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Abstract

Machine reading comprehension (MRC) is a
challenging NLP task for it requires to care-
fully deal with all linguistic granularities from
word, sentence to passage. For extractive
MRC, the answer span has been shown mostly
determined by key evidence linguistic units, in
which it is a sentence in most cases. However,
we recently discovered that sentences may not
be clearly defined in many languages to dif-
ferent extents, so that this causes so-called
location unit ambiguity problem and as a re-
sult makes it difficult for the model to deter-
mine which sentence exactly contains the an-
swer span when sentence itself has not been
clearly defined at all. Taking Chinese language
as a case study, we explain and analyze such
a linguistic phenomenon and correspondingly
propose a reader with Explicit Span-Sentence
Predication to alleviate such a problem. Our
proposed reader eventually helps achieve new
a state-of-the-art on Chinese MRC benchmark
and shows great potential in dealing with other
languages.

1 Introduction

Machine reading comprehension (MRC) is a task
that requires models to answer a question according
to a given passage. This is a challenging task for it
demands to carefully deal with all linguistic gran-
ularities from word, sentence to passage (Zhang
et al., 2020b; Zhou et al., 2020). For extractive
MRC as the focus of this paper, the answer span has
been shown mostly determined by key evidence lin-
guistic units, in which it is a sentence in most cases
(Zhang et al., 2020a). However, we recently found
that sentences may be not clearly defined in many

∗ Corresponding author. This paper was partially sup-
ported by Key Projects of National Natural Science Founda-
tion of China (U1836222 and 61733011).

languages to different extents, so that this causes
so-called location unit ambiguity problem to let
model more difficultly determine which sentence
exactly contains the answer span when sentence
itself has not been clearly defined at all. In detail,
sentence may include multiple clauses like English,
or it consists of a series of sub-sentences like Chi-
nese, where all sub-sentences share the same sub-
ject, predicate or object (Li et al., 2020b). When
a language has relatively strict grammar means to
determine the boundaries of sentence constituents
such as clauses or sub-sentences, it will facilitate
MRC models to more conveniently focus on a cer-
tain range of text for finding answer span. Oth-
erwise, there comes an obvious so-called location
unit ambiguity problem to hinder the performance
of extractive MRC.

In the following, we take Chinese language as a
case study to explain and analyze such a linguistic
phenomenon and correspondingly find a solution.
For the characteristics of Chinese, “In terms of
sentence structure, English is determined by rule,
while Chinese is determined by man” (Wang, 1984),
that is, English focuses more on syntax while Chi-
nese focuses more on semantics. A full long En-
glish sentence has to be subject to strict grammati-
cal means so that clauses can be clearly identified,
while in Chinese, such a long sentence may be writ-
ten in a loose way, typically, whose subject may
be conveniently omitted for all later sub-sentences,
so that the boundaries between sentences and sub-
sentences are blurred. As a result, there are more
independent short sentences in Chinese which may
be equally written as a single grammar-rigorous
long one in English (Li and Nenkova, 2015; Zhao
et al., 2017; Duan and Zhao, 2020).

As shown in a Chinese MRC example in Fig-
ure 1, the completely paraphrased sentence to an-
swer the question is given in a series of short sub-
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       卵为黄色， 一次产卵20~30粒            
      Hatch after about 10 days.

 
       Their eggs are yellow, with  20~30 eggs at once    
  laying,  which will hatch after about 10 days.   

为黄色 yellow, with 20~30 eggs   
hatch after about 10 days

Chinese Reader English Reader

Exact match：
EM = 1

Implicit answer-related 
sentence locating

Span extraction2~3个月， 
约10日孵化

Omitting error:
P ⸦ G

Surplus error:
P ⸧ G

拉迪氏鱼的卵有什么特征？

What are the characteristics of Lardigesi's eggs?

黄色，一次产卵20~30粒，卵约10日孵化

yellow, with  20~30 eggs at once laying, which 
will hatch after about 10 days

Passage

Question Answer

Ladigesi's laying period lasts for 2~3 months.     

     

Eggs are yellow. Once laying 20~30 eggs.
  拉迪氏鱼产卵期2~3个月， ， 约10日孵化。 

      Ladigesi's laying period lasts for 2~3 months.

Figure 1: An example of location unit ambiguity of Chinese MRC models compared with English. The main
alignment between two languages is marked in orange. P and G refer to predicted span and ground truth answer
span, respectively.

sentences in Chinese, which are connected in dis-
course relation but relatively independent in syntax.
Actually, we provide two groups of English transla-
tions in Figure 1, in which the same Chinese ‘long
sentence’ may be accurately translated into either a
series of short sentences (in small font) or a strictly
well-formed long sentence (in big font). In addition
to flexible word order, Chinese expressions tend to
adopt ellipsis for every possible constituent includ-
ing the shared subject, leading word or conjunc-
tions, which makes it much more difficult to iden-
tify a strictly-defined long sentence in Chinese than
in English . Thus assuming that there is a implicit
locating process of answer-related sentence before
extracting the answer span, English MRC mod-
els may easily locate the complete answer-related
sentence (right part of Figure 1), while Chinese
MRC models may face the location unit ambiguity
(left part of Figure 1), ignoring some needed sub-
sentences (omitting) or focusing on unrelated ones
(surplus). Such specific difficulty in Chinese MRC
essentially requires a mechanism that is capable of
teaching the model to locate exact answer-related
sentences in an explicit way.

In this paper, we intend to discover if this sen-
tence definition difficulty caused location unit am-
biguity can be solved well and take a case study on
Chinese extractive MRC. The basic form of extrac-
tive MRC is requiring models to extract a text span
out of the passage to answer the question, given a
〈passage, question〉 pair, such as SQuAD1.1 (Ra-

jpurkar et al., 2016), NQ (Kwiatkowski et al., 2019)
and CMRC 2018 (Cui et al., 2019). There are
also some other variants: SQuAD2.0 (Rajpurkar
et al., 2018), CoQA (Reddy et al., 2019), HotpotQA
(Yang et al., 2018), etc. The mainstream scheme of
existing models is modeling extractive MRC as a
token-level task, that is, to predict the probability
of each token as a start/end span, so as to extract
the most suitable answer span (Devlin et al., 2019).

Specifically, we propose ESPReader (Reader
with Explicit Span-sentence Predication), applying
the proposed extra explicit span-sentence predica-
tion (ESP) subtask to help model locate the answer-
contained sentences more precisely. ESP is auto-
matically constructed from the original span extrac-
tion dataset, which enables the model forcedly to
locate the sentence containing the answer span in
an expicit way. ESP will be jointly trained with
the original token-level task. Our model uses self-
attention to acquire answer-aware sentence-level
representations from ESP and then fuses them with
the original token-level representations from en-
coder by cross-attention for better span extraction.

Our contribution is summarized as follows:

• To our best knowledge, we are the first to
report the sentence definition ambiguity in
human language together with its negative im-
pact over MRC task.

• Our proposed ESP can be automatically con-
structed from the original corpus without extra
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human tagging.

• Experiments verify the performance and gen-
erality of our proposed model, and a new state-
of-the-art on base-level models is achieved.

2 Related Work

2.1 Machine Reading Comprehension

Machine reading comprehension (MRC) is one of
the main research directions of natural language
processing (NLP). MRC tasks aim at testing ma-
chine’s comprehension of natural language by re-
quiring to answer questions given a relative pas-
sage (Hermann et al., 2015; Zhang et al., 2020d),
whose types mainly include cloze (Hill et al.,
2015; Cui et al., 2016), multi-choice (Lai et al.,
2017; Sun et al., 2019) and span extraction (Ra-
jpurkar et al., 2016; Cui et al., 2019; Reddy et al.,
2019). In this paper, we focus on Chinese MRC
of the last style. MRC tasks have made great
progress and there appeared many models with
great performance: Read+Verify (Hu et al., 2019),
RankQA (Kratzwald et al., 2019), SG-Net (Zhang
et al., 2020c), SAE (Tu et al., 2020), Retro-Reader
(Zhang et al., 2021), etc. Among them Reddy et al.
(2020) aimed at resolving the partial matched prob-
lem in English span extraction tasks, which is close
to our model design and task purpose for Chinese.
Their solution is constructed as a two-stage model
that first locates the initial answer, and then marks
it in the raw passage and redoes the reading process.
Differently, our method is a fully end-to-end model
with a special model design which enables model
to learn accurate locations of span-sentences.

2.2 PrLMs and Chinese PrLMs

Pre-trained contextualized language models
(PrLMs) like BERT (Devlin et al., 2019) achieved
excellent results in various downstream tasks.
PrLMs now dominate the encoder design of many
NLP tasks, including MRC (Zhang et al., 2021; Xu
et al., 2021). More and more well designed PrLMs
keep emerging, including XLNet (Yang et al.,
2019), RoBERTa (Liu et al., 2019), ALBERT (Lan
et al., 2019), ELECTRA (Clark et al., 2020), etc.
As for Chinese PrLMs, MacBERT (Cui et al.,
2020) uses whole word masking and n-gram
masking strategies to select candidate tokens for
masking and replaces the [MASK] token with
similar words for the masking purpose.

2.3 Multi-grained and Hierarchical Models

To handle the location unit ambiguity, our model
quotes a middle-level improvement design, thus
our research has some correlation with multi-
grained and hierarchical models (Choi et al., 2017;
Wang et al., 2018; Luo et al., 2020). Shen et al.
(2018) proposed a multi-grained approach combin-
ing character-level, word-level and relation-level
for text embeddings. Ma et al. (2019) proposed
a claim verification framework based on hierar-
chical attention neural networks to learn sentence-
level evidence embeddings to obtain claim-specific
representation. All the above works used low-
level semantic information to obtain high-level
semantic representation, which is different from
our intent of using sentence-level information to
assist token-level task. Zhang et al. (2020a) pro-
posed a hierarchical network that chooses top K
answer-related sentences from the given passage
scoring by cosine and bilinear scores to build a
new passage for further multi-choice tasks. Their
work is somewhat similar to our method. How-
ever, we let model directly locate the answer-
contained sentence, and use this sentence-level in-
formation for further token-level span extraction
by cross-attention instead of straightly discarding
other lower scoring sentences.

3 Our Proposed Model

As shown in Figure 2, our proposed Reader with
Explicit Span-sentence Predication (ESPReader)
consists of three modules, that is PrLM encoder,
sentence-level self-attention layer and fusion cross-
attention layer. The details will be given below.

Explicit Span-sentence Predication To en-
hance the model with the capacity of locating the
answer-related sentences more precisely, an ex-
plicit span-sentence predication (ESP) is proposed
as a sentence-level subtask. For the sake of the
integrity of sentence structure and content, para-
graphs are divided into natural sentences by ending
punctuation (“,”, “.”, “?”, and “!”) other than a fixed
length. After such segmentation, sentence con-
taining the answer span will be labeled as a span-
sentence. During training, our model is required to
explicitly locate the span-sentence while extracting
answer span, which may alleviates the location unit
ambiguity issue as span-sentence boundaries have
been annotated according to the least sub-sentence
segmentation among punctuations.



2351

 

PrLM Encoder

[CLS] q1 [SEP] [SEP]p1... ...

h1 h2 ... hnToken-level 
encoder output

s1 s2    sm

S

Add & Norm

Feed-forward layer

Se
nt

en
ce

-le
ve

l 
Se

lf-
at

te
nt

io
n 

la
ye

r

Multi-head
self-attention

Add & Norm

Feed-forward layer

Fu
si

on
 

C
ro

ss
-a

tte
nt

io
n 

la
ye

r

Multi-head
cross-attention

Linear 
& softmax

Aggregation

SSA layerFCA layer

HT HS

Token-level output 
fused with answer-aware 

sentence-level information
Answer-aware 

sentence-level representation

Span extraction
Explicit span-

sentence predication 
(only in training)

Linear 
& softmax

Question Passage

Figure 2: The architecture of our proposed model.

Since an answer span may stride over multiple
sentences, we model the ESP subtask as a form of
predicting the location of the start/end sentence (or
sub-sentence), which is consistent with the form of
original span extraction task.

Sentence Position Embedding We sum up four
embeddings including sentence position embed-
ding Es (see Appendix A for details about Es) as
input to let the PrLM encoder yield representations
as: Einput = Ew + Ep + Et + Es, where Ew, Ep

and Et are respectively word embedding, position
embedding (the token’s offset in the whole input
sequence) and token type embedding (the token
belongs to question or passage), respectively.

Sentence-level Representation Reimers and
Gurevych (2019) found that using mean of the out-
put vector of the last layer of PrLM as sentence
representation outperforms the overall representa-
tion according to [CLS] token marginally. Li et al.
(2020a) claimed that using the average of the last
two layers as the sentence embedding is better and
mapping it to the standard Gaussian latent space
can further eliminate the uneven problem of embed-
ding space caused by word frequency difference.

Taking both experimental effectiveness and
model simplicity into consideration, we use the
average of last layer’s output of PrLM for all to-
kens Ht = {h1t , h2t , ..., hnt } in the corresponding

sentences as the sentence-level representation S:

S = {s1, s2, ..., sm},

si =
1

ni

spi+ni−1∑
j=spi

hjt
(1)

where spi and ni are the start position offset and
length of sentencei, respectively.

Sentence-level Self-attention Layer In terms of
the PrLM encoded sentence representations, we
apply multi-head attention mechanism (Vaswani
et al., 2017) to calculate the self-attention between
sentences, as follows:

Ai
s = softmax(

Qi
sK

i
s
T

√
dk

)V i
s ,

H̃s = Concate(A1
s, A

2
s, ..., A

D
s )

(2)

where Ai
s is the sentence-level attention score of

headi. D is the total number of heads.

Qi
s = SWQ,i

s , Ki
s = SWK,i

s , V i
s = SW V,i

s (3)

where WQ,i
s ,WK,i

s ,W V,i
s ∈ Rdh×dk are all learn-

able parameters matrices.
Next, H̃s will be passed through a feed-forward

layer followed by GeLU activation (Hendrycks and
Gimpel, 2016), and then passed through the resid-
ual layer and layer normalization to get the final
sentence-level output Hs = {h1s, h2s, ..., hms }. To
predict the start/end sentence, we use a linear layer
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with softmax layer to obtain the probability of each
sentence as a start/end sentence separately:

ss, se = softmax(Linear(Hs)) (4)

where Linear is a linear transformation of dh → 2.
Cross entropy loss is used as our training object:

Ls = yss logss + yse logse (5)

where yss and yse are the ground truth label vectors
of start/end sentence. Thus, Hs will be guided as
answer-aware sentence-level representations.

Fusion Cross-attention Layer To integrate
sentence-level information for span extraction, we
conduct cross-attention between the output of en-
coder Ht and the output of sentence-level self-
attention layer Hs. The calculation is almost the
same as Eq. (2), except that the sources of vectors
Q, K and V differ: Q comes from Ht , while K
and V come from Hs:

Qi
F = HtW

Q,i
F ,

Ki
F = HsW

K,i
F , V i

F = HsW
V,i
F

(6)

where WQ,i
F ,WK,i

F ,W V,i
F are all learnable parame-

ters matrices as Eq. (3). The remaining calculation
process is exactly the same as the sentence-level
self-attention layer. Through fusion cross-attention
layer, the token-level fusion output Ft which is
injected with answer-aware sentence-level repre-
sentations is obtained.

Finally, a manual weight α is used to aggregate
Ft and the original encoder output Ht to get the
final token-level output:

H ′
t = αHt + (1− α)Ft (7)

H ′
t will be applied to make start/end span pre-

dictions ts and te as:

ts, te = softmax(Linear(H ′
t)) (8)

Equally, cross entropy is used as the token-level
loss function:

Lt = yts logts + yte logte (9)

where yts and yte are the ground truth label vectors
of start/end span.

Training and Prediction During the training
phase, we will jointly learn span extraction and
ESP, and the final loss is:

L = βLt + (1− β)Ls (10)

where β is a manual weight.
During the prediction phase, we only make

start/end span prediction. The straightforward scor-
ing function is:

Scoreraw(i, j) = tis + tje, (11)

where i, j are the start and end token position,
respectively (0 ≤ i ≤ j ≤ n). Considering that
ESPReader is forced to pay more attention to whole
sentences by adding the proposed ESP subtask,
which might result in a length growth in predicted
span, we design a scoring function with inverse
length factor (ILF). Note that the span length is not
exactly the shorter the better. It only works in this
way when two sentences are with the similar length
for the sake of reducing redundancy. Taking all
these into account, our adopted scoring function is
as follows:

ScoreILF (i, j) = tis + tje + ILF (i, j),

ILF (i, j) = −µ(j − i)
√
((j − i)/l − 1)2

(12)

where l is the average length of all candidate an-
swer spans. µ is a manual weight. When the span
length is close to the average, ILF will assign some
inhibitory effect on long spans. See Appendix B
for a more concrete impression on ILF.

Train Dev Test
Question 10,321 3351 4895
Answer per query 1 3 3
Max passage tokens 962 961 980
Max question tokens 89 56 50
Max answer tokens 100 85 92
Avg passage tokens 452 469 472
Avg question tokens 15 15 15
Avg answer tokens 17 9 9

Table 1: Statistics of the CMRC 2018 dataset.

4 Experiment

4.1 Dataset
Our proposed method is evaluated on the extractive
Chinese MRC benchmark, CMRC 2018 (Cui et al.,
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Dev Test
Model EM F1 Avg EM F1 Avg
Human performance∗ 91.1 97.4 94.3 92.4 97.9 95.2
BERTbase

∗ 65.5 84.5 75.0 70.7 87.0 78.9
ELECTRAbase

∗ 68.4 84.8 76.6 73.1 87.1 80.1
RoBERTawwm_ext_base

∗ 67.4 87.2 77.3 72.6 89.4 81.0
MacBERTbase

∗ 68.5 87.9 78.2 73.2 89.5 81.4
ESPReader

on BERTbase 68.7 (↑3.2) 86.3 (↑1.8) 77.5 (↑2.5) – – –
on RoBERTawwm_ext_base 70.7 (↑3.3) 88.3 (↑1.1) 79.5 (↑2.2) – – –
on MacBERTbase 71.8 (↑3.3) 88.7 (↑0.8) 80.3 (↑2.1) 75.6 (↑2.4) 90.0 (↑0.5) 82.8 (↑1.4)

ELECTRAlarge
∗ 69.1 85.2 77.2 73.9 87.1 80.5

RoBERTawwm_ext_large
∗ 68.5 88.4 78.5 74.2 90.6 82.4

MacBERTlarge
∗ 70.7 88.9 79.8 74.8 90.7 82.8

MacBERTlarge_extData_v2
† – – – 80.4 93.8 87.1

ESPReader
on RoBERTawwm_ext_large 72.3 (↑3.8) 89.4 (↑1.0) 80.9 (↑2.4) – – –
on MacBERTlarge 72.3 (↑1.6) 89.6 (↑0.7) 81.0 (↑1.2) 77.2 (↑2.4) 91.5 (↑0.8) 84.4 (↑1.6)

Table 2: Results on CMRC 2018. Overall best performances are depicted in boldface (base-level and large-level are
marked individually). ↑ refers to the relative increasing compared with according baseline. † refers to unpublished
work and the results are gained from CMRC 2018 leaderboard. ∗ refers to results coming from Cui et al. (2020).

2019), which is similar to SQuAD1.1 (Rajpurkar
et al., 2016), given a passage, asks model to locate
answer span inside for a question, and all questions
are supposed to be answerable. The official metrics
are Exact Match (EM) and a softer metric F1 score.
The dataset details are listed in Table 1 1.

4.2 Setup

In our ESPReader implementation, we adopt well
trained Chinese PrLMs as the encoder. Meanwhile,
for each adopted PrLM, we add a one-layer MLP
on its top which directly predicts start/end posi-
tions of answer span as the default reader to form
baseline models for comparison.

We consider three Chinese PrLMs, MacBERT
(Cui et al., 2020) which helps achieve the current
state-of-the-art on CMRC 2018, Chinese versions
of BERT (base2) and RoBERTa (base3 and large4).

Our hyperparameters are in Appendix C.

1There is an extra small Challenge set in CMRC 2018. It
especially checks the capability of model reasoning, which is
beyond the topic of this work which focuses on the location
unit ambiguity. We test our model on this set, which shows
an Avg score drop of more than 1%. It is unsurprising and
explainable since our ESP task, which forces to locate a certain
sentence, might do little help to model’s reasoning ability
among multiple sentences.

2bert-base-chinese
3chinese-roberta-wwm-ext
4chinese-roberta-wwm-ext-large

4.3 Results
Table 2 shows the experimental results on CMRC
2018. As can be seen, compared with baselines, our
proposed model achieves significant5 EM and F1
scores improvements on both base-level and large-
level models, especially EM scores, with an overall
average increase of more than 2%. Moreover, it
is noticed that our ESPReader on MacBERTbase

achieves a new state-of-the-art on CMRC 2018
leaderboard6 of base-level models by gaining a
comparable F1 score to MacBERTlarge, and even
outperforming it on EM score on both Dev and Test
sets. Besides, ESPReader on MacBERTlarge also
gains the highest EM and average scores among all
published work.

4.4 For Different Types Chinese MRC Tasks
To validate the generality of our method, we fur-
ther test ESPReader on other two different types
of Chinese MRC tasks, DRCD (Shao et al., 2018)
and CJRC (Duan et al., 2019) (see Appendix D for
dataset details). As shown in Table 3, ESPReader
obtains visible increase on both datasets compared
with our baselines.

5we make the McNemar’s test (McNemar, 1947) to test
the statistical significance of our results. For results in both
Tables 2 and 6, we get a p-value<0.01.

6http://ymcui.com/cmrc2018/
7We strictly follow settings provided by Cui et al. (2020)

and report the best scores in three times of individual running

https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin
https://huggingface.co/hfl/chinese-roberta-wwm-ext/resolve/main/pytorch_model.bin
https://huggingface.co/hfl/chinese-roberta-wwm-ext-large/resolve/main/pytorch_model.bin
http://ymcui.com/cmrc2018/
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DRCD CJRC
Model EM / F1 / Avg EM / F1 / Avg

Cui et al. (2020)
RoBERTa 89.6 / 94.5 / 92.1 62.4 / 82.2 / 72.3
MacBERT 91.7 / 95.6 / 93.7 62.9 / 82.5 / 72.7

Our Implementation 7

RoBERTa 88.8 / 94.1 / 91.5 68.6 / 77.5 / 73.1
MacBERT 89.8 / 94.9 / 92.4 70.2 / 79.4 / 74.8
ESPReader

on RoBERTa 89.6 / 94.7 / 92.2 69.9 / 78.6 / 74.3
on MacBERT 90.3 / 95.1 / 92.7 71.1 / 80.1 / 75.6

Table 3: Results on Test set of DRCD and CJRC.
RoBERTa and MacBERT refer to chinese-roberta-
wwm-ext-large and chinese-macbert-large, respec-
tively.

It is noticed that the improvement on DRCD
is not that significant as CJRC (0.3% v.s. 0.8%
on MacBERTlarge). One possible explanation is
that DRCD is a relatively simple task and the av-
erage answer length is 4.9, which means most of
the answers are in a single sub-sentence to let our
ESP task unnecessary. To validate this, we make
statistics on three Chinese MRC datasets to find
out the proportions of the examples where a single
sub-sentence is sufficient for extracting the answer
span, as shown in Table 4. Note that 99.2% ex-
amples of DRCD can find answer span in a single
sub-sentence, which is consistent with our assump-
tion.

Needed Sub-sentences
Dataset one two more
CMRC 74.6% 13.1% 12.3%
DRCD 99.2% 0.7% 0.1%
CJRC 94.7% 3.0% 2.3%

Table 4: Proportions of the examples classified by the
number of needed sub-sentences to extract the answer
span.

4.5 For Other Languages
Although ESPReader is specifically designed for
Chinese MRC, we also test our ESPReader on En-
glish MRC benchmarks, SQuAD2.0 (Rajpurkar

for each baseline.
8bert-base-uncased
9electra-base-discriminator

10Since Asai et al. (2018) only provided test set for
both languages, we fine-tune models on CMRC 2018 (from
MacBERTbase) and SQuAD1.1 (from ELECTRAbase) and
then directly evaluate on Japanese and French, respectively.

SQuAD2.0
Model EM F1 Avg
BERTbase

∗ 8 72.6 74.6 73.6
ELECTRAbase

∗ 9 80.9 83.8 82.4
ESPReader ∗

on BERTbase 74.6 76.2 75.4
on ELECTRAbase 82.5 85.4 84.0

Table 5: Results on Dev set of SQuAD2.0. ∗ refers to
our implementation.

Japanese French
Model EM / F1 / Avg EM / F1 / Avg
Baseline 9.9 / 29.8 / 19.9 25.9 / 45.5 / 35.7
ESPReader 19.6 / 36.2 / 27.9 29.7 / 45.2 / 37.5

Table 6: Zero-shot test 10 on Japanese and French
SQuAD datasets.

et al., 2018). The results are shown in Table 5. Even
though our model is not supposed to design for
English tasks, it still achieves obvious improving
compared with two English MRC baseline model
(1.8% and 1.6% Avg score, respectively), which in-
dicates our model’s potential in dealing with tasks
of other languages. To validate this, we further
conduct a zero-shot test on Japanese and French
datasets provided by Asai et al. (2018), as shown in
Tabel 6. On both languages, our method achieves
significant improvements, especially the former.

Above results indicate that the location unit am-
biguity is a common issue in many languages with
different seriousness. As shown of an English
MRC example in Figure 3, though strictly-defined
as a clause of the answer span, sometimes it could
be totally unrelated with respect to the question.

P:  Plants produce oxygen and energy through the photosynthesis of   
      chloroplast, which also exists in Euglena (a unicellular eukaryote).
Q:  How do plants produce oxygen and energy?
A:  through the photosynthesis of chloroplast
Prediction:
   Baseline: through the photosynthesis of chloroplast, which also exists   

  in Euglena (a unicellular eukaryote)
         Ours: through the photosynthesis of chloroplast

Figure 3: An English MRC example with location unit
ambiguity. The span-sentence is underlined.

5 Ablation Study

5.1 Effect of Each Module
For the purpose of tracking improvement sources
of our ESPReader, we conduct thorough ablation

https://huggingface.co/hfl/chinese-roberta-wwm-ext-large/resolve/main/pytorch_model.bin
https://huggingface.co/hfl/chinese-roberta-wwm-ext-large/resolve/main/pytorch_model.bin
https://huggingface.co/hfl/chinese-macbert-large/resolve/main/pytorch_model.bin
https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin
https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-base-discriminator/pytorch_model.bin
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studies by adding the proposed modules one by one
from the baseline setting (MacBERTbase). The re-
sults are in Table 7. It is noticed that by only adding
ESP task, the Avg score on CMRC 2018 Dev set
is improved by 1.3%. By further adding sentence-
level self-attention layer or fusion cross-attention
layer separately, the Avg score does not signif-
icantly increase (0.1% and 0.3%, respectively).
However, when both of them are included, another
visible improvement (0.9%) is obtained.

Model EM F1 Avg
Baseline (MacBERTbase) 68.5 87.9 78.2

+ ESP 70.5 88.3 79.4
+ ESP + SSL 70.9 88.1 79.5
+ ESP + FCL 71.0 88.4 79.7
+ ESP + SSL + FCL 71.8 88.7 80.3
+ ESP + SSL + FCL - SPE 71.5 88.7 80.1

Table 7: Results on CMRC 2018 Dev set when adding
each module. SSL: sentence-level self-attention layer,
FCL: fusion cross-attention layer, SPE: sentence posi-
tion embedding.

Considering that we additionally introduce sen-
tence position embedding (Es) on the basis of
BERT’s embedding layer, we compared the perfor-
mance of ESPReader with/without Es. As shown
in Table 7, addingEs can bring a marginal improve-
ment (0.2% Avg score).

Model EM F1 Avg

Baseline (BERTbase) 65.5 84.5 75.0
ESPReader

+ RS (BERTbase) 65.8 85.6 75.7
+ ILF (BERTbase) 68.7 86.3 77.5

Baseline (MacBERTbase) 68.5 87.9 78.2
ESPReader

+ RS (MacBERTbase) 68.7 88.1 78.4
+ ILF (MacBERTbase) 71.8 88.7 80.3

Table 8: Ablation study results of scoring functions on
CMRC 2018 Dev set. RS and ILF refer to Scoreraw
and ScoreILF .

5.2 Scoring Function
We keep other settings unchanged and adopt two
scoring functions Scoreraw and ScoreILF , respec-
tively. The results are listed in Table 8.

It is observed that the proposed scoring func-
tion ScoreILF makes a nontrivial contribution to
the performance of our model on both EM and F1

scores, especially the former (2.9% on BERTbase

and 3.1% on MacBERTbase). This observation is in
line with our assumption that ESPReader is forced
to pay more attention to whole answer-related sen-
tences with an explicit span-sentence predication
and thus results in a length growth in predicted span.
Note that our model brings increase on both EM
and F1 scores to varying degrees, even though ILF
is not applied. This indicates that the model bene-
fits from the location guidance produced by ESP
task more than suffering from the length growth
of predicted span caused by it, which can be well
lessened by ILF.

Error type
Model P ⊂ G P ⊃ G other
Baseline (MacBERTbase) 21.7% 57.2% 21.1%
ESPReader (RS) 19.9% 63.4% 16.7%
ESPReader (ILF) 26.5% 52.9% 19.5%

Table 9: General percentage distribution of each error
type on CMRC 2018 Dev set.

MacBERTbase

ESSPReaderbase (RS)

221 583 100 114 1018

1010

909

202 639 85 84

241 481 77 100

P   GP ⸦ G P ⸧ G F1 = 0

ESPReaderbase (ILF)

Figure 4: Numbers of each error type on CMRC 2018
Dev set.

5.3 Error Analysis
To take a deep sight into the sources of precision
growth, We further research the distribution of each
error (EM = 0) type after applying our method,
the general percentage distribution is shown in Ta-
ble 9 and the details of actual numbers of each error
type are shown in Figure 4. Combining them, we
find that with ESP our model decreases both the ac-
tual numbers and percentage of all error types (ex-
cept for the surplus error), of which the actual num-
ber of F1 = 0 (which means the predicted span is
totally unrelated) is dropped by 26.3% (114→ 84).
It indicates that ESP effectively corrects the loca-
tion unit ambiguity issue of Chinese MRC. Note
that ILF for scoring helps reduce surplus errors but
causes more omitting errors.

In order to have an concrete insight that how



2356
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Figure 5: Visualization of the attention scores (average of all heads) of last layers of MacBERTbase (left) and
ESPReader on MacBERTbase (right). The answer span is depicted in red.

our method helps solve location unit ambiguity,
we draw attention heatmap of last encoder layer
of MacBERT and our proposed model, as shown
in Figure 5. Note that the baseline model focuses
much on the answer-unrelated sub-sentence. How-
ever, the attention distribution of our model is ob-
viously more focused on the span-sentence, which
is contributed by our ESP mechanism.

6 Conclusion

This paper aims at addressing the newly discov-
ered difficulty of the boundary ambiguity between
sentences and sub-sentences, which exists in many
languages to different extents and essentially limits
the performance of span extraction MRC models,
especially in Chinese environment. We apply ex-
plicit span-sentence predication (ESP) to enhance
model’s ability of precisely locating sentences con-
taining the target span. Our proposed model de-
sign is evaluated on Chinese span extraction MRC
benchmark, CMRC 2018. The experimental re-
sults show that our model significantly improves
both EM and F1 scores compared with strong base-
lines and helps achieve a new state-of-the-art per-
formance. Our method also shows generality and
potential in dealing with other languages. This
work highlights the research line of further im-
proving challenging MRC by analyzing specific
linguistics phenomena.
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A Details about Sentence Position
Embedding

Sentence position embedding (Es) indicates the
sentence offset of each token. For normal tokens,
their sentence positions are the offsets of the seg-
mented sentences they belong to. For special to-
kens, the sentence position of:

• [CLS]: Set as 0.

• [SEP]: Equal to that of the nearest normal
token it follows.

• [PAD]: Set as that of the last normal token
plus 1.

In this way, every token is assigned with a sentence
position and then a lookup table is used to map
these positions to vectors, which is the sentence
position embedding.

B ILF Curves

To concretely show the reflections of ILF to differ-
ent predicted span lengths (j − i), we draw curves
of ILF value, as shown in Figure 6. It can be seen
that ILF achieves the minimum value when span
length is equal to the average length of all candidate
spans. Besides, ILF has a more obvious inhibitory
effect on longer spans than shorter spans.
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Figure 6: The curves of ILF value under different aver-
age lengths of candidate spans when µ = 0.1.

C Settings of Hyperparameters

For the fine-tuning in our tasks in terms of the
adopted PrLMs, we set the initial learning rate in
{3e-5, 5e-5}. The warm-up rate is set to be 0.1,
with a L2 weight decay of 0. The batch size is
selected as 24 for base models and 64 for large

models. The number of epochs is set to be 2 in all
the experiments. Texts are tokenized using word-
pieces, with a maximum length of 512 and doc
stride of 128. The manual weights are α = 0.5,
β = 0.8 and µ = 0.1.

D Details of datasets: DRCD and CJRC

DRCD and CJRC are two different types of Chi-
nese MRC task from CMRC 2018.

• DRCD: This is also a span-extraction MRC
task but in Traditional Chinese. Besides, com-
pared with CMRC 2018, DRCD contains
much more simple questions with short an-
swers and the overall average answer length
is 4.9.

• CJRC: This is a more complex MRC task,
which has yes/no, no-answer and span-
extraction questions. This dataset is collected
in judicial scenarios. Note that we only use
50% samples of big-train-data.json for train-
ing for fair comparison with previous work.


