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Abstract
Multilingual Named Entity Recognition
(NER) is a key intermediate task which is
needed in many areas of NLP. In this paper,
we address the well-known issue of data
scarcity in NER, especially relevant when
moving to a multilingual scenario, and go
beyond current approaches to the creation
of multilingual silver data for the task. We
exploit the texts of Wikipedia and introduce
a new methodology based on the effective
combination of knowledge-based approaches
and neural models, together with a novel
domain adaptation technique, to produce
high-quality training corpora for NER. We
evaluate our datasets extensively on standard
benchmarks for NER, yielding substantial
improvements of up to 6 span-based F1-score
points over previous state-of-the-art systems
for data creation.

1 Introduction

Named Entity Recognition (NER) is the task of
identifying specific words as belonging to prede-
fined semantic types, such as Person, Location,
Organization, etc. (Nadeau and Sekine, 2007).
NER is widely used in many downstream tasks,
like question answering (Mollá et al., 2006), ma-
chine translation (Babych and Hartley, 2003), in-
formation retrieval (Petkova and Croft, 2007), text
summarization (Aone et al., 1998), text understand-
ing (Zhang et al., 2019; Cheng and Erk, 2019) and
entity linking (Tedeschi et al., 2021), among others.

With recent advances in Natural Language Pro-
cessing, and in particular with the advent of pre-
trained language models such as BERT (Devlin
et al., 2019), once a sufficient amount of training
data is available for the task of interest, fine-tuning
is often employed to address the task successfully.
Unfortunately, such training data are scarce and
expensive to create, especially when labels are fine-
grained and many languages have to be covered, as
is the case for NER.

Various works have been put forward which ad-
dress data paucity by aiming at automatically pro-
ducing multilingual silver-standard training data for
NER (Nothman et al., 2013; Al-Rfou et al., 2015;
Tsai et al., 2016; Pan et al., 2017). Each of these
leverages the link structure of Wikipedia to gener-
ate named entity annotations. However, this strat-
egy has two drawbacks: only small portions of text
in Wikipedia are linked, and mapping Wikipedia
links to the corresponding NER classes is not trivial
and introduces errors. Different methods have been
investigated to cope with these problems, such as
heuristics based on Wikipedia redirects, surface
form token matching, and category-based rules.

Although we also rely on Wikipedia text and
its hypertext organization, we depart from previ-
ous works in our exploration of new language-
independent techniques for silver data creation for
NER by providing a general approach based on
an effective combination of knowledge-based tech-
niques and neural models.

Our contributions are as follows:

1. We propose a novel technique which builds
upon external knowledge bases and pre-
trained language models to produce high-
quality annotations for multilingual NER;

2. We assess the quality of the corpora produced
with an extensive evaluation and a statistical
analysis, showing consistent improvements of
up to 6 span-based F1-score points on com-
mon benchmarks for NER against state-of-the-
art alternative data production methods;

3. We present a novel approach for creating in-
terpretable word embeddings;

4. Based on these embeddings, we introduce a
domain adaptation algorithm which yields fur-
ther performance gains on all test settings.

We release data and software at https://github.
com/Babelscape/wikineural.

https://github.com/Babelscape/wikineural
https://github.com/Babelscape/wikineural
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2 Related Work

Since the first shared task on NER organized by
Grishman and Sundheim (1996), several tasks and
human-annotated datasets have been proposed. The
CoNLL-2002 and 2003 datasets (Tjong Kim Sang,
2002; Tjong Kim Sang and De Meulder, 2003)
were created in four different languages (Spanish,
Dutch, English, and German) from newswire arti-
cles and focused on 4 entity types: PER (Person),
ORG (Organization), LOC (Location), and MISC

(Miscellaneous, i.e., all other entity types). Sev-
eral other NER shared tasks were organized in the
years which followed, covering further languages
such as Indic (Rajeev Sangal and Singh, 2008) and
Balto-Slavic languages (Piskorski et al., 2017).

Early NER systems were based on domain-
specific features and rules, which require human
engineering. Starting from (Collobert et al., 2011),
neural NER architectures requiring minimal fea-
ture engineering have become enduringly popular
(Li et al., 2018). Nevertheless, to fully benefit from
these systems, large amounts of data for training
are required. Although various NER datasets have
been created, they have remained a scarce resource,
available only for a narrow set of languages. More-
over, they have often been small in size, limited to
a few domains, and genre-specific (e.g., news). For
these reasons, over the last two decades, various
works have been carried out to turn Wikipedia texts
into multilingual NER training corpora.

Nothman et al. (2013) introduced WikiNER, a
pipeline to automatically create multilingual train-
ing data for NER by exploiting the structure and
the texts of Wikipedia. First, they classified each
Wikipedia document into named entity types, train-
ing and evaluating on manually-labeled Wikipedia
articles across 9 languages. Then, Wikipedia links
were converted into labels by classifying the target
articles into entity types (PER, ORG, LOC, MISC).
Finally, heuristics based on redirects were applied
to infer more named entity mentions. Interestingly,
Nothman et al. (2013) showed that, when test-
ing on manually-annotated Wikipedia sentences,
models trained on gold-standard newswire datasets
perform poorly compared to models trained on
automatically-created Wikipedia corpora.

Similarly, Pan et al. (2017) proposed WikiANN,
a language-independent framework to automati-
cally extract name mentions from documents by
leveraging Wikipedia markups. Specifically, they
first classified English Wikipedia entries into cer-

tain entity types, and then they applied a cross-
lingual entity transfer to propagate these labels to
other languages.

Other works relied on Freebase (Bollacker et al.,
2008), a sizeable collaborative graph database, ei-
ther by using its association to English Wikipedia
as a training feature (Tsai et al., 2016), or by map-
ping its attributes to entity types, in order to identify
the NER classes (Al-Rfou et al., 2015). Moreover,
Al-Rfou et al. (2015) also tried to overcome the
issue of missing annotations of non-anchored men-
tions in Wikipedia by using a simple surface string-
matching heuristic, and resampled the datasets they
produced to reduce the high class imbalance.

In our work we follow this same direction but
introduce several contributions based on a novel
combination of knowledge-based and neural tech-
niques that lead to considerable improvements. To
the best of our knowledge, we are the first to ex-
ploit multilingual BERT’s power in a silver data
creation process for NER: we use it to indepen-
dently i) distinguish named entities from concepts,
ii) validate annotations and, iii) discover annota-
tions. Further, to address the sparsity problem,
rather than relying on often-noisy redirections, we
exploit the synonymy information provided by a
multilingual lexical knowledge base, i.e., Babel-
Net1 (Navigli and Ponzetto, 2012; Navigli et al.,
2021).

3 WikiNEuRal

We now describe our approach to producing mul-
tilingual silver-standard training data for Named
Entity Recognition. A graphical representation of
the steps that characterize the WikiNEuRal annota-
tion pipeline is depicted in Figure 1.

3.1 Preprocessing Wikipedia

We clean up the text of Wikipedia articles by re-
moving the sections with the 10 most frequent titles,
which usually list related resources (e.g., bibliog-
raphy, references, see also). We also remove other
elements that tend to introduce noise, such as lists,
tables, templates, formulas, etc.

The remaining elements are Wikilinks, which
provide potential entity mentions, and may
show up either with links only (e.g., [[apart-
ment]]) or with both link and surface form (e.g.,
[[apartment|flats]]). We opt to discard all occur-
rences of this latter because such Wikilinks might

1https://babelnet.org
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Figure 1: WikiNEuRal annotation pipeline.

introduce errors (e.g., in [[Royal Dutch Shell|oil
industry company]], the surface text oil industry
company would be tagged as ORG).

3.2 Identifying Entity Mentions in Wikipedia

Although Wikilinks offer valuable information, not
all links point to a Named Entity (e.g., see [[apart-
ment]] above, which denotes a concept, instead).
We therefore exploit the one-to-one correspon-
dence between Wikipedia articles and BabelNet
synsets to classify each synset into either an ab-
stract concept (C) or a named entity (NE), which
we will refer to as its type. Although BabelNet
offers this information for most of its synsets, upon
manual inspection we find that many of these type
annotations are noisy2, so we opt to train a model
to perform binary classification, effectively replac-

2Based on the majority case of the title occurrence within
its Wikipedia article.

ing the annotations provided by BabelNet.
The dataset for this task is constructed exploiting

the multilingual nature of BabelNet: given a synset
s and a language L, we have access to a set of
glossesGL(s). For every such gloss g ∈ GL(s) we
generate a sample with the type as label, and pro-
vide the string I(s, g, L) = [CLS] lL(s) | g [SEP]
as input, where lL(s) is the main lemma for synset
s in language L or, if it does not exist, a special
token [NOLEMMA], shared among languages. We
rank BabelNet synsets according to the number of
glosses they contain and take the top 500k synsets
to build our training and validation splits (450k and
50k respectively). As this system represents only
one step of the entire WikiNEuRal pipeline, we
measure its quality in vivo (see Section 7), as a
test set generated with the same distribution would
yield inconclusive results.

To tag each BabelNet synset (and therefore each
Wikipedia article) as either a concept or a named
entity, we follow Devlin et al. (2019) and use a
simple yet efficient Sequence Classification archi-
tecture, using Multilingual BERT as encoder and
a linear layer to perform binary classification on
top of the [CLS] token. The model is trained on
the inputs generated by the function I applied to
the aforementioned 500k synsets. Lastly, in or-
der to classify any particular synset, we gather
all its possible inputs (i.e., we take into account
all of its glosses in the considered languages L̂3)
I(s) = {I(s, L, g)|L ∈ L̂, g ∈ GL(s)} and label
them independently using the trained model. Then,
we select, for synset s, the label with the maximum
average confidence4 – with this label becoming the
new type for synset s and, therefore, for its linked
Wikipedia page, regardless of the language. We
use this label to discard links to Wikipedia arti-
cles corresponding to concept types, as we are only
interested in Named Entities.

3.3 Tagging Named Entity Links Through
Synsets

We now aim at providing each named entity link
in a Wikipedia article with a common NER class
(PER, ORG, LOC, MISC). Once again, we exploit
the one-to-one linkage between Wikipedia articles
and BabelNet synsets and classify all synsets in the

3We only take glosses in L̂ = {English, Italian, German,
Spanish, French}, as they are the best supported languages
between BabelNet and Multilingual BERT.

4We ignore predictions for which the averaged confidence
falls below 0.6.
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nominal taxonomy of BabelNet. To achieve this,
we start by selecting and annotating 200 synsets
to cover as many high-order concepts of the Word-
Net (Miller, 1995) nominal taxonomy5 as possi-
ble. Then, to descend the WordNet taxonomy,
a Breadth-First Search (BFS) algorithm on hy-
ponymy relationships is employed to resolve multi-
parent collisions, resulting in an expanded set of
40,000 high-quality annotations. Finally, to anno-
tate all the remaining BabelNet synsets, we again
apply a BFS (with max depth set to 2) following hy-
pernymy relationships until one of the 40k synsets
in the expanded set is reached. The annotation
of the first hypernymous synset reached through
BFS (if any) is inherited. This procedure yields
a classification of more than 7.5 million synsets
corresponding to named entities.

3.4 Named Entity Tag Propagation

As a result of the above steps, for each Wikipedia
article we know which anchored strings correspond
to named entities and which NER classes they be-
long to. As anticipated in Section 1, one of the ma-
jor drawbacks in using Wikipedia texts is that only
small portions of text are anchored. This includes
the fact that, according to the Wikipedia guide-
lines, only the first mention to the article has to be
linked. Since every anchored string a corresponds
to a BabelNet synset s, we gather the synonyms
in s (including the anchored text itself) in the lan-
guage of the article, and employ an exact matching
heuristic to propagate the named entity tag of a
to any occurrence of synonyms of s throughout
the whole article. For instance, “Apple” is among
the synonyms of “Apple Inc.”, hence all its occur-
rences within a text in which the latter link occurs
are tagged as ORG, leading to denser annotations.

3.5 Confirming and Augmenting Annotations

We are now left with two potential weaknesses:
first, even though aiming for high precision, our an-
notations might still include some mistakes; second,
our tagged sentences might still contain unanno-
tated entities due to unlinked or unmatched entity
mentions. To address both issues, we first introduce
our NER classifier, which we will use to perform
tagging with our annotated data, then we apply it to
confirm our annotations and augment the sentences
with additional tags.

5We initially restrict to WordNet synsets as they are manu-
ally curated.

3.5.1 Our NER model
Our NER model is a variant of the BERT-based
neural model of Mueller et al. (2020): following re-
cent literature, rather than representing a word with
the first contextualized subword representation as
provided by multilingual BERT, we take the mean
of its subwords (Ács et al., 2021). The resulting
vectors are passed through a multi-layer sentence-
level BiLSTM network, whose logits are then fed
into a CRF model (Lafferty et al., 2001), trained
to maximize the log-likelihood of the span-based
gold label sequences.

3.5.2 Improving Precision and Recall
To address the above-mentioned weaknesses, we
train our NER model with the WikiNER dataset (cf.
Section 2) and use it to confirm and augment our
annotations. More formally, for every sentence x
composed of n tokens x1, . . . , xn, we compare the
annotation (i.e., a named entity tag) yi produced
by our approach for each token xi with the one
produced by the neural model ŷi, and keep the
sentence if i) there is at least one annotation yi 6= O,
and ii) every yi 6= O has the same annotation of
the corresponding ŷi. This results in an improved
precision of our annotations, as they are confirmed
through an ensemble approach. Finally, we output
as annotations for sentence x the labels produced
by the neural model ŷ = [ŷ1, . . . , ŷn], therefore
accounting for previously undiscovered entities and
improving recall.

4 Domain Adaptation

Thanks to the use of Wikipedia, our automatically-
created datasets cover a wide range of domains.
However, in many cases tests are performed on a
limited set of domains. To address this issue and en-
able the production of domain-fitting NER datasets,
here we introduce our methodology for perform-
ing domain adaptation. This consists of a domain
extraction technique which, later combined with
the approach presented in Section 3, enables the
creation of domain-adapted training data for NER
systems when given domain-specific texts.

4.1 Category selection
We first select a general subset of Wikipedia cate-
gories, under the assumption that they reflect all do-
mains. Let us start by considering the directed cat-
egory graph G = (C,E) of (English) Wikipedia,
where a node c ∈ C represents a Wikipedia cat-
egory and (c1, c2) ∈ E is an edge representing
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that c1 is a parent category of c2. First, since
|C| ≈ 1.6M (as of September 2020), we need to
find a subset Ĉ of C such that the coverage of
knowledge fields is maximized, whereas the word
vector dimensionality is minimized. We compute
Ĉ by taking all nodes inG with depth from the root
node ≤ 2, yielding a total of ∼ 1200 categories.

Since the majority of Wikipedia articles do not
belong to any of the selected Ĉ categories, we need
to compute a distribution over Ĉ for every category
c ∈ C \ Ĉ. We follow the intuition that the number
of random walks from c to ĉ ∈ Ĉ is proportional
to P (ĉ|c); hence, we compute:

P (ĉ|c) = 1

k
·

k∑
i=1

RW (c, ĉ)

where k is the number of random walks performed
and RW (c, ĉ) = 1 if a random walk starting from
node c and walking only to parent nodes ends up
on category ĉ.

Now, given an article w and its associated set of
categories Cw,

P (ĉ|w) = 1−
∏
c∈Cw

(1− P (ĉ|c)) ∀ ĉ ∈ Ĉ

can be interpreted as the probability of associating
ĉ with one of the categories of w; we discard this
association in the case that P (ĉ|w) < σ.6 The next
natural step is to prune Ĉ so as to further reduce
categories that are either too general or too specific.
For all ĉ, we compute the unconditioned probability

P (ĉ) =
1

|W |
·
∑
w∈W

P (ĉ|w),

where W is the set of all Wikipedia articles, com-
pute the median value mv of all P (ĉ) ∀ ĉ ∈ Ĉ and
take the 600 elements of Ĉ closest to mv, yielding
the final set of supercategories S ⊂ Ĉ, which cover
the general knowledge encoded in Wikipedia in a
concise way.

4.2 Domain embedding computation and
domain extraction

We now use the above category selection to pro-
duce both interpretable and domain-aware embed-
dings, which we then use to select the best-fitting
Wikipedia articles for producing our Named Entity
tagged dataset. Let us now consider all Wikipedia

6A manually-tuned threshold, set at 3 · 10−4.

articles W , a token t occurring in any of its arti-
cles, a supercategory s ∈ S, the set of articles Ws

associated with s, and a function f which takes as
input a token t′ and a collection D of Wikipedia
articles, and returns the number of the occurrences
of t′ within the documents of D; we compute the
relevance score of token t in supercategory s as:

P (t|s) = P (s|t)P (t)
P (s)

where:

P (t) =
f(t,W )∑

t′∈W f(t′,W )

P (s) =

∑
t∈Ws

f(t,Ws)∑
t′∈W f(t′,W )

P (s|t) = f(t,Ws)

f(t,W )
.

By repeating the above computation for every token
t ∈W (excluding stopwords) and every supercate-
gory s ∈ S, we obtain a large matrix En×m,7 i.e.,
our category embeddings for the selected language.

The procedure for exploiting the above-
mentioned embeddings in order to extract the main
categories from a corpus of documents is formally
described in Algorithm 1. The algorithm’s core is a
hierarchical aggregation of the probability distribu-
tion of tokens over categories: first, it averages the
token-level distributions M to obtain a document-
level distribution Z. Then it proceeds by taking
the main categories C across the whole set of docu-
ment distributions. Finally, only categories that ap-
pear at least δ times are considered as categories of
that corpus. These extracted categories will be used
to select the Wikipedia pages for silver-standard
training data production which best fit the input
document domains.

5 Experimental Setup

5.1 Reference model

We use the NER model introduced in Section 3.5.1
to compare our produced dataset’s impact against
competitors. All models are trained with early stop-
ping set with a patience parameter of 10; we use
Adam (Kingma and Ba, 2015) with learning rate
fixed at 10−3 and a cross-entropy loss criterion.
The full list of hyperparameter values is shown

7n is the size of the Wikipedia vocabulary, m = |S| =
600.
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Algorithm 1 Domain extraction procedure
Inputs: Corpus D, Category embeddings En×m,
Counting function f
Parameters: Threshold δ, Token-level top-k kt,
Document-level top-k kd
Output: Main categories in D

γ(x, k)→ [x̂1, · · · , x̂n], x̂i =

{
1 if x̂i ∈ topk(x)
0 otherwise

1: C ∈ Nm | ci = 0 ∀i ∈ [1,m]
2: for d ∈ D do
3: v ∈ Nn,vi = f(wi, d) ∀wi ∈ E
4: M ← vT · E
5: R ∈ Rn×m, Ri =MT

i · γ(Mi, kt)
6: Z ∈ Rm, Zi =

1
n ·

∑n
i=1(R

T )i ∀i ∈ [1,m]
7: C ← C + γ(Z, kd)
8: end for
9: return {i | Ci ≥ δ ∀i ∈ [1, |S|]}

in Table 1. We repeat each training on 10 differ-
ent seeds, fixed across experiments, and report the
mean and standard deviation of their span F1 score;
we compare experiments by means of Student’s
t-test (Student, 1908). Further details about the hy-
perparameter search, training times and hardware
infrastructure are provided in Appendix A.

5.2 Training Data
We train our reference model with four different
silver-standard datasets:

• WikiNEuRal: the dataset created using the
methodology described in Section 3 from
Wikipedia8. It covers 9 languages: Dutch,
English, French, German, Italian, Polish, Por-
tuguese, Russian and Spanish. Data statistics
are shown in Table 2.

• WikiNEuRal+DA: We apply our domain
adaptation technique (Section 4) to filter the
Wikipedia articles used to create our training
data and fit them to the domains of the test
data. To this end, we use the CoNLL and
OntoNotes test sets9 where, except for the
Spanish CoNLL test set, this kind of docu-
ment split is provided. We perform domain
extraction as described in Algorithm 1 with

8July 2020 snapshot for all languages, sampling random
articles.

9We strongly emphasize that we do not use anything from
the test sets except their raw text.

Hyperparameter name Value
number of Bi-LSTM layers 2
LSTM hidden size 512
batch size 128
learning rate 0.001
dropout 0.5
gradient clipping 1.0
adam β1 0.9
adam β2 0.999
adam ε 1e-8

Table 1: Hyperparameter values of the reference model
used for our experiments.

parameters δ = 5, kt = 50, kd = 5 to the test
set documents; thus, we provide WikiNEuRal
with articles whose domains, i.e., categories,
match the ones extracted for the targeted cor-
pus. Statistics are shown in Table 2.

• WikiNER (Nothman et al., 2013): the cur-
rent best-performing approach for NER silver
data creation. It covers the same languages as
WikiNEuRal.

• WikiANN10 (Pan et al., 2017): a multilingual
NER dataset consisting of Wikipedia articles
annotated in 282 languages.

We also train our reference model for every
available, manually-annotated gold-standard train-
ing set from the CoNLL-2002 NER Shared Task
(Tjong Kim Sang, 2002) for Spanish and Dutch, the
CoNLL-2003 NER Shared Task (Tjong Kim Sang
and De Meulder, 2003) for English and German,
and the OntoNotes 5.0 dataset for English. All
silver- and gold-standard datasets are tagged with
the four standard entity types (PER, ORG, LOC,
MISC), except for WikiANN which does not con-
tain the MISC label.

5.3 Test Data
We use five different test sets in our experiments:

• CoNLL-2002 NER Shared Task dataset
(Tjong Kim Sang, 2002): a popular collection
of newswire articles for Spanish and Dutch.

• CoNLL-2003 NER Shared Task dataset
(Tjong Kim Sang and De Meulder, 2003): a

10The version used corresponds to the balanced train, dev,
and test splits of Rahimi et al. (2019), which supports 176
of the 282 languages from the original WikiANN corpus,
available at https://huggingface.co/datasets/wikiann.

https://huggingface.co/datasets/wikiann
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WikiNEuRal Articles Sentences Tokens Avg. length Avg. NEs PER ORG LOC MISC OTHER

English 50k 116k 2.73M 23.53 1.67 51k 31k 67k 45k 2.40M
Spanish 50k 95k 2.33M 24.46 1.61 43k 17k 68k 25k 2.04M
Dutch 65k 107k 1.91M 17.91 1.43 46k 22k 61k 24k 1.64M
German 50k 124k 2.19M 17.66 1.42 60k 32k 59k 25k 1.87M
Russian 105k 123k 2.39M 19.49 1.47 40k 26k 89k 25k 2.13M
Italian 50k 111k 2.99M 26.85 1.90 67k 22k 97k 26k 2.62M
French 50k 127k 3.24M 25.47 1.80 76k 25k 101k 29k 2.83M
Polish 105k 141k 2.29M 16.21 1.65 59k 34k 118k 22k 1.91M
Portuguese 80k 106k 2.53M 23.99 1.88 44k 17k 112k 25k 2.20M

English DA (CoNLL) 20k 29k 759k 21.41 1.55 12k 23k 6k 3k 0.54M
Dutch DA (CoNLL) 25k 34k 598k 17.69 1.44 17k 8k 18k 6k 0.51M
German DA (CoNLL) 20k 41k 706k 17.29 1.37 17k 12k 23k 3k 0.61M
English DA (OntoNotes) 35k 48k 1.18M 24.31 1.70 20k 13k 38k 12k 1.02M

Table 2: Statistics on the produced data on a fixed number of articles. “Avg. length” is the average sentence length
and “Avg. NEs” is the average number of named entities per sentence. DA stands for Domain Adaptation.

well-known collection of newswire articles for
English and German taken from the Reuters
Corpus and the ECI Multilingual Text Corpus,
respectively.

• WikiGold (Balasuriya et al., 2009): a small
set of English Wikipedia articles manually
annotated with CoNLL named entity classes.

• OntoNotes 5.0 (Pradhan et al., 2012): this
includes texts from five different text genres:
broadcast conversation, broadcast news, mag-
azine, newswire, and web data. We use it as
an additional test set for English.

• BSNLP-2017 (Piskorski et al., 2017): this
consists of articles in various Slavic languages
and we use it to evaluate Russian and Polish
performances. Two test sets are provided: one
contains articles about a specific politician, the
other one about the European Commission.

All the datasets employ the CoNLL entity types
(PER, ORG, LOC and MISC), except OntoNotes,
which is annotated with 18 fine-grained entity
types, which we manually map to the CoNLL
tag set. Further details about how the OntoNotes
classes are mapped to the CoNLL ones are pro-
vided in Appendix C. For CoNLL, OntoNotes, and
BSNLP, which are often used to benchmark NER,
we take the official splits for validation and test sets.
For WikiGold, which is much smaller, we use the
full dataset as test material. Following the litera-
ture, we evaluate performances by means of the F1

score, i.e., the harmonic mean between Precision
and Recall, using the official conlleval script. We
convert all datasets to the popular BIO format.

6 Results

6.1 Multilingual Evaluation
We assess the quality of the WikiNEuRal datasets
extensively, comparing the performances obtained
training the model presented in Section 3.5.1 both
on WikiNEuRal and on the other datasets listed in
Section 5.2. The results are reported in Table 3.
We observe consistent improvements of WikiNEu-
Ral over the WikiNER and WikiANN alternatives
on almost all tested languages and datasets. In
particular, on the CoNLL test sets, we notice an
average improvement, computed over the scores
on the four languages, of 21.4 and 2.3 F1 points
over WikiANN and WikiNER, respectively. Three
out of four results are also statistically significant.
Morever, in the remaining test sets (i.e., WikiGold,
OntoNotes and BSNLP), our approach achieves
results which are better than the results of the two
competitors, again in a statistically significant way.

Finally, we also show how WikiNEuRal-based
models perform 8.2 F1 points better than CoNLL-
trained models on the WikiGold test set, and al-
most 1 point better when tested on neutral test
sets, namely corpora from sources different from
both WikiNEuRal and CoNLL training sets (i.e.,
OntoNotes). Similarly, WikiNEuRal-based mod-
els perform 10.6 F1 points better than OntoNotes-
trained models on the WikiGold test set, and almost
4 points better when tested on neutral test sets, i.e.,
CoNLL.

6.2 Silver- and Gold-Standard Data
Aggregation

In order to further demonstrate the quality of the
data produced, we aggregate WikiNEuRal with



2528

Training set

Test set CoNLL WikiGold OntoNotes BSNLP

English Spanish Dutch German English English Russian Polish

WikiANN 56.85 ± 2.18 53.55 ± 3.10 55.76 ± 2.19 44.39 ± 0.95 57.05 ± 2.76 36.43 ± 4.54 51.85 ± 1.80 53.50 ± 1.63
WikiNER 73.05 ± 1.20 75.07 ± 0.96 74.75 ± 0.59 64.03 ± 1.86 81.98 ± 0.28 71.16 ± 0.72 65.99 ± 0.94 62.31 ± 0.95
WikiNEuRal 76.94 ± 0.75 77.87 ± 0.85 77.40 ± 0.57 64.02 ± 0.54 82.42 ± 0.33** 71.98 ± 0.55* 66.50 ± 0.67 62.44 ± 1.00
WikiNEuRal DA 79.07 ± 0.51 - 79.07 ± 0.52 68.33 ± 0.46 - 74.38 ± 0.30 - -

CoNLL 90.07 ± 0.33 86.78 ± 0.44 89.48 ± 0.69 77.57 ± 0.51 74.22 ± 0.45 71.03 ± 0.47 - -
+ WikiANN 88.58 ± 0.22 86.66 ± 0.37 85.08 ± 0.49 74.94 ± 0.36 68.93 ± 0.58 67.72 ± 0.49 - -
+ WikiNER 89.28 ± 0.27 85.80 ± 0.45 85.88 ± 0.51 74.10 ± 0.20 82.08 ± 0.48 72.10 ± 0.36 - -
+ WikiNEuRal 89.95 ± 0.20 86.49 ± 0.51 89.24 ± 0.23 77.97 ± 0.46 82.83 ± 0.34 73.78 ± 0.18 - -
+ WikiNEuRal DA 90.14 ± 0.28 - 89.50 ± 0.39 78.78 ± 0.59 - 75.11 ± 0.22 - -

OntoNotes 73.39 ± 0.60 - - - 71.59 ± 0.42 89.39 ± 0.39 - -
+ WikiANN 72.80 ± 0.82 - - - 69.00 ± 1.04 88.30 ± 0.71 - -
+ WikiNER 75.31 ± 0.51 - - - 82.21 ± 0.35 87.15 ± 0.25 - -
+ WikiNEuRal 77.19 ± 0.48 - - - 82.04 ± 0.34 87.90 ± 0.71 - -
+ WikiNEuRal DA 89.21 ± 0.36 - - - - 88.77 ± 0.18 - -

Table 3: Span-based micro F1 scores on common NER benchmarks. DA stands for Domain Adaptation. Statistical
significance is computed using Student’s t-test: * stands for p < 0.05, ** stands for p < 0.01, underline stands for
p < 0.001. Statistical significance scores are computed between a system and its next best scoring competitor (e.g.,
WikiNEuRal vs WikiNER, or WikiNEuRal DA vs WikiNEuRal). Further results are provided in Appendix B.

Version CoNLL WikiGold OntoNotes

WikiNEuRal DA 79.07 ± 0.51 - 74.38 ± 0.30
- Domain Adaptation 76.94 ± 0.75 82.42 ± 0.33** 71.98 ± 0.55
- Concept vs NE 76.24 ± 0.35 81.66 ± 0.22 71.69 ± 0.24
- NE Augmentation 68.34 ± 0.64** 75.83 ± 0.36 62.84 ± 0.40
- NE Confirmation 64.60 ± 0.56** 70.98 ± 0.42 58.57 ± 0.21
- NE Discrimination 59.19 ± 0.63 64.46 ± 1.21 52.76 ± 1.28
- Tag Propagation 57.15 ± 1.53 63.36 ± 1.55 51.77 ± 1.25

Table 4: Span-based micro F1 scores of WikiNEuRal
versions on the three English CoNLL, WikiGold, and
OntoNotes test sets. Statistical significance is com-
puted using Student’s t-test: ** stands for p < 0.01,
underline stands for p < 0.001. Statistical significance
is expressed with respect to the row immediately below.

manually-created datasets in the corresponding lan-
guages. Once again, as shown in Table 3, there
is a general improvement when comparing mod-
els trained on WikiNEuRal and CoNLL against
their concatenated counterpart: on average11, the
two datasets alone achieve a span F1 score of 75.1
and 81.5, respectively, while their concatenation
attains 83.4 F1. Similar results can be observed
when comparing models trained on WikiNEuRal
and OntoNotes against their concatenated counter-
part: on average, WikiNEuRal alone achieves a
span F1 score of 77.1 and OntoNotes alone reaches
78.1, while their concatenation attains 82.4 F1.

Our analysis shows that, in real-world cases
where gold training data are available but they do
not match the target test set in terms of textual
genre or domains covered (e.g., only manually-
annotated news articles are available to train a
user’s system, but the user wants to test it on web

11Computed on all datasets for which results for the three
alternatives are available.

documents), WikiNEuRal can be beneficial for
handling domain generalization. This is the case
when we test CoNLL+WikiNEuRal on OntoNotes
or OntoNotes+WikiNEuRal on CoNLL, getting
scores which are much higher than the ones ob-
tained with the two gold-standard datasets alone.
This shows how the domain coverage of datasets
matters even with manually crafted training data,
since CoNLL and OntoNotes have different text
genres and mismatched topics. WikiNEuRal boosts
the domain coverage regardless of the starting data
and, therefore, helps to cope with this problem.

6.3 Results on Domain Adaptation

The results reported in Table 3 show that Do-
main Adaptation consistently improves perfor-
mances over already state-of-the-art results, while
requiring much less training data compared to
the standard WikiNEuRal version (see Table
2). On average, domain-adapted datasets at-
tain a 2.6, 1.3 and 6.4 span F1 improvement
over WikiNEuRal, CoNLL+WikiNEuRal and
OntoNotes+WikiNEuRal, respectively. This means
that the domain-adapted datasets are strongly bi-
ased towards the domains targeted by the adapta-
tion technique, as expected.

7 Ablation Study

In order to show the effectiveness of the steps de-
tailed in Section 3, we disassembled our NER data
creation pipeline. We conducted these experiments
on the English WikiNEuRal corpus; results are
shown in Table 4. We first removed Domain Adap-
tation (Section 4), whose benefits have already
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been discussed in Section 6.3. Second, we removed
the Concept vs. Named Entity module of Section
3.2 and simply relied on the entity typing provided
by BabelNet. The result is a drop in performances
(second and third rows of the Table), confirming the
need for this kind of validation. Then, we removed
the named entity augmentation module presented
in Section 3.5, i.e., named entities that are neither
anchored in Wikipedia articles nor identified as
synonyms of anchored ones, are no longer caught
by the neural model. This removal causes a re-
duction of annotations, which results in an average
decrease – over the three test sets – of 7.53 F1-
score points. Subsequently, we also removed the
named entity confirmation module, which used the
BERT-based model to corroborate the annotations
produced by the knowledge-based approach (Sec-
tion 3.3). These annotations were obtained through
an automatic approach, and our intuition suggested
using a neural model to discard potentially impre-
cise sentences, which is confirmed by the further
average decrease in performances of 4.29 points
when removing it. At this stage, the neural model
is only employed as a discriminator, i.e. it just
outputs NE or not NE for each token. Hence, for
each sentence, if there are tokens annotated as PER,
ORG, LOC or MISC by the knowledge-based ap-
proach, but labeled as not NE by the model, the
sentence is discarded. The removal of this named
entity discrimination block again results in a wors-
ening of performances by 5.91 points, on average.
Finally, we also ablated the tag propagations of
Section 3.4, i.e., we just left the tags associated
with preexisting links in the article. Both tag prop-
agation methods were used to increase the density
of annotations, crucial for obtaining high-quality
annotated sentences: in fact, their exclusion leads
to a further deterioration in performance.

We can summarize this ablation study by point-
ing out an average gap of more than 21 F1-score
points between the final WikiNEuRal version de-
tailed in Section 3 and the basic one, which only
uses strings anchored in Wikipedia articles.

For completeness, we also constructed a baseline
version of the WikiNEuRal dataset using just the
neural model employed in Section 3.5.2 to anno-
tate Wikipedia articles. The system trained on the
resulting dataset achieved 69.46± 0.50 on CoNLL,
77.46 ± 0.43 on WikiGold and 64.53 ± 0.41 on
OntoNotes, showing how the combination of neural
and knowledge-based approaches adopted by the

final version of WikiNEuRal is essential in order
to achieve higher performances.

8 Conclusion

We presented WikiNEuRal, an automatic,
language-independent approach for generating
labeled datasets for NER in multiple languages.
While we follow other silver-data creation
approaches and exploit the hyperlinked texts of
Wikipedia articles, we depart from past works
in three fundamental aspects which integrate
knowledge-based and neural approaches: i) we
automatically type tags by utilizing the structure
of a multilingual lexical-semantic knowledge
base, BabelNet, ii) we exploit neural BERT-based
models to discern entity from non-entity tags and
iii) as a complementary approach to confirm and
augment sentences with entity tags, iv) we put
forward a domain adaptation technique which can
produce NER training data for arbitrary domains.

We finally showed, through an extensive evalu-
ation, that WikiNEuRal can be used to train com-
petitive NER systems, providing substantial perfor-
mance improvements over previous state-of-the-art
approaches for silver-data creation. As future work,
we plan to extend our study to produce named en-
tity tags for a larger set of classes and languages.
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A Reproducibility Details

Hardware Infrastructure All model training
was carried out on an NVIDIA GeForce RTX 3090
and 2080 Ti architecture. It required ∼45 s/epoch
on the CoNLL and WikiANN datasets, whereas
it required ∼6 min/epoch on the WikiNER and
WikiNEuRal datasets.

Hyperparameter Tuning We performed hyper-
parameter selection on the English CoNLL dataset
for the following hyperparameter values: lr =
{0.0001, 0.001, 0.005}, average of the last k BERT
layers with k = {1,4,6}, dropout = {0.2, 0.5, 0.7},
RNN hidden size = {128, 256, 512, 768} and 3 dif-
ferent random seeds. The combination of all the al-
lowed values of the considered hyperparameters led
to 324 independent configurations. The results of
the grid-search applied on the above listed parame-
ters are shown in Figure 2. Each curve corresponds
to a model configuration: light curves correspond
to high-performing models, whereas dark curves
correspond to low-performing models. The best
value for the learning rate is 0.001. Similarly, aver-
aging the last k=4 layers of the BERT architecture
is better than using the last k=6, and much better
than using only the last layer. Regarding dropout,
we found no evidence to make us prefer one value
over another, so we decided to set it to the most
commonly-used value, i.e., 0.5. Finally, the best
values for the RNN hidden size are 768 and 512.
On average, they reached similar scores but the 512
alternative was more stable (lower standard devia-
tion) and faster. Hence, since the aim of this model
is simply to allow comparisons between different
datasets, we decided to use 512. Other hyperpa-
rameters were set to standard values used in the
literature.

Tools/Technologies To ensure reproducibility of
our work we relied on different libraries:

• Transformers12 to seamlessly switch between
different transformer architectures;

• PyTorch Lightning 13 as framework to ensure
reusability of our code.

• Hydra14 to obtain dynamic run configurations
and sweeps.

12https://huggingface.co/transformers/
13https://www.pytorchlightning.ai
14https://hydra.cc
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Figure 2: Results of the grid-search on the following 4 parameters: learning rate, number of BERT layers to
average, dropout and RNN hidden size. Each curve corresponds to a different model configuration.

• Weights and Biases15 as experiment logger, to
gain useful insights and comparisons between
different model runs (Figure 2 is an example);

B Additional Results

In Table 5 we show additional results about the
comparison between WikiNEuRal, WikiNER and
WikiANN, using the token-level macro F1 score.

Multilingual Evalutation Also with this metric
we notice consistent improvements of WikiNEu-
Ral over the WikiNER and WikiANN alternatives
on all tested languages and datasets. In particu-
lar, on the CoNLL test sets, we observe an aver-
age improvement, computed over the scores on
the four languages, of 13.7 and 4.0 F1 points
over WikiANN and WikiNER, respectively. All
the four results are extremely statistically sig-
nificant. Morever, in the other test sets (i.e.,
WikiGold, OntoNotes and BSNLP), our approach
again achieved better results in comparison to those
obtained by the two competitors. Finally, we also
show how WikiNEuRal-based models perform 6.8
F1 points better than CoNLL-trained models on
the WikiGold test set, and almost 1 point bet-
ter when tested on neutral test sets, namely cor-
pora from sources different from both WikiNEuRal
and CoNLL training sets (i.e., OntoNotes). Sim-
ilarly, WikiNEuRal-based models perform 7.2 F1

points better than Ontonotes-trained models on the
15https://wandb.ai

WikiGold test set, and almost 1.6 points better
when tested on neutral test sets, i.e., CoNLL.

Silver- and Gold-Standard Data Aggregation
Again, we aggregate WikiNEuRal with manually-
created datasets in the corresponding languages,
showing how the combination of gold-standard and
our silver-standard training data can achieve results
that are even higher than the ones achieved with
gold-standard training data alone. In particular, on
average16, the WikiNEuRal and CoNLL datasets
alone achieve a span F1 score of 76.9 and 82.4,
respectively, while their concatenation attains 83.8
F1. In a similar way, on average, WikiNEuRal and
OntoNotes datasets alone achieve a span F1 score
of 79.0 and 80.9, respectively, while their concate-
nation attains 83.9 F1. Hence, the concatenated
models show a stronger consistency across genres,
as demonstrated by the better results on all tested
datasets.

Domain Adaptation Our Domain Adaptation
(DA) strategy consistently improves performances
over already state-of-the-art results, while re-
quiring much less training data. On aver-
age, domain-adapted datasets attain 2.0, 1.3 and
5.4 macro F1 improvements over WikiNEuRal,
CoNLL+WikiNEuRal and OntoNotes + WikiNEu-
Ral, respectively.

16Computed on all datasets for which results are available
for the three alternatives.
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Training set

Test set CoNLL WikiGold OntoNotes BSNLP

English Spanish Dutch German English English Russian Polish

WikiANN 63.90 ± 1.86 63.18 ± 2.80 64.32 ± 1.38 55.49 ± 0.97 68.31 ± 2.14 53.58 ± 3.24 54.00 ± 1.57 60.55 ± 1.45
WikiNER 71.15 ± 0.76 72.90 ± 0.97 75.90 ± 0.63 65.72 ± 1.03 84.30 ± 0.29 74.83 ± 0.76 59.71 ± 1.20 64.87 ± 2.00
WikiNEuRal 77.02 ± 0.66 77.98 ± 0.49 79.20 ± 0.40 67.50 ± 0.31 84.69 ± 0.25* 75.25 ± 0.44 61.08 ± 0.74* 66.00 ± 1.33
WikiNEuRal DA 78.22 ± 0.57** - 81.27 ± 0.94 69.69 ± 0.57 - 77.58 ± 0.36 - -

CoNLL 88.77 ± 0.41 88.66 ± 0.37* 88.23 ± 0.78 76.77 ± 0.44 77.90 ± 0.73 74.38 ± 0.43 - -
+ WikiANN 86.46 ± 0.52 87.69 ± 0.37 84.07 ± 0.97 71.41 ± 0.81 67.55 ± 0.52 69.18 ± 0.42 - -
+ WikiNER 87.56 ± 0.48 87.19 ± 0.50 84.37 ± 0.87 72.14 ± 0.37 84.15 ± 0.44 75.30 ± 0.38 - -
+ WikiNEuRal 88.38 ± 0.40 88.02 ± 0.44 87.97 ± 0.38 76.98 ± 0.68 84.35 ± 0.44 77.08 ± 0.17 - -
+ WikiNEuRal DA 88.91 ± 0.40 - 88.51 ± 0.54 77.40 ± 0.52 - 78.56 ± 0.29 - -

OntoNotes 75.45 ± 0.55 - - - 77.47 ± 0.22 89.80 ± 0.39 - -
+ WikiANN 70.82 ± 1.17 - - - 71.03 ± 1.50 87.84 ± 1.38 - -
+ WikiNER 76.13 ± 0.87 - - - 84.81 ± 0.29 87.48 ± 0.23 - -
+ WikiNEuRal 78.46 ± 0.88 - - - 84.63 ± 0.22 88.47 ± 0.25 - -
+ WikiNEuRal DA 88.44 ± 0.41 - - - - 89.22 ± 0.18 - -

Table 5: Token-level macro F1 scores on common NER benchmarks. DA stands for Domain Adaptation. Statistical
significance was computed using Student’s t-test: * stands for p < 0.05, ** stands for p < 0.01, underline stands
for p < 0.001.

C OntoNotes-to-CoNLL Class Mapping

To better explain the mapping, we first report the 18
OntoNotes classes with their meanings: PERSON

(people, including fictional characters), ORG (com-
panies, agencies, institutions, etc.), GPE (countries,
cities, states), LOC (non-GPE locations, moun-
tain ranges, bodies of water), FAC (buildings, air-
ports, highways, bridges, etc.), PRODUCT (objects,
vehicles, foods, etc., but not services), EVENT

(named hurricanes, battles, wars, sports events,
etc.), WORK_OF_ART (titles of books, songs, etc.),
LAW (named documents made into laws), LAN-
GUAGE (any named language), NORP (nationalities
or religious or political groups), DATE (absolute or
relative dates or periods), TIME (times smaller than
a day), PERCENT (percentages), MONEY (mone-
tary values, including the unit), QUANTITY (mea-
surements, as of weight or distance), ORDINAL

(“first”, “second”, etc.), CARDINAL (numerals that
do not fall under another type).

The above classes were converted to the five
standard CoNLL-03 NER classes by analyzing
how elements belonging to these classes were
annotated in the CoNLL dataset. Specifically,
we followed the mapping reported below: PER-
SON → PER, ORG → ORG, GPE → LOC,
LOC → LOC, FAC → LOC, PRODUCT → MISC,
EVENT → MISC, WORK_OF_ART → MISC,
LAW→ O, LANGUAGE→ MISC, NORP→ MISC,
DATA → O, TIME → O, PERCENT → O,
MONEY→ O, QUANTITY→ O, ORDINAL→ O,
CARDINAL→ O.


