo
(Peters et al., 2018), BERT (Devlin et al., 2019) and
BART (Lewis et al., 2020). Notably, researchers
are tackling EL with a variety of very different ap-
proaches. For example, Botha et al. (2020) put
forward a dual-encoder architecture, composed of
two separate encoders for mentions and entities,
that maximizes the similarity between a mention
embedding and its corresponding entity embedding,
whereas Cao et al. (2021) proposed GENRE which,

given a mention in context, generates its unique
name (e.g. the title of its corresponding Wikipedia
page) in an autoregressive fashion. Nevertheless,
recently-proposed systems, in order to achieve high
performance, require training on millions of sam-
ples – GENRE is trained on KILT (Petroni et al.,
2021) which is made up of 9M training instances
– and this often means days-long training times.
Currently, in EL a researcher with a limited hard-
ware budget must therefore decide between train-
ing on lower amounts of data at the cost of drastic
drops in performance – the performance of GENRE
drops by 8.8 points in F1 when trained only on the
AIDA-YAGO-CoNLL training set – and long train-
ing times. In this paper, instead, we show that the
clever use of NER for EL can significantly narrow
the gap between systems trained on thousands as
opposed to millions of instances, while retaining
the benefits of shorter training times.

Enriching Entity Linking. While the first suc-
cessful approaches to EL often relied on non-neural
graph-based techniques (Hoffart et al., 2011; Rao
et al., 2013; Moro et al., 2014), there is a growing
body of work that studies how to enrich neural mod-
els by taking advantage of relational knowledge
from semantic networks such as Wikidata, YAGO
(Suchanek et al., 2007), WordNet (Miller, 1995)
and BabelNet (Navigli and Ponzetto, 2012; Navigli
et al., 2021), inter alia. For example, Raiman and
Raiman (2018) proposed DeepType which relies on
Wikidata to integrate symbolic knowledge into the
reasoning process of a neural network. In particu-
lar, they make use of a type system to constrain the
behavior of an entity prediction model with respect
to the symbolic structure defined by types. Another
notable work in this direction is Bootleg (Orr et al.,
2020), a system which uses the edges defined in
Wikidata and YAGO to encode entity relations and
entity types as input embeddings to a Transformer-
based architecture. However, while there is clear
evidence that integrating relational knowledge into
EL approaches is beneficial, the sparsity of such
relations may make them an unappealing option
for low-data scenarios.

Named Entity Recognition. Similarly to almost
any other area in NLP, Named Entity Recognition
systems have benefited greatly from the advent of
pretrained language models (Virtanen et al., 2019;
Mueller et al., 2020; Liang et al., 2020; Souza et al.,
2020). Nowadays, their performance makes such

https://github.com/Babelscape/ner4el
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systems extremely compelling options in down-
stream tasks such as EL. Indeed, thanks to its
coarse-grained classes, NER is an obvious way to
cluster entities and, therefore, to reduce the intrin-
sic sparsity of the Entity Linking task. However,
there is a surprisingly low number of studies on the
effectiveness of enriching EL models with NER
information. Most of the contributions in this di-
rection use NER as a preprocessing step before EL,
or learn directly to perform the tasks jointly (Luo
et al., 2015; Nguyen et al., 2016; Kolitsas et al.,
2018; Martins et al., 2019; Broscheit, 2019).

In our work, we take the best of both worlds,
and not only do we propose other ways to exploit
NER for EL, but we also show that individual NER
approaches can be combined to further improve a
strong EL model.

3 NER for EL

In this Section, we take inspiration from what has
already been shown to work and propose several
new methods for exploiting NER for EL. To this
end, we first describe a simple yet strong baseline
into which we will plug our NER-focused contri-
butions (Section 3.1). In particular, we introduce a
set of finer-grained NER classes (Section 3.2) and
use them to inject NER information into entity rep-
resentations (Section 3.3), devise a NER-enhanced
candidate generation module (Section 3.4), better
select negative samples during training (Section
3.5), and introduce a NER-constrained decoding
technique (Section 3.6).

3.1 Baseline System

Our baseline system for EL is composed of two
main modules: a candidate generation module and
a mention disambiguation module. Given an input
sentence with pre-identified mentions, the former
of the two modules is responsible for i) retrieving
a set of candidate entities of any given mention
from an alias table, and ii) reducing the size of
this set by taking the top-k candidates according to
their frequency in Wikipedia. The latter module is,
instead, a neural architecture which features two
Transformer-based encoders – one to represent a
mention in context, the other to represent candidate
entities – whose output states are used to assign the
most appropriate entity to the considered mention.

More formally, let φ and ψ be the mention
and entity encoders of the disambiguation module.
The disambiguation module uses φ and ψ to com-

pute the cosine similarity score of each mention-
candidate pair (m, ci) for each i ∈ {1, . . . , k} and
selects the highest-scoring entity ε as follows:

ε = argmax
i∈{1,...,k}

φ(m)Tψ(ci)

‖φ(m)‖‖ψ(ci)‖
(1)

Following Botha et al. (2020), the mention encoder
φ takes as input a sequence of tokens in which the
start and the end of the mention m is identified by
special tokens ([E] and [/E]) and surrounded by left
and right contexts of at most 64 tokens, whereas
the entity encoder ψ models each entity by taking
as input the first 128 tokens of the corresponding
Wikipedia article.

3.2 Fine-Grained Classes for NER

In its standard formulation, NER distinguishes be-
tween four classes of entities: Person (PER), Lo-
cation (LOC), Organization (ORG), and Miscella-
neous (MISC). Although NER systems that use
these four classes have been found to be benefi-
cial in downstream tasks, we argue that they might
be too coarse-grained and, at the same time, not
provide a sufficiently exhaustive coverage to also
benefit EL, as many different entities would fall
within the same MISC class.

For these reasons, we introduce a new set of finer-
grained NER classes, namely, Person (PER), Loca-
tion (LOC), Organization (ORG), Animal (ANIM),
Biology (BIO), Celestial Body (CEL), Disease
(DIS), Event (EVE), Food (FOOD), Instrument
(INST), Media (MEDIA), Monetary (MON), Num-
ber (NUM), Physical Phenomenon (PHYS), Plant
(PLANT), Supernatural (SUPER), Time (TIME) and
Vehicle (VEHI).

We design our set of classes starting from the 18
fine-grained classes used for OntoNotes 5.0 (Prad-
han et al., 2012), splitting and merging them to bet-
ter fit the EL task. For example, we split the PROD-
UCT class of OntoNotes into three separate classes,
namely FOOD, INST and VEHI, and merge the
QUANTITY, ORDINAL, CARDINAL and PERCENT

classes of OntoNotes into a single NUM class. We
provide more details about how fine-grained NER
classes are compared with the ones in OntoNotes
in Appendix B.

At this stage, in order to use the newly intro-
duced NER classes, we label each Wikipedia entity
with one of them by taking advantage of Word-
Net, a manually-created network of synsets, and
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NER Tag NER Class # Wikipedia
articles

PER Person 1,886K
ORG Organization 439K
LOC Location 1,228K
ANIM Animal 330K
BIO Biology 16K
CEL Celestial Body 13K
DIS Disease 9K
EVE Event 249K
FOOD Food 15K
INST Instrument 52K
MEDIA Media 703K
MON Monetary 2K
NUM Number 1K
PHY Physical Phen. 2K
PLANT Plant 51K
SUPER Supernatural 6K
TIME Time 9K
VEHI Vehicle 78K

Total — 5,089K

Table 1: Our new set of finer-grained classes for NER
and the number of Wikipedia articles, and therefore en-
tities, that we map to each class.

BabelNet1, which provides a high-quality mapping
between WordNet concepts and Wikipedia pages.
In particular, we start by selecting and manually an-
notating a seed set of the 200 highest-level nominal
concepts from the WordNet hypernymy taxonomy.
Then, we expand this gold seed set using a breadth-
first search algorithm to gradually include concepts
that are linked to the seed set through hyponymy
edges, thus creating a silver seed set of around 40K
concepts. We repeat this process, starting from the
newly created silver seed set to assign a NER class
to each concept in the BabelNet graph, which also
includes the concepts of WordNet. Finally, since
most concepts in BabelNet are linked to Wikipedia
pages, we now have a situation where each entity in
Wikipedia is labeled with one of our NER classes.

Table 1 provides an overview of the number of
Wikipedia articles for each NER class; we release
this mapping together with our software to encour-
age the use of these classes not only in EL, but
also in other tasks. We used BabelNet 5.0, which
includes the November 2020 dump of the English
Wikipedia.

1https://babelnet.org

3.3 NER-Enhanced Entity Representation

In the baseline system we presented in Section 3.1
for EL, the aim of the mention encoder φ is to
produce a dense mention representation that is as
similar as possible to the representation produced
by the entity encoder ψ for its most appropriate
entity. The better and richer the representations
for the candidate entities are, the easier it will be
for the system to disambiguate the corresponding
mentions. One way to enrich the representation of
each candidate entity is to make the entity encoder
aware of class information. In particular, together
with the textual description of an entity, we propose
also providing the NER class as an additional input
to the entity encoder. More specifically, we prepend
the NER tag of a Wikipedia entity to its textual
description and feed this enhanced string to the
entity encoder. Not only does this feature help the
entity encoder to better distinguish between entities
that belong to different NER classes, but it also
leads the mention encoder to consider such classes
indirectly when producing the dense representation
of a mention.

3.4 NER-Enhanced Candidate Generation

In the candidate generation step, the aim is to se-
lect a suitable set of candidates for each mention
in context. The desired properties for such a set of
candidates are high recall – target entities should
as frequently as possible be within the correspond-
ing candidate sets – but also a small number of
candidates to choose from, so as to make the dis-
ambiguation step as easy as possible. However,
the majority of mentions tends to have dozens of
candidates – the most common mentions also be-
ing the most ambiguous, following the Zipf’s law –
and, therefore, in order to satisfy the second desired
property, several EL systems set an upper bound to
the size of the candidate set, in this way hampering
candidate recall. Moreover, selecting this upper
bound adds another layer of complexity to finding
the best trade-off between recall and size.

In this Section, instead, we propose a strategy for
considerably decreasing the size of the candidate
set while also increasing its recall. Specifically,
we train and employ a NER classifier to predict
the NER class of an input mention in context, and
then discard all the candidates whose class is differ-
ent from the predicted one. For example, consider
the sentence in Figure 1, where the mention Tesla
would normally have a total of 18 candidate enti-

https://babelnet.org
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ties to choose from. If we limited the candidates
to the 10 most popular entities, then the correct
entity Tesla (band) would be left out, making it im-
possible for the system to disambiguate the input
correctly. Instead, thanks to our proposed strategy,
if the NER classifier predicts the correct NER class,
namely ORG, all the candidates that do not corre-
spond to organizations will be discarded from the
candidate set. In our example, as we can see in
Figure 1, not only does our NER-filtered candidate
set include the target entity, but it is also consider-
ably smaller (4 candidates instead of 18). Our NER
classifier is a BERT-based model, which takes as
input a mention in context and outputs one of the
18 classes introduced in Section 3.2.

3.5 NER-based Negative Sampling

Our baseline system learns to model the represen-
tation of a mention by comparing it with the repre-
sentations of the corresponding candidate entities,
both correct and wrong ones. However, some men-
tions are unambiguous (i.e., they have only one
possible candidate entity), leading to sub-optimal
learning. One common way to overcome this prob-
lem is to add negative samples. In EL, negative
samples are simply entities added to the candidate
set of a mention with the aim of letting the model
learn more accurate mention representations which
are “semantically” near to the representations of
the target entities and far from the ones of the neg-
ative samples (our baseline system already makes
use of them).

Although adding negative samples indiscrimi-
nately has already been proven to be beneficial for
EL, we propose a more refined approach in which
we select specific negative samples according to
their NER class. In particular, given a mention, its
target entity and its NER class c, we enlarge the
candidate set at training time by adding a number
of negative samples belonging to the same class
c. The main motivation for using this NER-based
negative sampling strategy is to make the training
process more challenging and further stress the
system to produce better representations. Indeed,
the textual descriptions of entities belonging to the
same NER class are often similar and follow recur-
ring patterns – e.g., in Wikipedia a person is usually
described by their date, place of birth and occupa-
tion – and therefore adding NER-based negative
sample encourages the underlying neural network
to rely on entity-specific features.

Figure 1: Example of the NER-enhanced Candidate
Generation module. The Tesla mention has 18 candi-
dates, and including only the 10 most popular entities
in the candidate set, the target entity Tesla (band) would
be not included. Applying our strategy, instead: i) the
correct entity is included and, ii) the dimension of the
resulting set is significantly smaller.

3.6 NER-Constrained Decoding

So far, we have introduced a few strategies to en-
hance an EL baseline by exploiting NER at the
input level or during the training process. In this
Section, instead, we propose a strategy that uses
NER to improve our EL baseline at the output level
by enforcing “soft” and “hard” constraints at infer-
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ence time. Our intuition is that, for very ambiguous
mentions, an EL system may be biased towards
very frequent entities, independently of the context
such mentions appear in. In order to mitigate this
issue, we propose constraining our EL system to
output an entity whose NER class is consistent with
the prediction(s) of a NER classifier for the same
input mention. In our experiments, we distinguish
between “hard” and “soft” constraints, with the dif-
ference being that in the former we force the entity
predicted by the EL system to be exactly the same
as that predicted by the NER classifier, whereas in
the latter we force the entity to belong to one of
the top-k predictions of the NER classifier. More
details are provided in Appendix C.

We also analyze two alternatives for building
the NER classifier: i) training a separate model as
we do in Section 3.4, or ii) training the EL system
not only to assign the most appropriate entity to
a mention in context but also to provide its NER
class. The advantage of the second approach is
that it requires just a single model and, therefore,
fewer computational resources. However, perform-
ing both tasks jointly results in worse scores in
NER labeling, which, in turn, decreases the bene-
fits of our NER-constrained decoding strategy for
the overall EL system (see Appendix C).

3.7 Combinations of NER Contributions

Some of our contributions can be combined to
bring further improvements. For example, it is pos-
sible both to enhance entity representations (Sec-
tion 3.3) and also to apply our NER-constrained
decoding strategy (Section 3.6). Similarly, it is pos-
sible to add NER-based negative samples during
training to let the model produce more accurate
representations (Section 3.5) and also apply our
decoding strategy; or even to combine all three of
the above-mentioned contributions. One interest-
ing combination consists in first removing all the
candidates whose NER class is different from the
one predicted for the input mention (Section 3.4),
and then increasing the size of the candidate set by
adding negative samples of the same class (Section
3.5), making the training process more challenging.

4 Experiments

In this Section, we describe our experimental setup
(Section 4.1), the datasets we use to train and eval-
uate our NER-based approaches (Section 4.2), the
results of each contribution (Section 4.3), followed

by an analysis of the benefits of NER for EL (Sec-
tion 4.4).

4.1 Experimental Setup
We implemented our NER classifier, our baseline
EL model, and our NER-based enhancements for
EL with PyTorch, using the Transformers library
(Wolf et al., 2020) to load and fine-tune the weights
of BERT-large-uncased. We trained each model
configuration for 30 epochs, adopting an early stop-
ping strategy with a patience value of 5, with Adam
(Kingma and Ba, 2015) and a learning rate of 10−5,
as standard when fine-tuning the weights of a pre-
trained language model. We use the same NER
classifier for all experiments except for those that
involve jointly learning NER and EL. Our NER
classifier achieves 97.1% in terms of accuracy on
the AIDA-YAGO-CoNLL test set. In the remain-
der of this Section, we report the results of the best
model checkpoints according to their F1 score on
the validation split of the AIDA-YAGO-CoNLL
dataset computed at the end of each training epoch.
We provide further details about the hyperparame-
ter values, training times and hardware infrastruc-
ture in Appendix A.

4.2 Datasets
In the following, we describe the datasets we use to
train, validate and test our contributions. We stress
that we train each of our model configurations on
only the AIDA-YAGO-CoNLL training split, i.e.,
on only 18K labeled instances as opposed to the
millions on which current state-of-the-art systems
are trained, showing the benefits of NER when a
scarce amount of labeled instances are available.
While there is a growing interest in multilingual
datasets for both NER (Tedeschi et al., 2021) and
EL (Botha et al., 2020), in this work we focus only
on the English language.

AIDA-YAGO-CoNLL (Hoffart et al., 2011) is
one of the largest manually annotated EL datasets
for English as it contains 388 articles with 27,817
linkable mentions corresponding to the named enti-
ties annotated for the original CoNLL-2003 entity
recognition task (Tjong Kim Sang and De Meul-
der, 2003) This dataset comprises a number of
newswire articles taken from the Reuters Corpus.

MSNBC, AQUAINT and ACE2004 are smaller
evaluation sets, cleaned and updated by Guo and
Barbosa (2017). MSNBC consists of 20 news arti-
cles from 10 different topics (two articles per topic)
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System training AIDA
instances accuracy

GENRE 18K 88.6
Our EL baseline 18K 88.8
Our EL baseline + NER 18K 92.5

GENRE 9000K 93.3

Table 2: The first two rows show the InKB accuracy
of our baseline system and GENRE trained, validated
and tested on the AIDA-YAGO-CoNLL (in-domain set-
ting). The last row shows the in-domain accuracy of
GENRE when pretrained on KILT which is made up
of 9 million training instances. Our NER-enhanced EL
system is almost able to bridge the gap in performance
when trained on only 18 thousand instances.

Model AIDA

Our EL baseline 88.8
w/ NER-enhanced Representations (NER-R) 89.3
w/ NER-based Negative Sampling (NER-NS) 89.6
w/ NER-enhanced Candidate Generation (NER-CG) 89.4
w/ NER-constrained Decoding (NER-CD) 92.2
w/ NER-R + NER-NS 89.7
w/ NER-R + NER-CD 92.3
w/ NER-NS + NER-CG 90.0
w/ NER-NS + NER-CD 92.4
w/ NER-R + NER-NS + NER-CD 92.5

Table 3: Accuracy of our proposed NER-based contri-
butions and their combinations on the AIDA-YAGO-
CoNLL test set. Each contribution improves the per-
formance of the baseline, and two or more NER-based
approaches can be combined to further improve the re-
sults.

and 656 linkable mentions. AQUAINT is made up
of 50 documents and 727 linkable mentions from
the Xinhua News Service, the New York Times and
the Associated Press. Finally, ACE2004 features a
set of 35 news articles and 257 linkable mentions.

WNED-WIKI and WNED-CWEB are larger,
but automatically extracted, evaluation sets for
EL. They were built from the ClueWeb and
Wikipedia corpora by Guo and Barbosa (2017) and
Gabrilovich et al. (2013). WNED-WIKI, or sim-
ply WIKI, consists of 320 documents and 11,154
mentions, while WNED-CWEB, or simply CWEB,
consists of 320 documents and 6,821 mentions.

4.3 Results

In what follows, we first show the overall results
of our NER-enriched approaches for EL on an in-

domain evaluation, and then we focus on the indi-
vidual benefits of each contribution. Finally, we
show that such contributions are robust and benefi-
cial in out-of-domain evaluations.

NER for EL. As can be seen in Table 2, when
trained on only the 18K instances of the AIDA-
YAGO-CoNLL training split, our baseline EL sys-
tem obtains results that are on par – 88.8% against
88.6% in accuracy on the test split of AIDA-YAGO-
CoNLL – with those of GENRE (Cao et al., 2021)
which is, on average, the current best-performing
system across the datasets described in Section 4.2.
Table 2 also shows that GENRE benefits greatly
from drastically increasing the size of the training
set from 18K to 9000K labeled instances (Petroni
et al., 2021), gaining almost 5 points in accuracy.
As we argued in Section 2, this improvement comes
at the cost of much longer training times and/or
more expensive hardware. However, if we put
together our NER-focused contributions, they al-
low our baseline EL model to significantly narrow
this gap, improving accuracy on the AIDA-YAGO-
CoNLL test set by almost 4 points, while still using
the original small training set with only 18K la-
beled instances.

What contributes to these results? One may
wonder what the most important contributions are
among the NER-focused approaches we propose.
Table 3 reports the results of each of the contribu-
tions we described in Sections 3.3-3.7. As one can
see, even the smaller contribution, i.e., enriching
the representations of an entity by including its
NER class (see Section 3.3), provides an improve-
ment of 0.5 points in accuracy, while the most ben-
eficial individual contribution is our NER-based
constrained decoding strategy (Section 3.6), which
provides an improvement of 3.6 points in accu-
racy. Moreover, we also observe that several of
our contributions are complementary, in that their
combinations bring further improvements, with the
best combination attaining an accuracy of 92.5%
on the test set of AIDA-YAGO-CoNLL.

Out-of-domain results. Finally, Table 4 shows
that our NER-focused contributions bring bene-
fits on out-of-domain evaluations too. Similarly
to what we observed in the in-domain setting,
our individual contributions consistently improve
the results across popular out-of-domain test sets,
namely, MSNBC, AQUAINT, ACE2004, CWEB
and WIKI. Moreover, the combination of two or
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Model MSNBC AQUAINT ACE2004 CWEB WIKI Avg.

Our EL baseline 86.9 61.8 89.9 65.7 58.5 72.6
w/ NER-enhanced Representation (NER-R) 86.9 62.2 89.9 66.1 59.0 72.8
w/ NER-based Negative Sampling (NER-NS) 87.0 62.4 90.0 66.5 59.2 73.0
w/ NER-enhanced Candidate Gen. (NER-CG) 87.0 62.3 89.9 66.4 59.2 73.0
w/ NER-Constrained Decoding (NER-CD) 89.2 68.2 91.2 68.1 63.8 76.1
w/ NER-R + NER-NS 87.0 62.5 90.0 66.3 59.5 73.1
w/ NER-R + NER-CD 88.7 69.2 91.2 68.3 63.5 76.2
w/ NER-NS + NER-CG 87.8 65.4 90.2 66.8 60.5 74.1
w/ NER-NS + NER-CD 89.1 69.2 91.2 68.4 63.8 76.3
w/ NER-R + NER-NS + NER-CD 89.2 69.5 91.3 68.5 64.0 76.5

Table 4: InKB accuracy of our EL baseline system and of the NER-based contributions on the out-of-domain test
sets of MSNBC, AQUAINT, ACE2004, WNED-CWEB and WNED-WIKI.

Ablation – standard NER classes AIDA

Our EL baseline 88.8
w/ NER-enhanced Representation (NER-R) 89.0
w/ NER-enhanced Candidate Gen. (NER-CG) 89.1
w/ NER-based Negative Sampling (NER-NS) 89.1
w/ NER-Constrained Decoding (NER-CD) 90.7

Table 5: Results of our NER contributions on the
AIDA-YAGO-CoNLL test set when using the four stan-
dard NER classes, i.e., PERSON, LOCATION, ORGANI-
ZATION and MISCELLANEOUS.

more NER-based approaches brings further im-
provements, totaling a net gain of 3.9% of absolute
improvement in average accuracy (or a 14% re-
duction in error rate) with respect to our already
competitive EL baseline. While our main objec-
tive is not to propose a state-of-the-art model for
EL, we observe that the application of NER is par-
ticularly beneficial on ACE2004, where our NER-
enhanced EL system attains state-of-the-art results
– 91.3% in accuracy compared to 91.2% of Fang
et al. (2019) – trained only on the 18K sentences
of AIDA-YAGO-CoNLL.

4.4 Analysis
One could argue that our NER-based contributions
could still be effective with the four standard NER
classes, i.e., Person, Organization, Location and
Miscellaneous. However, as we can see from Table
5, using the standard NER classes greatly reduces
the benefits of our NER-based contributions, espe-
cially due to the fact that the Miscellaneous class
conflates several heterogeneous entity types into a
single cluster.

In Table 6, instead, we report the per-class accu-
racy of our best system compared to our baseline,
showing where our NER-based contributions bring

NER class Baseline +NER ∆

PER 95.8 96.5 +0.7
ORG 81.7 89.3 +7.6
LOC 93.4 94.3 +0.9
ANIM 66.7 100.0 +33.3
EVE 42.4 51.8 +9.4
FOOD 0.0 66.7 +66.7
INST 100.0 100.0 +0.0
MEDIA 90.0 95.0 +5.0
MON 100.0 100.0 +0.0
NUM 100.0 100.0 +0.0
PLANT 80.0 80.0 +0.0
SUPER 64.7 70.6 +5.9
TIME 60.0 80.0 +20.0
VEHI 86.7 100.0 +13.3

Table 6: Per-class accuracy of the entities in the AIDA-
YAGO-CoNLL test set. Our NER-based contributions
increase the performance of the baseline system on
each entity class, especially the most difficult ones.

more improvements. In general, our contributions
positively affect each class, in particular ANIM

(+33.3% in accuracy), FOOD (+66.7%) and TIME

(+20.0%), i.e., our contributions help to correctly
classify instances that are more difficult or rare.

Finally, in Table 7 we provide a qualitative look
at a few examples in which our NER-based contri-
butions aid the EL system in choosing the correct
named entity.

5 Conclusion and Future Work

In recent years, Entity Linking systems based on
contextualized embeddings from pretrained lan-
guage models have achieved unprecedented results.
However, such systems require training on millions
of labeled samples, making them practically inac-
cessible to broad audiences and users and severely
hampering the development of a high-performance
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Sentence NER class Prediction

Japan then laid siege to the Syrian penalty area for most of the game but rarely breached the Syrian
defence.

ORG
Baseline: Syria
+NER: Syria national football team

“You will not win the war of the Polish beer market with imported international brands", van Boxmeer
said, adding that Heineken would remain an up-market import in Poland. FOOD

Baseline: Heineken N.V.
+NER: Heineken

Zieleniec led calls for the party and its leadership to listen to more diverse opinions, a thinly-veiled
criticism of Klaus who has spearheaded the country’s post-Communist economic reforms. TIME

Baseline:: Democratic Left Alliance
+NER: Post-communism

If successful the changes could get incorporated into future Mars missions Spirit and Opportunity were
also fitted with a new navigation system that allows them to think several steps ahead. CEL

Baseline:: Mars Pathfinder
+NER: Mars

The five breeds credited with the most incidents were chow chows, Rottweilers, German shepherds,
cocker spaniels and Dalmatians. ANIM

Baseline:: Dalmatian Action
+NER: Dalmatian (dog)

Table 7: Examples of sentences where the NER contributions help avoid errors. “Baseline” and “+NER” stand for
the baseline system and the NER-enhanced best performing system, respectively.

EL system. In this paper, instead, we presented
various NER-based strategies which allow systems
trained on limited amounts of data to narrow the
performance gap with those systems trained on
massive training corpora. To this end, we first in-
troduced a new fine-grained set of NER classes to
better cluster entities and then used these classes to
enhance a strong EL baseline with i) NER-enriched
entity representations, ii) NER-enhanced candidate
selection, iii) NER-based negative sampling, and
iv) NER-constrained decoding. Our experiments
show that the integration of NER information can
aid an EL system trained on less than 20K instances
in narrowing the gap with EL systems trained on
millions of samples.

Over the past few years, the field of NER has wit-
nessed continuous growth, with many researchers
studying more complex forms of NER, including
nested and structured NER (Finkel and Manning,
2009; Ju et al., 2018; Straková et al., 2019; Qian
et al., 2020). Although we focused on the bene-
fits of traditional NER in EL, we trust that more
complex forms of NER can lead to even greater
improvements in EL.

In conclusion, we believe that our work can en-
courage further developments on Entity Linking
systems that require fewer and fewer training in-
stances and still achieve strong results across in-
domain and out-of-domain evaluations.
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A Hardware and Training Details

All model training was carried out on a NVIDIA
GeForce RTX 3090. It required ∼2h/epoch on the
AIDA-YAGO-CoNLL training set, for an average
number of ∼20 epochs.

B NER Classes

In this Section we provide further details about the
set of NER classes we used. We designed our set
of classes starting from the 18 fine-grained classes
used for OntoNotes 5.0, splitting and merging them
to better fit the EL task.

In Table 9 we show the mapping between our
classes and the OntoNotes ones. For example, we
split the PRODUCT class of OntoNotes into three
separate classes, namely, FOOD, INST and VEHI.
These three classes are very different from each
other, and a NER classifier will easily predict the
correct one, so keeping them separated helps in bet-
ter clustering entities. On the other hand, they use
3 different tags (LOC, FAC and GPE) to represent

our LOC class, but in this case their 3 classes are
very similar, and a NER classifier could easily get
confused. Similarly, they use 4 classes QUANTITY,
ORDINAL, CARDINAL and PERCENT to express
our NUM class. Again, distinguishing between
these classes is hard and, in this case, even useless
for our task. Finally, 6 out of our 18 classes, which
are useful for better distinguishing entities, do not
have a corresponding class in the OntoNotes cate-
gorization. Then, in Table 10 we report a textual
description for each of the considered classes, both
the OntoNotes ones and our classes. Specifically,
in the top part of the table we show the 18 classes
of OntoNotes, whereas in the bottom part we show
those of the subset of our classes which need a
separate description. For instance, we describe our
ANIM class because it does not have a correspond-
ing class in OntoNotes, but we do not describe our
LOC class because we know from Table 10 that
it corresponds to the three classes LOC, FAC and
GPE of OntoNotes.

C NER-constrained Decoding

Soft and Hard Constraints. In the Section
about the contribution of NER-constrained decod-
ing, we introduced soft and hard constraints. In this
Section instead, we show how these constraints af-
fect the final performance of the complete EL +
NER system. In Table 11 we report the results ob-
tained. In the second row of the table we have the
result with the hard constraint (i.e., 91.7), namely,
the class of a given candidate must exactly match
the predicted one in order to be considered. In
the following four rows we relax this constraint,
and we impose the constraint that the predicted
class, to be considered reliable (i.e., to actually
filter candidates with a different type), must be
above a certain threshold. The higher the threshold
the more accurate the prediction is, but the lower
the number of mentions considered is. The best
results are achieved using a confidence threshold
of 0.5. This means that considering also classes
predicted with low confidence (< 0.5) introduces
errors, while using a higher threshold decreases the
number of applications of our technique. In the
second block of the table instead, we keep only
candidates whose type is within the top-k types pre-
dicted by the NER classifier. The higher the value
of k is, the lower the probability of discarding the
target entity is, but less the size of the candidate set
is reduced. We observe that considering the top-k
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Model AIDA MSNBC AQUAINT ACE2004 CWEB WIKI Avg.

Our EL baseline 88.8 86.9 61.8 89.9 65.7 58.5 75.3
w/ NER-Constrained Decoding Jointly-Learnt (NER-CD-JL) 90.4 87.9 66.9 90.5 67.1 62.0 77.5
w/ NER-Constrained Decoding (NER-CD) 92.2 89.2 68.2 91.2 68.1 63.8 78.8

Table 8: InKB accuracy of the baseline system and of the two variants of the NER-Constrained Decoding contri-
bution on the in-domain and out-of-domain test sets.

Our Class OntoNotes Class

PER PERSON

ORG ORG, NORP

LOC LOC, FAC, GPE

ANIM -
BIO -
CEL -
DIS -
EVE EVENT

FOOD PRODUCT

INST PRODUCT

MEDIA WORK_OF_ART, LANGUAGE

MON MONEY

NUM QUANTITY, ORDINAL, CARDINAL, PERCENT

PHY EVE

PLANT -
SUPER -
TIME DATE, TIME

VEHI PRODUCT

- LAW

Table 9: Comparison between our new set of fine-
grained NER classes and the OntoNotes ones.

classes is not as good considering only the most
probable one. From the third block of the table
onwards, we combine confidence thresholds and
top-k classes. This strategy allows us to further
improve performances. In particular, we obtain the
best results using a threshold of 0.5 and k=3, so we
first check if the classifier predicted the class with
a confidence > 0.5, and: i) if this is the case, we
consider only the most probable class, otherwise,
ii) we switch to the top-3 predicted classes.

Joint-learnt NER classifier. In Section 3.6, we
stated that for the NER classifier it is possible to
train a separate model, or train the EL system not
only to assign the most appropriate entity to a men-
tion in context, but also to provide its NER class.
The advantage of the second approach is that it
requires a single model and, therefore, fewer com-
putational resources. However, performing both
tasks jointly leads to worse results in NER label-
ing, which, in turn, diminishes the benefits of our
NER-constrained decoding strategy for the overall
EL system, as shown in Table 8.

Our Class Description

PERSON People, including fictional characters
NORP Nationalities or religious or political groups
ORG Companies, agencies, institutions, etc.
FAC Buildings, airports, highways, bridges, etc.
GPE Countries, cities, states
LOC Non-GPE locations, mountain ranges, bodies of water
PRODUCT Objects, vehicles, foods, etc. (not services)
EVENT Named hurricanes, battles, wars, sport events, etc.
WORK_OF_ART Titles of books, songs, etc.
LAW Named documents made into laws
LANGUAGE Any named language
DATE Absolute or relative dates or periods
TIME Times smaller than a day
PERCENT Percentages, including "%"
MONEY Monetary values, including unit
QUANTITY Measurements, as of weight or distance
ORDINAL "first", "second", etc.
CARDINAL Numerals that do not fall under another type

ANIM Breeds of dogs, cats and other animals
BIO Genes, proteins and other biological entities
CEL Planets, stars, asteroids and other celestial bodies
DIS Named diseases
FOOD Foods, drinks, etc.
INST Technical instruments, musical instruments, etc.
PHY Named hurricanes and other physical phenomena
PLANT Types of trees, flowers, etc.
SUPER Supernatural entities
VEHI Car models, motorcycle models, etc.

Table 10: Textual description for each NER class.

Model Confidence Top-k Accuracy AIDA
Our Baseline - - 88.8

Our Approach +
NER filter

0.00 - 91.7
0.50 - 91.9
0.80 - 91.7
0.90 - 91.3
0.99 - 90.0

- k=2 90.6
- k=3 90.0
- k=4 89.5
- k=5 89.1

0.50 k=2 92.1
0.80 k=2 91.9
0.90 k=2 91.7
0.99 k=2 91.2
0.50 k=3 92.2
0.80 k=3 92.0
0.90 k=3 91.7
0.99 k=3 91.4
0.50 k=4 91.9
0.80 k=4 91.6
0.90 k=4 91.2
0.99 k=4 90.9
0.50 k=5 91.8
0.80 k=5 91.6
0.90 k=5 91.2
0.99 k=5 90.8

Table 11: Performance of the NER-constrained decod-
ing contribution with soft and hard constraints.


