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Abstract

Large-scale language models such as GPT-
3 are excellent few-shot learners, allowing
them to be controlled via natural text prompts.
Recent studies report that prompt-based di-
rect classification eliminates the need for fine-
tuning but lacks data and inference scalability.
This paper proposes a novel data augmenta-
tion technique that leverages large-scale lan-
guage models to generate realistic text sam-
ples from a mixture of real samples. We also
propose utilizing soft-labels predicted by the
language models, effectively distilling knowl-
edge from the large-scale language models and
creating textual perturbations simultaneously.
We perform data augmentation experiments on
diverse classification tasks and show that our
method hugely outperforms existing text aug-
mentation methods. We also conduct exper-
iments on our newly proposed benchmark to
show that the augmentation effect is not only
attributed to memorization. Further ablation
studies and a qualitative analysis provide more
insights into our approach.

1 Introduction

In the seminal work by Brown et al. (2020), a large-
scale language model, specifically GPT-3, has been
shown to achieve superior performance on zero-
shot and few-shot learning tasks by prompt-based
in-context learning. In-context learning utilizes a
prompt, which usually consists of a task description
and few examples, to solve unseen tasks without
the hefty price of fine-tuning. Recognizing the po-
tential research applications of in-context learning
and prompt-based control, a part of the NLP com-
munity has shifted its focus on understanding and
devising advanced methods for optimizing prompt-
based approaches (Schick and Schütze, 2020a; Shin
et al., 2020; Zhao et al., 2021; Reynolds and Mc-
Donell, 2021).

However, these prompt-based approaches with
inference on a large-scale language model suffer
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Figure 1: A conceptual diagram of text augmentation
using large-scale language models.

from several drawbacks. First, the number of in-
context training examples is hard limited by the
maximum prompt length enabled by the inher-
ent language model architecture. Second, prompt-
based approaches require online inference on the
expensive large-scale language models. The infer-
ence may not be scalable in real-world use cases,
because it is slow and incurs huge memory over-
head. Lastly, the prompt-based approaches do away
with conventional machine learning techniques,
making it mostly incompatible with existing es-
tablished fine-tuning methods.

To overcome such limitations, we propose a
more practical solution to utilize large-scale lan-
guage models for downstream NLP tasks. In
our proposed framework, as depicted in Figure
1, large-scale language models are not used as
the pre-trained model for further domain-adaptive
fine-tuning nor the backbone for prompt-based in-
context learning but for imbuing the original train-
ing set with synthetic text data.

We propose GPT3Mix, a method for generating
synthetic but hyper-realistic text samples from a
mixture of real samples utilizing large-scale lan-
guage models such as GPT-31. GPT3Mix extracts
few sample sentences from the task-specific train-
ing data, embed these samples in the prompt, and

1Despite what the name suggests, we can apply GPT3Mix
to any large-scale autoregressive language models.
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generates an augmented mixed sentence influenced
by the sample sentences. GPT3Mix uses soft-
labels predicted by the large-scale language model
to transfer knowledge of probability as in knowl-
edge distillation (Hinton et al., 2015). In short, our
method achieves both (1) data augmentation via
generating synthetic examples inspired by exist-
ing data samples and (2) knowledge distillation by
training smaller classification models using soft-
labels predicted by the large language model.

Our approach takes inspiration from the mix-
based data augmentation methods in the vision do-
main (Zhang et al., 2017). Several mix-based data
augmentation methods are suggested for NLP mod-
els. One of the notable methods is MixText (Chen
et al., 2020), in which BERT is used to generate
novel augmentation samples from interpolated em-
bedding spaces. However, despite its great success
in the vision domain, deep-mixing text augmenta-
tion methods have seen limited effectiveness in real-
world cases due to the difficulty of interpolating
language from latent spaces (Bowman et al., 2016).
Synthetic language interpolated from a model’s
hidden space such as the word embedding space
of BERT may introduce noise, outweighing the
benefit of novel sample discovery and causing dete-
rioration in the training data distribution. Our work
exploits the generative power of large-scale lan-
guage models like GPT-3 to generate high-quality
mixed samples from in-context examples.

We perform various data augmentation experi-
ments on diverse classification tasks to verify our
hypotheses and analyze our methodology. As lan-
guage models are partly pretrained on web-crawled
corpora, some benchmarks such as the movie re-
view classification tasks may have been “seen” by
the language models. To eliminate the possibility
of pretraining memorization, we propose a new
task RT20 where we collected online movie re-
views posted after the known data preparation date
of GPT-3. Experimental results with the newly
proposed benchmark RT20 show that the benefit
of our method is not attributed to memorization
but mix-based text synthesis. We will release the
benchmark soon.

The contribution of our work is summarized as
follows.2

1. We suggest employing prompt-based data aug-
mentation using large-scale language mod-

2The code to reproduce our results is available at
https://github.com/naver-ai/hypermix.

els on top of the existing PLM fine-tuning
paradigm to exploit the best of both worlds.

2. We propose GPT3Mix, a simple but effec-
tive text augmentation technique, that elicits
knowledge and linguistic capability possessed
by large-scale language models.

3. Our detailed analysis helps to understand the
mechanism behind prompt-powered data aug-
mentation, giving us insights into the genera-
tion and augmentation behavior.

4. Our newly proposed RT20 task enables con-
trolled experimentation on language models
pretrained prior to a certain date, eliminating
the possibility of memorization.

2 Related Work

Knowledge Distillation Knowledge distillation
(Phuong and Lampert, 2019) is a technique that
trains a smaller student classifier on the outputs of a
larger teacher classifier. Knowledge distillation for
language models in the context of model compres-
sion has been well-studied in the literature. There
have been various distilled models and distillation
methods proposed for pre-trained language models
(Sanh et al., 2019; Tang et al., 2019). By utilizing
soft-labels predicted by the large-scale language
model, our approach helps to transfer knowledge
to the downstream classifiers.

Text Augmentation Text augmentation refers to
methods for perturbing the linguistic space without
altering class labels to improve the robustness and
generalizability of the downstream models. Data
augmentation has been studied extensively in the
NLP scene. Text augmentation in the current lit-
erature comes with two flavors: shallow and deep
augmentation. The shallow data augmentation tech-
niques inject locally plausible small noises into the
linguistic space (words or phrases), in the hopes
that the perturbations produce linguistically accept-
able samples while maintaining label consistency.
Two examples are EDA (Wei and Zou, 2019) and
synonym replacement (Zhang et al., 2016).

Another class of augmentation techniques em-
ploys external language models to improve global
coherence and consistency. The back-translation
approach exploits semantic consistency in transla-
tion language pairs to generate novel paraphrases
(Fadaee et al., 2017). In the more recent line of
work, pre-trained language models, such as BERT
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(Devlin et al., 2019) or the sequence-to-sequence
variant BART (Lewis et al., 2020), are used to ob-
tain more diverse and linguistically correct aug-
mentation samples. For example, BART has been
proven to be effective in populating text samples
for data-scarce labels (Kumar et al., 2020). Ng et al.
(2020) proposed using masked language models as
a denoising autoencoder to generate synthetic texts.
Some other researchers have taken the direction of
perturbing the latent spaces, optionally by introduc-
ing variational inference in the architecture (Xia
et al., 2020b,a; Hou et al., 2018; Yoo et al., 2019).

On the other hand, inspired by the mix-up tech-
nique (Zhang et al., 2017) proposed for the vision
domain, there have also been works to mix ex-
isting text samples to produce realistic augmenta-
tion texts based on statistical methods (Guo et al.,
2020; Sun et al., 2020; Chen et al., 2020). Fur-
thermore, pseudo-labeling, the act of annotating
unlabeled data with model predictions (Lee et al.,
2013; Reed et al., 2014), has been actively used
in semi-supervised learning settings (Chen et al.,
2020; Xie et al., 2020; Berthelot et al., 2019).

Large-scale Language Models Pre-trained
transformer-based language models (Devlin
et al., 2019; Lewis et al., 2020) have initiated a
new paradigm in the NLP scene, changing the
way we design NLP pipelines. With the recent
development of mega-scale language models
(Shoeybi et al., 2019; Brown et al., 2020), we are
witnessing another shift in the paradigm, namely
prompt-based NLP. These large language models
are essentially few-shot learners, allowing them
to be controlled through natural text. There has
been a steep rise in the community’s interest to
better understand the prompt-based mechanisms
(Reynolds and McDonell, 2021; Schick and
Schütze, 2020a; Shin et al., 2020; Jiang et al.,
2020; Zhao et al., 2021). Our work relies on the
previous findings on prompt-based manipulation.

To the best of our knowledge, this work is the
first to propose using the prompt-based approach
to generate synthetic samples from large-scale lan-
guage models for the purpose of text augmentation.

3 GPT3Mix

Mixup (Zhang et al., 2017) is a simple learning
technique that has been shown to be effective in
preventing memorization and improving general-
izability for the vision domain. The technique has
been very effective on image data, but it has been

harder to establish a standard approach for texts
due to the inherent sparse nature of linguistic distri-
butions, which attributes to the challenges of iden-
tifying adversarial text examples (Li et al., 2017).
Inspired by the technique, we propose GPT3Mix
as a powerful yet simple method to generate highly
fluent synthetic samples based on a data distribu-
tion.

The proposed method (Figure 2) consists of three
steps: (1) selecting examples from the dataset, (2)
constructing a GPT3Mix prompt from the selected
examples and meta-information about the dataset,
and finally (3) extracting augmentation from the
language model generation. This section provides
details about each step as follows.

Example Selection For simplicity, we confine
the downstream task to text classification tasks.
Given a classification task T , the training dataset
D is a set of text x and associated label y pairs:
D = {(xi, yi) | 1 ≤ i ≤ N}.

We randomly choose k examples from D to be
anchors. Large-scale language models are known
to be highly sensitive to the choice and the order of
examples in the prompt (Reynolds and McDonell,
2021; Zhao et al., 2021). We conjecture that by
carefully choosing the examples, we are able to
control the generated augmentation samples from
the language model. We conduct qualitative anal-
ysis on the augmentation samples to confirm our
hypothesis (§4.4.5).

In our implementation, we simply used uniform
distribution to choose k examples: ps(i) = 1/N .
Otherwise stated, most experiments are carried out
by setting k = 2 to simulate Mix-up. As found
in our ablation studies (§4.4.1), k = 2 provides a
good trade-off between cost and performance.

Prompt Construction Given a set of prompt ex-
amples De = {(xi, yi) | 1 ≤ i ≤ k} sampled from
D, we formulate the prompt as follows.

A GPT3Mix prompt consists of a description
header, an enumeration of text-label pairs of De,
and the augmentation prefix. An example of
the prompt is shown in the appendix (Appendix
A). Our prompt has been designed carefully with
the current literature findings of GPT-3 prompts
(Reynolds and McDonell, 2021) in mind.

Specifically, the prompt follows the general tem-
plate shown in the appendix, but has task-specific
information to allow the large-scale language mod-
els to generalize better about the data distribution.
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Large-scale Language Model
(GPT-3)

Examples (De)

Example 1: The cat is ruining my mat. (negative)
...

Example k: Everyone loves his dog. (positive)

Task Specification (S)
Text Type T = description, Label Type L = sentiment

Following are the examples of description and senti...
Prompt

Synthetic Sample

The dog is on my mat. (negative 60% / positive: 40%)

Template
Following are the examples of T and L, where L ...

Figure 2: An illustration of GPT3Mix. The soft-labels of augmentation are extracted from the normalized label-
token distributions predicted by the language model. Note that v has been omitted in the task specification S due
to space limits.

These task indicators are unique to each task and
provide meta-information of the task.

1. Text Type T : Meta-type of the input text
x. For example, in movie review senti-
ment analysis, the text type corresponds to
movie review.

2. Label Type L: Meta type of the label class y.
For the example above, the label type corre-
sponds to sentiment.

3. Label-token Verbalizer v : Y → V: Similar
to the concept of verbalizers in the work of
Schick and Schütze (2020b), the one-to-one
mapping between the label classes y ∈ Y and
word tokens in the language model’s vocabu-
lary V 3 is needed to formulate the prompt.

The triple of the meta information above forms
the task specification S = (T, L, v). Each task
T requires a task specification ST to be able to
formulate a prompt for GPT3Mix. By default, the
generic task specification Sgeneric = (text, label, I)
is used to construct prompts, where I is the identity
function assuming that the class label exists in the
vocabulary V .

Augmentation Extraction The augmentation
text x′ and the label y′ are generated in succession
after the prompt as a natural text. A predefined
prompt template in the examples signals the lan-
guage model to generate (x′, y′) with a structure,
allowing us to extract respective values through
pattern matching. Joint text and label generation

3In our implementation, we do not consider cases where
a label class corresponds to multiple tokens. Regardless, ex-
panding our work to incorporate multiple label tokens should
be trivial.

also constraints the generated text to be associated
with the correct label.

As illustrated in the prompt exhibit (Appendix
A), our particular prompt design ensures that the
label token that corresponds to v (y′) is generated
after x. This approach is inspired by the findings
that, when inducing language models to come to
a verdict, they require sufficient token lengths of
“silent reasoning” prior to coming to a conclusion.

As large-scale language models are known to
be few-shot learners (Brown et al., 2020), we also
leverage GPT-3 to perform pseudo-labeling. The
likelihood of generating the label-tokens is nor-
malized to obtain the soft-label probability of the
augmentation text x′. Concretely, the pseudo-label
probability of an augmentation text x′ being la-
belled with label y′ is as follows:

p
(
y′ | x′) ∝ pLM

(
vT

(
y′
)
| P

(
x′, ST

))
, (1)

where pLM is the language modeling likelihood
and P : S → X is the function that constructs the
prompt given a task specification.

Our approach effectively combines text perturba-
tion, pseudo-labeling, and knowledge distillation in
a single augmentation operation. In practice, aug-
mentation samples with pseudo-labels are trained
along with the real samples using the cross-entropy
loss. This is in contrast to prior work, in which
pseudo-labels are usually used for consistency reg-
ularization in the context of semi-supervised learn-
ing (Berthelot et al., 2019).

4 Experiments

We evaluate our augmentation approach on the fol-
lowing seven classification benchmarks:
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DistilBERTbase BERTbase

Dataset Sub. - EDA BT Ours - EDA BT TMix Ours

SST-2
0.1% 56.64.6 56.76.8 56.95.6 75.34.5 57.14.6 56.64.3 55.63.8 56.95.5 78.04.1

0.3% 62.86.2 63.17.6 62.75.8 82.12.2 65.65.9 66.75.2 66.56.4 64.17.6 84.91.4

1.0% 79.23.5 76.92.3 77.43.8 85.70.6 82.02.8 79.61.9 80.73.1 79.92.9 87.70.6

COLA
0.1% 62.96.3 57.38.4 55.66.0 68.60.1 60.77.9 60.16.8 55.28.3 61.58.9 68.60.2

0.3% 64.15.7 58.24.4 54.77.5 68.50.3 65.55.0 63.04.3 54.26.5 67.92.3 68.70.6

1.0% 67.12.3 59.86.3 55.55.9 68.60.3 70.92.3 63.24.7 56.66.4 70.22.0 68.50.3

TREC6
0.1% 30.07.2 30.49.0 27.36.7 41.35.3 32.16.4 29.37.1 30.37.7 31.98.2 47.77.5

0.3% 39.39.2 37.88.0 40.410.8 47.94.1 40.79.2 42.08.1 39.111.5 39.36.5 57.88.8

1.0% 66.95.8 62.68.6 69.47.8 57.42.8 67.07.5 65.97.1 69.36.3 69.47.8 60.56.1

CR
0.1% 58.04.7 58.97.9 58.57.9 69.26.3 59.04.5 57.97.1 57.94.5 58.95.6 70.05.8

0.3% 63.14.8 64.45.2 61.45.6 78.93.2 63.56.6 65.34.5 64.25.5 63.04.7 80.82.4

1.0% 70.85.7 71.75.4 70.64.6 83.21.2 75.84.0 73.93.5 74.63.7 72.54.6 84.71.9

SUBJ
0.1% 83.92.5 83.83.5 81.45.2 82.36.0 84.14.0 84.73.1 81.47.2 83.64.4 85.44.3

0.3% 88.41.0 88.41.3 87.21.3 87.51.5 89.31.4 89.43.5 88.41.9 89.71.3 87.52.3
1.0% 90.70.9 90.50.9 90.10.7 89.31.5 91.80.8 91.41.1 90.90.9 91.70.9 90.61.1

MPQA
0.1% 66.56.0 69.25.0 62.39.1 80.13.7 65.04.7 69.14.8 61.06.8 65.25.2 77.95.0

0.3% 77.15.4 78.24.8 72.96.8 85.00.9 71.35.6 75.83.5 72.65.9 74.23.4 84.71.0

1.0% 84.02.3 82.32.9 82.21.9 86.01.0 83.03.4 81.91.9 83.02.4 83.02.4 86.81.1

RT20
0.1% 51.92.6 52.12.8 51.52.6 55.05.3 50.92.1 51.82.7 53.12.6 53.23.7 57.14.1

0.3% 51.92.5 51.63.0 51.22.2 60.74.5 51.42.7 51.92.8 51.43.6 52.02.6 65.05.2

1.0% 56.25.7 55.03.6 55.94.1 72.31.9 57.94.5 57.95.3 57.44.2 56.04.4 75.42.5

Average
0.1% 58.5 58.3 56.2 67.4 58.4 58.5 56.4 58.7 69.2
0.3% 63.8 63.1 61.5 72.9 63.9 64.9 62.4 64.3 75.6
1.0% 73.6 71.2 71.6 77.5 75.5 73.4 73.2 74.7 79.2

Table 1: Main data augmentation results on 0.1%, 0.3%, and 1.0% training set sub-sample levels. We compare
different augmentation strategies by transformer architectures on the downstream classification performance. Ex-
periments have been repeated 10 times and the statistics are presented in the meanstd format.

SST-2 (Socher et al., 2013) is a sentiment
classification dataset that contains movie reviews
crawled from Rotten Tomatoes and their corre-
sponding binary labels. CR (Hu and Liu, 2004)
dataset is a set of Amazon product reviews labeled
by binary sentiments. The Corpus of Linguistic Ac-
ceptability (COLA) (Warstadt et al., 2018) is a col-
lection of sentences extracted from publications an-
notated with grammaticality. The TREC6 dataset
(Voorhees and Tice, 1999) concerns the question
classification task consisting of open-domain, fact-
based questions divided into broad semantic cat-
egories. MPQA (Wiebe et al., 2005) consists of
opinions and their semantic polarity. The subjectiv-
ity dataset (SUBJ) (Pang and Lee, 2004) contains
movie reviews labeled with objectivity.

RT20 is the newly proposed benchmark with
which we perform controlled experiments on lan-
guage models. The dataset is a binary sentiment
classification corpus, collected from Rotten Toma-
toes accessed after a certain date. The details about
the collection and preparation is provided in Ap-
pendix C.

4.1 Experimental Settings

To showcase our approach, we conduct down-
stream classification experiments on artificially
data-scarce tasks by sub-sampling the training set.
For each experiment, we perform a class-balanced
sub-sample on the training set. We account for sta-
tistical variance in our experiments by fixating the
sub-samples on 15 different data seeds and repeat-
ing the augmentation procedure and downstream
classification experiments on all sub-samples. The
data seeds were chosen randomly4.

For the classifier architecture, we use the base
size BERT (Devlin et al., 2019) and DistilBERT
(Sanh et al., 2019) models, which have 109M
and 67M parameters respectively. For each down-
stream classification trial, we initialize the classifier
model with the pre-trained parameters provided by
the Huggingface Transformers library (Wolf et al.,
2019) and randomly initialize the classifier layers,
which consist of two fully connected layers that
predict the class labels from the output embeddings

4The data seeds were randomly generated using a master
seed.
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BERTlarge

Sub. - EDA BT Ours

0.1% 60.37.9 63.87.2 63.47.4 84.04.4

0.3% 74.18.9 73.25.8 73.19.4 88.71.0

1.0% 87.81.5 87.31.4 87.02.7 90.80.6

Table 2: Additional data augmentation experiments on
SST-2 with BERTlarge, which has 335M parameters.
The larger network capacity enables the model to bet-
ter exploit the GPT3Mix augmentations, allowing it to
match the performance of BERTbase trained on the full
data with just 1.0% subsample of the training data.

of the transformer architectures. The classifiers are
trained automatically by employing early stopping
against the validation score with patience of 20
training epochs. We report classification accura-
cies in all of our tables.

4.2 Implementation Details

For selecting the optimal task specification for each
task in GPT3Mix augmentation, we evaluated the
performance of few handcrafted task specification
candidates on the validation set and chose the high-
est performing one. The details about the optimal
task specifications are presented in Appendix B.
The inference on GPT-3 was carried out via the
OpenAI API Beta Access program. We used the
largest GPT-3 model available on (davinci) un-
less otherwise stated. On average, a GPT3Mix aug-
mentation roughly consumes 300 tokens in com-
bined length (prompt and generation). For GPT-3
generation, top-p and the temperature was set to 1
and the frequency penalty was set to 0.02 (Holtz-
man et al., 2019). The augmentation ratio between
the training set and the synthetic set was set to 10
unless otherwise stated.

During classifier training, we used the Adam
optimizer with decoupled weight decay (Kingma
and Ba, 2014; Loshchilov and Hutter, 2017) and
a learning rate of 3e-5. The learning rate had a
warm-up period of 3 epochs. PyTorch and M40
GPUs were used to run the experiments.

4.3 Data Augmentation Experiments

We compare our approach to Easy Data Augmenta-
tion (EDA) (Wei and Zou, 2019), back-translation
(BT) (Fadaee et al., 2017), and TMix (Chen
et al., 2020). For the back-translation baseline,
texts were translated to and from German using
Transformer architectures trained on the WMT16
English-German corpus provided by Fairseq (Ott

k

Sub. 1 2 4 8

0.1% 65.53.3 71.26.5 74.63.9 72.06.7
0.3% 78.93.9 80.02.7 80.22.1 80.01.6
1.0% 85.20.6 84.30.7 84.30.7 84.21.2

Table 3: An ablation study on the number of examples
k in GPT3Mix prompts. When k = 1, GPT-3 produces
point-wise perturbed samples. Experiments are carried
out on the SST-2 dataset.

et al., 2019). For TMix, we employ the hyperpa-
rameters reported by the authors. We compare with
TMix on BERTbase only, since the effectiveness of
TMix is not established in other architectures5.

The results on data-scarce text augmentation are
presented in Table 1. First, we notice that, in most
cases, our approach outperforms other augmenta-
tion baselines by a large margin. Also, our ap-
proach achieves higher stability in terms of the
variance of repeated trials and inter-task fluctua-
tions than other augmentation methods. Although
back-translation and EDA do outperform GPT3Mix
in certain configurations, GPT3Mix offers the most
consistent performance boost for the downstream
classifiers across all tasks. This is evident from
the average classification accuracies of all tasks, in
which GPT3Mix improves the baseline as much as
18.6% (for BERTbase) while other methods show
nearly no improvement6.

We also note that, despite non-augmented base-
lines of DistilBERTbase and BERTbase being very
close (58.5 and 58.4 respectively on average of
0.10% subsamples), a much larger augmentation
effect is observed in BERTbase results (67.4 →69.2).
Improving model robustness is known to require
significantly larger model complexity (Ye et al.,
2019), hence BERTbase, having 65% more param-
eters than DistilBERTbase, utilizes GPT3Mix sam-
ples better than the counterpart. This effect is more
apparent in the even larger model (Table 2), which
outperforms fully trained BERTbase with just 1%
of the original data.

Furthermore, we observe that augmenting with
GPT3Mix significantly improves the baseline
across all subsamples of RT20, eliminating the
suspicion that the data augmentation effect of
GPT3Mix is attributed to data memorization of

5Our attempt on searching TMix hyperparameters for
DistilBERTbase and BERTlarge did not yield meaningful results.

6We employed the hyperparameters proposed by the au-
thors of EDA and BT.
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Model Size

Sub. ada babbage curie davinci

0.1% 61.94.1 65.26.9 65.95.3 67.67.2
0.3% 74.64.8 69.77.3 74.64.5 78.32.9
1.0% 81.61.0 82.51.1 83.41.8 84.31.1

Table 4: An ablation study on the size of the language
model with the SST-2 dataset. Larger language models
provide greater augmentation benefits in data-limited
environment.

GPT-3. Also note that, due to the recency of the
RT20 dataset, the pretrained classification trans-
formers do not perform as well as on the older
counterpart, SST-2. However, GPT3Mix is able to
alleviate the difficulty through knowledge distilla-
tion and mix-based robust training.

Full Dataset Experiments We also perform full
dataset data augmentation experiments to confirm
that GPT3Mix still offers benefits even when task-
specific data are abundant. We augmented the
full SST-2 dataset with one-to-one ratio of syn-
thetic samples from GPT3Mix, and the experi-
ments show that GPT3Mix improves the accuracy
of DistilBERTbase from 90.28% to 90.70% (0.42%
improvement) and the accuracy of BERTbase from
90.33% to 93.25% (2.92% improvement). Again,
we observe a larger improvement in the more ex-
pressive model, in align with previous findings
(Zhang et al., 2017; Shafahi et al., 2019).

4.4 Ablation Studies
We conduct a number of ablation experiments
to study the underlying mechanism of GPT3Mix.
Note that the augmentation results for GPT3mix in
the following ablation studies may underperform
compared to the results presented in §4.3 due to
ablation studies having lower augmentation ratios
and using smaller language models (curie). Also
note that all ablation experiments were carried out
on the DistilBERTbase classifier architecture.

4.4.1 Number of Prompt Examples
First, the effect of the number of examples in
GPT3Mix prompts (k) on the downstream augmen-
tation performance is studied. GPT3Mix requires
k ≥ 2 to effectively mix existing samples and gen-
erate interpolated text samples. However, supply-
ing one example (k = 1) per prompt and expecting
GPT-3 to introduce perturbations or paraphrases of
the given example can be a viable strategy. We vary
k on the SST-2 dataset and observe the downstream

Pre-trained Language Model

Sub. - GPT-2 GPT-neo davinci

0.1% 56.64.6 64.16.5 71.34.7 75.34.5

0.3% 62.86.2 76.93.6 80.21.9 82.12.2

1.0% 79.23.5 76.13.6 82.61.1 85.70.6

Table 5: Open-source alternatives are compared to the
largest GPT-3 model on the SST-2 dataset. For GPT-2,
the large version that has 774M parameters was used.
For GPT-neo, the smaller version of 1.3B parameters
was used.

Example 1 Laughably, irredeemably awful. (negative)
Example 2 Well-made but mush-hearted. (positive)

GPT3Mix Groundbreaking, disturbing.
(positive: 75%, negative: 25%)

Example 1 It’s just not very smart. (negative)
Example 2 It’s quite an achievement to set and shoot

a movie at the Cannes Film Festival and yet
fail to capture its visual appeal or
its atmosphere. (negative)

GPT3Mix Excessively talky, occasionally absurd and
much too long, Munich is a fascinating
mess.
(positive: 21%, negative: 79%)

Table 6: SST-2 augmentation samples from GPT3Mix
(davinci). GPT3Mix annotates synthetic samples with
soft-labels predicted by the language model.

performances (Table 3). The second-largest GPT-3
model (curie) was used and the augmentation
multiplier was set to 10.

From the results, we notice that when the data
availability is severely limited (i.e. 0.1% and 0.3%),
point-wise perturbation doesn’t offer the perfor-
mance improvement as much as when k ≥ 2. How-
ever, as data becomes more abundant, increasing
the number of mixing samples offers marginally
small benefits for data augmentation. Yet, increas-
ing the number of examples incurs additional over-
head to the GPT-3 inference cost.

Generally, over-providing prompt examples may
constraint the degrees of freedom and causing the
synthetic samples to overfit on the data, hurting the
downstream performances. However, a significant
improvement from k = 2 to k = 4 is observed for
the 0.1% sub-sample level. In our data augmenta-
tion studies, we weigh in on k = 2 as a reasonable
balance between the trade-off between GPT-3 in-
ference costs and performance gains.
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Sub. No Aug. Hard Labels Soft-labels

0.1% 55.85.1 61.68.0 71.26.5
0.3% 64.98.0 67.75.9 80.02.7
1.0% 77.93.6 79.02.8 84.30.7

Table 7: An ablation study on the employment of
pseudo-labels. Hard labels are obtained from the beam
search of the entire sequence autoregressively gener-
ated by the language model.

4.4.2 Language Model Capacity
Next, we study the influence of the model capacity
of the augmenting language model on the quality
of augmentations. OpenAI offers GPT-3 in four
different capacities: ada, babbage, curie, and
davinci7, listed in the increasing order of model
complexity. In this study, the augmentation ratio
is set to 5. The results (Table 4) show that having
larger and more expressive language models benefit
data augmentation.

Additionally, we conduct comparative experi-
ments to verify whether open-source alternatives
to GPT-3 could still provide comparable perfor-
mance gains through data augmentation. As open-
source alternatives, GPT-2 (Radford et al.) and
GPT-neo (Black et al., 2021) were chosen. The
latter is a popular alternative to the commercial
GPT-3, performing competitively with the smaller
versions (ada and babbage) of the counterpart.
Our results (Table 5) show that the open-source
GPT-like models still provide comparable perfor-
mance gains, strongly suggesting that our prompt-
based GPT3Mix approach can be versatile in the
choice of pre-trained language models. Even the
smaller GPT-2 model could provide performance
gains.

4.4.3 Task Specification
We are also interested in how the design choice
of task specification for prompt construction af-
fects the downstream performance. To analyze the
effect, we compare the optimal task specification
ST ? to a generic one (Sgeneric), where the nature
of the task cannot be inferred from the description.
For this study, we used curie as the augmenting
language model with an augmentation ratio of 3.
The results in Table 8 support our conjecture that
the language model utilizes the meta-information
about the dataset to generate better data samples,

7The sizes of the language models are known to be 2.7B,
6.7B, 13B, and 175B respectively; however, OpenAI has not
officially disclosed the exact numbers yet.

Dataset Sub. No Aug. Sgeneric ST ?

SST-2
0.1% 55.85.1 60.15.2 71.26.5
0.3% 64.98.0 72.65.7 80.02.7
1.0% 77.93.6 81.41.7 84.30.7

COLA
0.1% 64.94.7 68.40.4 68.60.0
0.3% 62.27.2 65.72.7 68.70.2
1.0% 67.81.6 68.70.3 69.11.1

Table 8: An ablation study on task specifications.
Sgeneric denotes a generic task specification that does
not hold task-specific meta-information (§3), and ST ?

denotes the optimal specification for the corresponding
task.

and thus prompt designs have a significant impact
on the augmentation quality. However, the generic
task specification outperforms other augmentation
baselines, highlighting the effectiveness of employ-
ing large-scale language models as the augmenta-
tion source.

4.4.4 Pseudo-labeling
Finally, we study the effect of employing pseudo-
labels from the label token probabilities predicted
by the large-scale language model. we compare the
augmentation performance when the label tokens
optimized from the sequence-wide beam search
are used instead. Results on SST-2 (Table 7) show
that employing soft-labels has a strong advantage
over sequence-optimized labels. The performance
gap between the hard and soft-labels can be con-
sidered as the benefit of utilizing the class distribu-
tion jointly predicted by the language model as a
form of knowledge distillation for synthetic sam-
ples (Kim and Rush, 2016). curie was used as
the GPT-3 model with the augmentation ratio of 5.

4.4.5 Qualitative Analysis
Language models are known to be sensitive to the
selection and the order of the examples presented in
the prompt, causing biases in the predictions (Zhao
et al., 2021; Reynolds and McDonell, 2021). Our
proposed method hinges on this unique property
of large-scale language models, hence we wish to
qualitatively examine the augmentation samples to
further support our hypothesis.

The augmentation samples for the SST-2 dataset
are presented in Table 6. First, we notice that the
synthetic sentiment is correlated with the input sen-
timents. If both examples are either all negative
(the second example), the sentiment of the aug-
mentation sample is heavily biased towards nega-
tive. Second, we also discover that the augmented
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sample follows the similar syntactic and semantic
structure of the example texts. As demonstrated
in the first case, the short and phrasal structure of
the examples is well translated into the generated
sample, supporting the notion that language mod-
els are able to learn from in-context examples even
for generation and pseudo-labeling tasks. In the
second example, the linguistic similarity between
the generated sample and the given examples is
more abstract (use of adjective phrases and enumer-
ated clauses), suggesting that language models are
capable of creative interpolation.

5 Conclusion

In this paper, we proposed a novel text augmenta-
tion technique that leverages large-scale language
models and their abilities to perform controlled
generation via prompts. Our extensive experiments
on classification tasks show that our augmentation
method can improve robustness of pretrained trans-
formers through mix-based perturbation and knowl-
edge distillation without the online inference on
heavy LMs. Thus, our method can be a competitive
alternative to prompt-based task-solving (Brown
et al., 2020) or direct fine-tuning (Liu et al., 2021).
As future work, we are interested in the possibility
of further pushing the boundaries of state-of-the-art
architectures via GPT3Mix. We are also working
towards improving generation efficiency by opti-
mizing example selection and prompt templates.

6 Ethical Considerations

Our approach presents several ethical challenges.
Pre-trained language models that are trained on
untreated corpora are known to exhibit social bi-
ases (Bordia and Bowman, 2019; Hutchinson et al.,
2020; Abid et al., 2021; Bender et al., 2021) and
toxicity (Gehman et al., 2020). The biased property
is concerning because language models are prone
to degeneration even in the absence of bias or tox-
icity in the prompts (Gehman et al., 2020). As a
result, GPT3Mix is not exempt from the possibility
of propagating linguistic biases and toxicity even if
the real training examples were ensured to be unbi-
ased. Furthermore, linguistic bias could be ampli-
fied through iterative applications of GPT3Mix (i.e.,
using GPT3Mix-augmented samples as the source
examples for the next iteration of GPT3Mix).

To address these issues, we propose three reme-
dies to reduce the concerns. First, debiased pre-
trained language models can be used in place of

GPT-3. Language models can be adapted to debi-
ased and non-toxic corpora (Gehman et al., 2020)
or treated with modifications to the word embed-
ding space (Basta and Costa-jussà, 2021) to in-
hibit their tendency to generate bias. Moreover,
GPT3Mix has been shown to work well with var-
ious pre-trained language models (Table 5). Sec-
ond, specific decoding strategies can be employed
to reduce bias at inference time. Recent body of
work has shown that handcrafted dictionaries can
be employed to suppress the selection of offen-
sive words (Gehman et al., 2020) and that lan-
guage models can implicitly learn to identify biases
through self-diagnosis, which can be exploited for
self-debiasing (Schick et al., 2021). Third, human-
in-the-loop in the augmentation process can be uti-
lized to manually identify and filter linguistic bias.

Note that the ethical implications can be mini-
mized by using GPT3Mix only for augmenting dis-
criminators, where the augmented samples are re-
moved once the training process is complete. How-
ever, for the general purpose of populating datasets,
linguistic bias is of ethical concern and can be alle-
viated using the existing work on debiasing.
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A Prompts

The GPT3Mix prompt uses the following template. The template corresponds to the prompt-constructing
function P , which require a task specification ST = (T, L, v).

Each item in the following list contains a <text type> and the
respective <label type>. <label type> is one of ’<label token 1>’,
..., or ’<label token N>’.

<text type>: <example text 1> (<label type>: <example label 1>)
...
<text type>: <example text k> (<label type>: <example label k>)
<text type>:

For example, given SSST2 = (movie review, sentiment, I), the constructed GPT3Mix prompt is as
follows.

Each item in the following list contains a movie review and the
respective sentiment. The sentiment is one of ’positive’ or ’negative’.

Movie review: Despite its Hawaiian setting, the science-fiction
trimmings and some moments of rowdy slapstick, the basic plot of
‘‘Lilo’’ could have been pulled from a tear-stained vintage Shirley
Temple script. (Sentiment: Negative)

Movie review: And people make fun of me for liking Showgirls.
(Sentiment: Negative)

Movie review:

B Task Specifications

Dataset T L v

Generic text label · → ·
SST-2 movie review sentiment pos →positive, neg →negative

CR customer review sentiment pos →positive, neg →negative
SUBJ text objective subjective →no, objective →yes
COLA text grammar acceptable →correct, unacceptable →incorrect
TREC6 question type ABBR →abbreviation, LOC →location,

DESC →description, NUM →numeric
ENTY →entity, HUM →human

MPQA text sentiment pos →positive, neg →negative

Table 9: Optimal task specifications.

After validating candidate task specifications for each task, we have selected the following for conduct-
ing our experiments (Table 9).

Providing incorrect or suboptimal specifications to the prompt may cause a large drop in augmentation
qualities. For example, in the case of designing task specifications for the COLA dataset, when “linguistic
acceptability” is used as the label type (instead of the optimal “grammar”), the downstream performance
on the 0.1% sub-dataset drops to 38.8%, resulting in performance worse than the non-augmented baseline
of 68.80%.

C RT20 Dataset

RT20 is a new binary sentiment classification dataset made up of movie reviews posted for movies
released in 2020 or thereafter. This newly created dataset is free from the training dataset used by GPT-3,
eliminating the possibility of performance improvement due to memorization.
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To build this dataset, we crawled critic reviews of movies released in or after 2020 that were included in
the movie category on Rotten Tomatoes8. Generally, the critic reviews have higher linguistic acceptability
than user reviews, allowing us to control data quality. For each movie, fresh and rotten reviews were
sampled at a 1:1 ratio, with “positive” being labeled for fresh reviews and “negative” being labeled for
rotten reviews. During preprocessing, all characters were replaced with the lowercase letters, and spaces
were added before and after certain special characters: “".?!:()[],”. The final corpus is a collection of 1,100
positive and 1,100 negative reviews for 62 recent movies. We further split the dataset into 1500 training,
300 validation, and 400 test data using the class-balanced sampling strategy.

D GPT3Mix Samples

The following GPT3Mix examples are generated using the largest GPT-3 model (davinci) on SST-2.

Example 1 Laughably, irredeemably awful. (negative)
Example 2 Well-made but mush-hearted. (positive)

GPT3Mix Groundbreaking, disturbing. (positive: 75%, negative: 25%)

Example 1 Berry’s saucy, full-bodied performance give this aging series a much needed kick,
making “Die Another Day” one of the most entertaining Bonds in years. (positive)

Example 2 Moonlight Mile doesn’t quite go the distance but the cast is impressive and they all
give life to these broken characters who are trying to make their way through
this tragedy. (positive)

GPT3Mix “Gosford Park” takes a leisurely approach to story telling and along the way it mixes
intrigue, comedy, and romance. (positive: 98%, negative: 2%)

Example 1 It’s just not very smart. (negative)
Example 2 It’s quite an achievement to set and shoot a movie at the Cannes Film Festival

and yet fail to capture its visual appeal or its atmosphere. (negative)

GPT3Mix Excessively talky, occasionally absurd and much too long,
Munich is a fascinating mess. (positive: 21%, negative: 79%)

The following examples are generated on CR.

Example 1 if you are using linux , and you want to use gprs to connect to the net , i suggest this
phone along with a belkin usb bluetooth adapter . (positive)

Example 2 the eax sound enhancement feature did n ’t do enough for me and the custom eq was
a limited 5 band eq . (negative)

GPT3Mix My E550i had 4 months service from Singapore. During those fourmonth I
recognized that this phone is really lovely, not so popular in Indonesia and nobody use
like me :-( Anyway today the Phone set become hot when i try to read message...
(positive: 22%, negative: 78%)

Example 1 8 battery life is excellent . (positive)
Example 2 navigation is a bit tricky and takes getting used to but the included pdf instructions

cover the operation pretty well . (negative)

GPT3Mix Fast and good GPS ! my favorite is the speed camera app sensitivity > ì. < , you
can threshold values ++to avoid spending penalties on shortcuts which detect it many,
i recommend !!! Good product at a great price! (positive: 99%, negative: 1%)

The following examples are generated on RT20. Note that GPT-3 would not have learned about some of

8https://www.rottentomatoes.com/
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the movies mentioned in the examples, such as Tenet, hence GPT3Mix cannot retrieve knowledge and
facts about the movies. This implies that the data augmentation effect is largely derived from linguistic
knowledge and diverse perturbations exhibited by GPT-3. Also note that the parentheses in the second
example was in the original review. GPT3Mix learns to mix surface patterns in the examples as well.

Example 1 to be constantly told how tenet’s engine works is like having peter jackson explain
the metallurgy behind the one ring – unnecessary . (negative)

Example 2 an alarmist rise-of-the-machines premise points to a “ terminator ” -like future , with
very different results , in this serviceable sci-fi war movie . (positive)

GPT3Mix a village blacksmith and a feared highwayman form an alliance to star in the offbeat
arrangement of swords . (positive: 60%, negative: 40%)

Example 1 the characters are paper-thin , the plot is super predictable , and despite its star-
studded cast only robert pattinson seems like he’s having any fun . (negative)

Example 2 [ there are ] small moments that exude credibility but go hand in hand with others
that don’t . (positive)

GPT3Mix [ it’s ] a robot movie that is fun enough to watch but feels superfluous ; there’ s just
not much in here we haven’t seen before from superior films like i , robota and
plato ’s ashes . (positive: 10%, negative: 90%)

Example 1 the only thing that makes the film worth watching is a performance by robert
pattinson , who has been the best thing about quite a few films in the last year .
(negative)

Example 2 “ land ” has real power even when stands absolutely still for lengthy periods of
screen time . (positive)

GPT3Mix the rock will please those who are expecting a visually entertaining .
(positive: 65%, negative: 35%)

The following examples are generated on SUBJ. Note that GPT3Mix sometimes struggles to identify the
task from the context and predicts the labels with low confidence, as the concept of “subjectivity” can be
vague and debatable.

Example 1 smith examines the intimate , unguarded moments of folks who live in unusual homes
– which pop up in nearly every corner of the country . (subjective)

Example 2 this is a film version of the play they wrote based on more than 200 interviews they
conducted in laramie . (objective)

GPT3Mix reporter covers our corrupt customs laws , and it¹s surprising something isn’t done
about them . (subjective: 59%, objective: 41%)

Example 1 “ the dangerous lives of altar boys ” has flaws , but it also has humor and heart and
very talented young actors (subjective)

Example 2 his family decides to go back on a holiday to india for 2 weeks , when tina discovers
the truth about pooja’s e-mails , they decide together that tina will play along with
the charade . (objective)

GPT3Mix a rich man hires a hitman for his wife . but she finds out and decides to manipulate
the killer with an ever decreasing budget (subjective: 49%, objective: 51%)


