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Abstract

Self-supervised learning has recently attracted
considerable attention in the NLP community
for its ability to learn discriminative features
using a contrastive objective (Qu et al., 2020;
Klein and Nabi, 2020). This paper investi-
gates whether contrastive learning can be ex-
tended to Transfomer attention to tackling the
Winograd Schema Challenge. To this end,
we propose a novel self-supervised framework,
leveraging a contrastive loss directly at the
level of self-attention. Experimental analy-
sis of our attention-based models on multiple
datasets demonstrates superior commonsense
reasoning capabilities. The proposed approach
outperforms all comparable unsupervised ap-
proaches while occasionally surpassing super-
vised ones.1

1 Introduction

Pre-trained language models have propelled
the domain of NLP to a new era. Specifically,
Transformer-based models are the driving force
behind recent breakthroughs. However, despite
all the recent success in text understanding, the
task of commonsense reasoning is still far from
being solved (Marcus, 2020; Kocijan et al., 2020).
In order to assess the commonsense reasoning
capabilities of automatic systems, several tasks
have been devised. Among them is the popular
Winograd Schema Challenge (WSC) (Levesque
et al., 2012). WSC frames commonsense reasoning
as a pronoun co-reference resolution problem
(Lee et al., 2017), which consists of twin-pair
sentences. Experts curated the twin pairs manually
to be “Google-proof”, e.g., simple statistical biases
from large data should be insufficient to resolve
the pronouns. Hence, solving WSC was expected
to require diverse reasoning capabilities (e.g.,

1The source code can be found at:
https://github.com/SAP-samples/
emnlp2021-attention-contrastive-learning/

relational, causal). Sentences in the twin pairs
differ only in the “trigger word”. Furthermore,
trigger words are responsible for switching the
correct answer choice between the questions.
Below is a popular example from WSC. In the
example, the trigger word is underlined. The
challenge entails resolving the pronoun “it” with a
noun from the candidate set (“suitcase”, “trophy”):

Sentence-1: The trophy doesn't fit in the
suitcase because it is too small.
Answers: A) the trophy B) the suitcase

Sentence-2: The trophy doesn't fit in the
suitcase because it is too big.
Answers: A) the trophy B) the suitcase

The research community has recently expe-
rienced an abundance of methods proposing
to utilize the latest language model (LM) for
commonsense reasoning (Kocijan et al., 2019b;
He et al., 2019; Ye et al., 2019; Ruan et al., 2019;
Trinh and Le, 2018; Klein and Nabi, 2019; Tam-
borrino et al., 2020). Models learned on large text
corpora were hoped to internalize commonsense
knowledge implicitly encountered during training.
Most of such methods approach commonsense
reasoning in a two-stage learning pipeline. Starting
from an initial self-supervised learned model,
commonsense enhanced LMs are obtained in a
subsequent fine-tuning (ft) phase. Fine-tuning
enforces the LM to solve the downstream WSC
task only as a plain co-reference resolution task.
Despite some initial success in this direction, we
hypothesize that the current self-supervised tasks
used in the pre-training phase are too “shallow” to
enforce the model to capture a “deeper” notion of
commonsense (Kejriwal and Shen, 2020; Elazar
et al., 2021). Shortcomings of models obtained in
such a fashion can partially be attributed to the
training corpora itself. Standard training sets such

https://github.com/SAP-samples/emnlp2021-attention-contrastive-learning/
https://github.com/SAP-samples/emnlp2021-attention-contrastive-learning/
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as Wikipedia barely contain commonsense knowl-
edge, so supervised fine-tuning only promotes the
discovery of “artificial” cues and language biases
to tackle commonsense reasoning (Trichelair et al.,
2018; Saba, 2018; Trichelair et al., 2019; Emami
et al., 2019; Kavumba et al., 2019). This is the
main reason why supervised methods pre-trained
on large datasets (e.g., WinoGrande) can transfer
effectively to smaller target datasets (e.g., WSC)
yet do not show the same performance level on the
source dataset.
In an attempt to avoid the utilization of shallow
commonsense reasoning cues, very recently (Klein
and Nabi, 2020) introduced a Contrastive Self-
Supervised (CSS) learning method, leveraging
the mutual-exclusivity of WSC pairs. Despite
almost reaching state-of-the-art performance, the
approach does not require external knowledge
for training. However, the authors observed
that leveraging the contrastive loss directly on
the Transformer-backbone at the LM-level can
destabilize the self-supervised optimization.
We propose a novel self-supervised loss to address
this, introducing an abstraction layer between the
backbone and the downstream task. Our approach
smoothly manipulates the attentions to achieve this
goal in a Transformer-like fashion while avoiding
destabilization of the intrinsics. To do so, we
make use of the non-identifiability property of
attention, which implies that the attention values
are not uniquely determined from the head’s
output, and vice versa. Consequently, various
attention patterns across the Transformer can result
in identical outcomes and permit regularization -
see for details (Brunner et al., 2020). Intuitively,
the proposed contrastive attention mechanism does
not overwrite the low-level semantics captured in
the pre-trained model. Instead, it induces modest
adjustments via attention patterns. In the context of
Winograd schemas, the proposed approach shifts
the attention from the wrong answer candidate to
the right candidate. Simultaneously, the attention
contrast forces the LM to be more rigorous across
attention heads while consistent over the samples.
In summary, our contributions are the following:
First, we propose a contrastive loss enforced on
the Transformer attention, which helps for the
emergence of commonsense patterns. Second, we
present empirical evidence showcasing the viabil-
ity of the approach, outperforming comparable
state-of-the-art.

2 Attention-based Contrastive Learning

Preliminaries: The proposed approach extends
the contrastive self-supervised method (Klein and
Nabi, 2020) to facilitate commonsense reason-
ing for Winograd schemas at the attention level.
In the context of data, we assume that D with
N = |Dc| is a dataset constructed from contrastive
twin-pairs samples, (si, si+1) ∈ Dc, with cj and
cj+1 denoting answer candidates. The difference
between the sentence pairs is the so-called “trig-
ger words” responsible for flipping the answer
in pronoun disambiguation. Thus, this trigger-
word structure induces a mutual-exclusive candi-
date answer relationship at the pair level. In the
context of the model, we employ a Transformer-
based LM for Masked Token Prediction (Devlin
et al., 2018). Given a sentence with a [MASK]
token, the LM provides the likelihood of sentence
si with the token replaced by candidate tokens
cj ∈ {[CANDIDATE-1], [CANDIDATE-2]}
denoted as p (cj |si) = pi,j , assuming that the
dataset consists of i ∈ N

2 distinct twin-pairs. Be-
sides sentence likelihoods, the Transformer archi-
tecture also provides an attention tensor A(x) ∈
RH×L×C×C , for a given an input x with |x| = C,
where L denotes the number of layers, and H the
number of heads. Then the tensor decomposes into
elements ah,li,j (x), gauging the influence of token i
w.r.t. token j in layer l of attention head h.

2.1 Method

Inspired by (Klein and Nabi, 2020), we make use
of the structural prior of Winograd schemas and
their within-pair mutual-exclusivity. We formulate
this as in context of Transformer-based LM as a
multi-task optimization problem defined as:

L(fθ) = L(fθ)CM + L(fθ)CM

Here f denotes the underlying LM parameterized
by θ. The first term, LCM leverages the con-
trast arising from twin pairs enforcing mutual-
exclusivity on attentions. The second term, LCM ,
seeks to further reduce ambiguity at the LM level
by maximization between the differences of the
likelihoods for the answer candidates. It should be
noted that although the proposed approach lever-
ages the structural prior of twin pairs and it does
not make use of any class label information explic-
itly, similar to (Klein and Nabi, 2020). See Fig. 1
for a schematic illustration of the proposed method.
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Figure 1: Schematic illustration of contrastive learning for a particular sentence, where colors show attention
maps for different words of a mock setup with 3 heads and 3 layers. Squares with blue/red frames correspond to
specific sliced attention 3×3 matrix for candidates, establishing the relationship to the reference pronoun indicated
with green. Attention is color-coded in blue/red for candidates “trophy”/ “suitcase”; the associated pronoun “it”
is indicated in green. The Attention-based Contrast shows a more consistent disambiguation attention for the
correct candidate compare to the LM-based Contrast (Klein and Nabi, 2020).

2.1.1 Contrastive Attention

The contrastive mechanism targets regularizing
self-attention patterns emerging by invoking the
LM on an input sequence, thus providing the model
with commonsense reasoning capabilities. Specifi-
cally, the proposed approach seeks to induce con-
sistently higher attention values across all attention
heads and layers for the right candidate as opposed
to the wrong one. This contrasts with the LM-
level MEx (Klein and Nabi, 2020), where only the
overall value of attention is enforced to be higher
for the right candidate - see Fig. 1 for an illustra-
tion. Hence, the proposed approach promotes the
emergence of diverse attention patterns between
the attention heads, avoiding issues such as the
collapse to a single dominant head. To this end,
our proposed approach invokes twin-pair contrast
on attention level for samples in Dc. This pushes
for the superior establishment of distant dependen-
cies more indirectly than enforcing it directly on
the LM. Given the observation of (Brunner et al.,
2020) that distant relationships are formed towards
the end of the transformer stack, we restrict in-
stantiation of the contrastive attention loss on the
last layers. This, in combination with the non-
uniqueness of Transformer attentions w.r.t. output,
operating on attention level suggests comparably
smoother behavior. In order to resolve ambiguity
in the attention mechanism w.r.t. candidates, we

tie mutual exclusivity together with a binarization
scheme. Here binarization refers to a simple form
of mutual exclusivity loss applied in binary classi-
fication cases (such as WSC), defined as:

LCA = −λ
N,2∑

i=1,j=1
i+=2

(
ai,j −

e

2

)2
+
(
ai+1,j −

e

2

)2
+1−(ai,j−ai+1,j)

2+1−[(1−ai,j)−(1−ai+1,j)]
2

Here a ∈ RH denotes a vector containing the at-
tentions of all heads. Assuming attentions to be
normalized w.r.t. candidates, i.e.,

∑
j ai,j = 1,

effectively turns them into pseudo-likelihoods. Fur-
thermore, e ∈ RH is vector with all elements 1,
and λ ∈ R a hyperparameter.

2.1.2 Contrastive Margin
To stabilize optimization, we leverage consistency
between sentences of each contrastive pair. On the
one hand, it leads to faster convergence. On the
other hand, it enforces smoothness on the loss sur-
face and decreases the overall gradient fluctuation.
The CM term seeks to maximize the margin be-
tween the LM likelihoods for each candidate in a
pair:

LCM = −α
N,2∑
i,j

max (0, |pi,j − pi,j+1|+ β) ,
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Method WSC DPR W.G. K.Ref W.Gen.
Bi-LSTM (Opitz and Frank, 2018) 56.0 63.0 - - -
BERT (DPR-ft) 69.8 - 50.2 61.0 59.2
BERT (MaskedWiki-DPR-ft) (Kocijan et al., 2019b) 67.0 83.3 50.2 - 79.2
BERT (WikiCREM-DPR-ft) (Kocijan et al., 2019a) 71.8 84.8 - - -
RoBERTa (DPR-ft) 83.1 - 59.4 84.2 -
RoBERTa (WG-ft) (Sakaguchi et al., 2019) 90.1 92.5 - 85.6 -
(Rahman and Ng, 2012) 58.0 73.0 - - -
(Peng et al., 2015) - 76.4 - - -
Knowledge Hunter (Emami et al., 2018) 57.1 - - - -
E2E (Emami et al., 2019) - - - 58.0 -
MAS (Klein and Nabi, 2019) 60.3 - - - -
Ensemble LM (Trinh and Le, 2018) 63.8 - - - -
BERT (zero-shot) (Vaswani et al., 2017) 62.6 58.5 51.7 62.3 62.5
RoBERTa (zero-shot) (Liu et al., 2019) 67.7 70.3 53.7 60.4 61.6
Self-supervised Ref. (BERT) (Klein and Nabi, 2021) 61.5 61.3 52.3 62.4 62.0
Self-supervised Ref. (RoBERTa) (Klein and Nabi, 2021) 71.7 76.9 55.0 63.9 69.1
CSS (BERT) (Klein and Nabi, 2020) 69.6 80.1 50.9 65.5 69.5
CSS (RoBERTa) (Klein and Nabi, 2020) 79.8 90.6 57.7 68.0 76.2
Our Proposed Method 84.1 90.0 60.8 69.9 93.3

Table 1: Results on different tasks: WSC, DPR, WinoGrande(W.G.), KnowRef (K.Ref) and WinoGender (W.Gen).
Task performances in accuracy (%) are subdivided into two parts. Top: supervised (ft), bottom: unsupervised.

with α, β ∈ R being hyperparameters.
When training the language model, the algorithm
will look for a pattern of consistency in the attention
heads and layers rather than force-fit supervisory
signals from labels. Assuming the answer of the
first sentence is [CANDIDATE-1], it follows the
answer for the second one is [CANDIDATE-2].
This restricts the answer space. As the model is
forced to leverage the pairwise relationship to re-
solve the ambiguity, it needs to generalize w.r.t.
commonsense relationships. Intuitively speaking,
as no labels are provided to the model during train-
ing, the model seeks to make the answer probabil-
ities less ambiguous. It should be noted that the
proposed approach leverages the structural prior of
twin pairs, not making use of any label.

3 Experiments and Results

3.1 Setup

We leverage RoBERTa (Liu et al., 2019) as Lan-
guage Model for Masked Token Prediction, and
DPR (Rahman and Ng, 2012) as dataset for training.
Specifically, we use the Hugging Face (Wolf et al.,
2019) implementation of RoBERTa. The model
is trained for 22 epochs using a batch size of 18
(pairs). Hyperparameters are α = 0.05, β = 0.02,

λ = 1.0. For optimization Adam was selected
with a learning rate of 10−5. Commonsense rea-
soning is approached by first fine-tuning the pre-
trained RoBERTa (large) masked-LM model on
the DPR (Rahman and Ng, 2012).

3.2 Results

While observing loss fluctuations by learning
mutual-exclusivity at LM model directly via log-
likelihood (MEx) (Klein and Nabi, 2020), such
fluctuations are less pronounced when operating at
attention level (proposed approach).

We evaluate the performance on different tasks -
see Tab. 1. As can be seen, the proposed approach
outperforms other unsupervised methods by a sig-
nificant margin, outperforming some supervised
methods or at least significantly reducing the gap
between supervised and unsupervised approaches.
The results are discussed separately for each bench-
mark below:
WSC (Levesque et al., 2012): the most well-
known pronoun disambiguation benchmark. Our
method outperforms the strongest unsupervised
baseline CSS(BERT) margin of (+14.5%) and
CSS(RoBERTa) by (+4.3%).
DPR (Rahman and Ng, 2012): this pronoun dis-
ambiguation benchmark resembles WSC, yet sig-
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nificantly larger in size. According to (Trichelair
et al., 2018), less challenging due to inherent bi-
ases. Here the proposed approach outperforms the
unsupervised baseline CSS(BERT) by a margin of
(+9.9%), while observing a slight drop of (−0.6%)
compared to CSS(RoBERTa).
WinoGrande (W.G.) (Sakaguchi et al., 2019):
the largest dataset for Winograd co-reference
resolution. Our method outperforms the unsu-
pervised baseline CSS(BERT) by (+9.9%) and
CSS(RoBERTa) by (+3.1%), even surpassing su-
pervised RoBERTa(DPR-ft) by (+1.4%).
KnowRef (Emami et al., 2019): a co-reference cor-
pus addressing gender and number bias. The pro-
posed approach outperforms the unsupervised base-
line CSS(BERT) by a margin of (+4.4%) and CSS
(RoBERTa) by (+1.9%).
WinoGender (Rudinger et al., 2018): a gender-
balanced co-reference corpus. The proposed
approach outperforms the unsupervised base-
line CSS(BERT) by a margin of (+23.8%) and
CSS(RoBERTa) by (+17.1%).

3.2.1 Attention-level Analysis

Inspired by (Vig and Belinkov, 2019), we assess
the impact of the attention mechanism by analyzing
the attention tensor which is obtained by querying
the attention of the MASK token w.r.t. right/wrong
candidate over all layers and heads. The tensor de-
composes into elements ah,li,j (x), gauging the influ-
ence of token i w.r.t. token j in layer l of attention
head h. Aggregating the attention of MASK token
i for the tokens cj for the right and wrong candi-
dates by summation, slices the tensor into matrices
Ar, Aw ∈ RH×L generating attention maps.Here
Ar, Aw corresponds to the attention maps w.r.t. the
right answer and the wrong answer, respectively.
Following (Brunner et al., 2020), we also investi-
gated the maps of the last k-layers, denoted as A[k]

r

and A[k]
w . We then computed the attention differ-

ence and entropy H(.) difference on the attention
maps of all DPR (Rahman and Ng, 2012) samples,
and presented the statistics in Tab. 2.

We observed a significant concentration of atten-
tion for the right candidates for the proposed ap-
proach compared to the wrong ones. This pattern is
even more pronounced for the last 3 layers. Specif-
ically, we observed the manifestation of an average
entropy of 3.41 (right) nats vs. 2.1 nats (wrong)
on the last 3 layers, giving rise to the emergence
of the desired pattern of more concerted attention

RoBa CSS Ours
|H(Ar)−H(Aw)| 0.024 0.097 0.078
|H(A

[3]
r )−H(A

[3]
w )| 0.005 0.772 1.328

|Ār − Āw| 0.009 0.010 0.061

|Ā[3]
r − Ā[3]

w | 0.020 0.034 0.306

Table 2: Attention analysis of different models on DPR,
and k = 3. Top: entropies, Bottom: mean statistics.

Method WSC W.G.
RoBERTa (Liu et al., 2019) 67.76 53.75
CSS (RoBERTa) 79.85 57.77
Our Method (CM) 60.81 52.88
Our Method (CA) 80.95 57.14
Our Method (CA+CM) 84.10 60.80

Table 3: Ablation study, performance in accuracy (%)

on the right candidate. See supplementary material
for more detailed results.

3.2.2 Ablation Study

To assess the contribution of each component, we
evaluated the performance of each module sepa-
rately, gradually adding components to the loss.
See Tab. 3 for the ablation study on WSC and Wino-
Grande. Pre-trained RoBERTa (large) constitutes
the baseline. MEx denotes the mutual-exclusive
loss on the sentence log-likelihoods (Klein and
Nabi, 2020), CA denotes the contrastive attention
defined in Sec. 2.1.1, CM denotes the contrastive-
margin defined in Sec. 2.1.2. While the CA term
alone already suggests strong performance, this
does not apply to the CM term. Given the reg-
ulatory nature of the CM term, optimizing it in
isolation yields a model with inferior accuracy.

4 Conclusion

In this paper, we introduce an attention-level self-
supervised learning method for commonsense rea-
soning. Specifically, we propose a method that
enforces a contrastive loss on the attentions pro-
duced by transformer LM while pushing the like-
lihood of the candidates towards the extremities.
The experimental analysis demonstrates that our
proposed system outperforms the previous unsuper-
vised state-of-the-art in multiple datasets.
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