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Abstract

Current embedding-based large-scale retrieval
models are trained with 0-1 hard label that in-
dicates whether a query is relevant to a doc-
ument, ignoring rich information of the rel-
evance degree. This paper proposes to im-
prove embedding-based retrieval from the per-
spective of better characterizing the query-
document relevance degree by introducing la-
bel enhancement (LE) for the first time. To
generate label distribution in the retrieval sce-
nario, we design a novel and effective super-
vised LE method that incorporates prior knowl-
edge from dynamic term weighting methods
into contextual embeddings. Our method sig-
nificantly outperforms four competitive ex-
isting retrieval models and its counterparts
equipped with two alternative LE techniques
by training models with the generated label
distribution as auxiliary supervision informa-
tion. The superiority can be easily observed on
English and Chinese large-scale retrieval tasks
under both standard and cold-start settings.

1 Introduction

Retrieval systems such as search engines have been
a vital tool in helping people access the vast amount
of information online. As shown in Figure 1, exist-
ing methods for large-scale retrieval will first uti-
lize a less powerful but more efficient retrieval algo-
rithm (Retriever) to reduce the potential candidates,
and then employ more powerful models (Ranker)
to re-rank the retrieved documents (Padaki et al.,
2020; Mass and Roitman, 2020). We will focus on
improving Retriever in this paper.

With pre-trained word embeddings (Mikolov
et al., 2013b,a; Pennington et al., 2014; Liu et al.,
2020) and language models (e.g., BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019))
achieving great success in a wide variety of NLP
tasks, researchers have begun to leverage BERT-
style models to solve large-scale retrieval problems.
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Figure 1: The architecture of classical large-scale re-
trieval systems.

These models consider the retrieval phase as a re-
gression task trained with 0-1 hard labels, represent-
ing only two types of relevance degrees (relevant or
irrelevant) between query-document pairs (Chang
et al., 2020; Lu et al., 2020).

The relevance degrees between queries and doc-
uments, however, can have much more possibilities.
For example, we present a query and three actual
results retrieved by the Google search engine in
Figure 2. Though all three documents are relevant
to the query, the relevance degrees can vary signifi-
cantly if we assign a real-valued number indicating
to what extent a query and a document relate. On
the other hand, even if a query and a document
are marked as irrelevant by the hard label, a weak
relevance degree may exist between them. In such
scenarios, label distribution (Geng, 2016), which
involves the relevance degrees between queries and
documents, is a more reasonable description of an
instance. The observation inspires us to explore the
label distribution to improve existing large-scale
Retriever models trained with hard labels. We can
easily expect the following two novel LE methods
for Retriever models.

• One straightforward LE method in our sce-
nario is to exploit the semantic relevance be-
tween queries and documents based on clas-
sic term weighting methods (e.g., TF-IDF
(Spärck Jones, 1972, 2004)). The problem
with this method is that term weight will be
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Figure 2: Retrieval results of the online search engine. Hard labels can only label these results as relevant or
irrelevant, ignore relevance degrees.

static and context-free. For example, given
the sentence “EMNLP 2021 is held after ACL
2021, accepted papers will be published in
ACL Anthology.” the first “ACL” is a con-
ference name, while the second “ACL” is a
professional society, they should have differ-
ent term weights. However, TF-IDF cannot
distinguish them and will assign them unrea-
sonable equal term weights.

• Another way to generate label distribution
is by training a contextual-embedding-based
model with hard labels and then exploiting the
prediction scores as label distribution, widely
used for knowledge distillation (Hinton et al.,
2015) and performance improvement (Zhang
et al., 2019). This label distribution, called
dark knowledge by Furlanello et al. (2018),
is generated implicitly and lacks clear physi-
cal interpretation. From this perspective, term
weighting methods can bring complementary
and more explainable prior knowledge benefi-
cial to the Retriever model.

To this end, we choose to generate label distribu-
tions based on term weights method in a way that
integrates the merits of the two paradigms above.
Specially, we employ BERT to generate contex-
tualized text representations and learn to predict
term weight for each word with its TF-IDF value
as the supervised signal. In this way, we achieve a
dynamic term weight scorer, named BERT-Scorer.
Based on BERT-Scorer, we can predict each word’s
contextual term weights in a query and a document.
We then generate label distributions for the query-
document pairs based on their term weights of over-

lapped words and finally train Retriever models
with generated label distributions as auxiliary su-
pervision information.

We have conducted extensive experiments on En-
glish and Chinese large-scale retrieval tasks under
both standard and cold-start settings. Experimental
results show that our approach significantly im-
proves state-of-the-art models and has superiority
over alternative label enhancement methods.

Our main contributions are as follows:

1. We propose to exploit query-document rele-
vance degree to improve embedding-based Re-
triever models. This work is the first pioneer
investigation on leveraging label enhancement
to characterize relevance degree and incorpo-
rating it into the Retriever models to the best
of our knowledge.

2. By designing a novel dynamic term-weight
scorer that integrates contextual BERT repre-
sentation and static TF-IDF information, we
achieve a novel and effective label enhance-
ment method that automatically generates la-
bel distributions for the retrieval tasks.

3. Our method significantly outperforms state-of-
the-art models and its counterparts equipped
with alternative label enhancement techniques
on English and Chinese large-scale retrieval
tasks under both standard and cold-start set-
tings.
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Figure 3: Architecture of multi-tower models used by
Retriever and cross-attention models used by Ranker.

2 Background and Related Work

2.1 BERT-style Retriever and Ranker

Large-scale retrieval is usually solved in two steps.
The retrieval phase (Retriever) first reduces the
solution space, returning a subset of candidate doc-
uments. The ranking phase (Ranker) then re-ranks
the documents (Chang et al., 2020). Unlike Ranker
witnessing significant advances recently due to the
BERT-style pre-training tasks on cross-attention
models (see left side in Figure 3) (Padaki et al.,
2020; Mass and Roitman, 2020), the retrieval phase,
which is the focus of this paper, remains less well
studied.

Existing BERT-style Rankers can not be applied
to large-scale retrieval problems. Since the pre-
diction function f(query, doc) with BERT is a
pre-trained deep bidirectional Transformer model
(Vaswani and Shazeer, 2017), we can not afford
to apply the prediction process for every possible
document given a query. Therefore, BERT-style
Retriever will employ a multi-tower architecture
(see the right side in Figure 3), in which embed-
dings of documents can be first predicted offline
and then fetched to calculate the final relevance
score efficiently. For example, we can deploy an in-
verted index based ANN (approximate near neigh-
bor) search algorithms (Shrivastava and Li, 2014;
Guo et al., 2016) to Retriever, and employ Faiss
library (Johnson et al., 2017) to quantize the vec-
tors and then implemented the efficient embedding
search in Retriever.

As a representative BERT-style Retriever,
Reimers and Gurevych (2019) use siamese and
triplet network structures based on BERT to de-

rive semantically meaningful sentence embeddings,
which can be compared using cosine similarity.
Some researchers further improve model perfor-
mance by introducing external knowledge or data.
For example, Chang et al. (2020) build a two-tower
Transformer model with more pre-training data,
which can significantly outperform the widely used
BM-25 algorithm. Lu et al. (2020) distill knowl-
edge from larger BERT into a two-tower architec-
ture network for efficient retrieval. Liu et al. (2021)
build a four-tower BERT model that leverages the
distances between simple negative and hard neg-
ative instances for embedding-based large-scale
retrieval.

2.2 Label Distribution and Label
Enhancement

The process of generating label distributions from
hard labels is defined as label enhancement (LE).
LE has achieved remarkable results in many fields,
e.g., computer vision (Gao et al., 2020; Xu et al.,
2020) and biological information classification (Xu
et al., 2019; Lv et al., 2019). Knowledge distilla-
tion from the deep learning community (Hinton
et al., 2015) is another way to generates label distri-
butions, also known as soft labels. The distillation
process mainly refers to using prediction scores
(e.g., SoftMax logits) of pre-trained models as aux-
iliary objectives.

We focus on embedding-based large-scale re-
trieval problems as the first touch on incorporating
label enhancement into this field. It is worth noting
that the primary purpose of LE is incorporating the
possibility (or uncertainty) into the original hard
label to facilitate model performances, rather than
generating the ground truth label distribution.

3 The Proposed Approach

Given a training set D = {(〈xi, yi〉, li)|1 ≤ i ≤
N} with N instances, the hard label li ∈ {0, 1}
denotes whether a query xi and document yi are
relevant or not. Our proposed LE method can au-
tomatically generate label distributions di for each
query-document pair 〈xi, yi〉, which is further in-
troduced to assist retrieval tasks. The details are
demonstrated in the following subsections.

3.1 Initial Term Weights

Given a positive training instance (〈xi, yi〉, li =
1), where xi contains n tokens {w1, w2, ..., wn},
proper term weights should reflect whether a term
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Figure 4: BERT is firstly adopted to generate contextualized representation. A linear regression layer is then
used to estimate term weights for each token, with the corresponding TF-IDF scores as supervision signals. Two
concrete queries are used as examples. Based on TF-IDF, the word “human” in q2 can be easily identified as a
critical term. Since the second “the2” in q1 has a similar context with “human”, we can predict a more reasonable
weight for “the2” by incorporating TF-IDF into contextualized representations.

wi is essential to the document or not. We pro-
pose to generate initial term weights by the TF-IDF
method as follows:

txi,yi
wj

=
ηwj ,yi

|yi|
log

|Y |
ηwj ,Y + 1

(1)

where txi,yi
wj is the term weight of wj in xi corre-

sponding to yi, and ηwi,yi equals the number of
times wi appears in document yi. Y is the set of all
documents, and ηwi,Y equals the number of docu-
ments in which wi appears in Y .

3.2 BERT-Scorer
The traditional term weight method such as TF-IDF
is based on statistical features of documents. They
produce static and context-free term weight and
fail to capture the complex semantic features. To
estimate the importance of a word in a specific text,
the most critical problem is to generate features that
characterize a word’s relationships to the context.
Recent contextualized neural language models like
BERT have been shown to capture such properties
through a deep neural network effectively (Dai and
Callan, 2019).

As shown in Figure 4, for the example sentence
q1 “What does the word ‘the’ mean”, the first “the1”
is a definite article and the second “the2” is a noun.
Another example sentence q2 is “What does the
word ‘human’ mean”, which has the same context
as the first sentence except for the keyword “hu-
man”. Although the TF-IDF scores of “the1” and

“the2” are equal, most words that have a similar
context with “the2" (e.g., the word “Human” in q2)
will be given reasonable TF-IDF scores. BERT can
generate contextualized representations that charac-
terize words’ syntactic and semantic role in a given
context. In this way, we can get relatively similar
contextual embeddings for these words, hence pre-
dicting similar scores (e.g., 0.92 for “Human” and
0.89 for “the2" according to actual BERT-Scorer
predictions).

Based on BERT, we build a regression model
named BERT-Scorer to generate dynamic context-
aware term weights for queries and documents.
Given the query x with n tokens {w1, w2, ..., wn},
BERT is firstly adopted to encode each word se-
quence into a sequence of continuous representa-
tions as following:

~H = (~h1, ...,~hn) = BERT(w1, ..., wn) (2)

A linear regression layer is then used to estimates
the term weight for each word wi as follows:

t̂xwi
= ~W ~hi + b (3)

where ~W and b are model parameters. Under such
circumstance, our BERT-Scorer can effectively dis-
criminate “the1” and “the2” according to the dif-
ferences between hthe1 and hthe2 . The “human”
and “the2” have similar weights while the weight
of “the1” is much smaller.
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During training, the initial term weights by TF-
IDF are utilized as supervised signals. The opti-
mization objective function is defined as the mean
square error (MSE) between the predicted weights
t̂ and the target weights t as follows:

J(θ) =
∑
〈x,y〉∈D

∑
w∈x

(tx,yw − t̂xw)2 (4)

Note that tokens with negative term weight are
recognized as insignificant thus discarded in the
following.

3.2.1 Adaptation For Chinese
BERT-Scorer estimates weights for word-level
terms while existing pre-trained BERT-style mod-
els for Chinese are character-level. To bridge the
gap, we evenly distribute the weight of a word to
each character in-between. Besides, we utilize the
position information where character lies within the
word by tagging each character via the widely-used
BMES (Begin, Middle, End, and Single) schema
and incorporating BMES embedding into BERT’s
input representation.

3.3 Label Distribution Generation
After BERT-Scorer generates term weights for
query xi and document yi respectively, we cal-
culate the label distribution based on their term
weights of overlapped words as follows:

di = tanh (
1

|{xi ∩ yi}|
∑

w∈{xi∩yi}

t̂yiw t̂
xi
w ) (5)

3.4 Retriever Models Utilizing Label
Enhancement

We exploit a two-tower BERT-style Retriever
model in this paper, as Figure 3 (b) shows. Each
tower of our Retriever model exactly follows the
architecture and hyper-parameters of the 12 layers
BERT model1, except the sequence length is set to
be 64. An average-pooling operation is adopted on
the output of BERT to produce the final representa-
tion for query and document (u and v respectively).
Finally, the output score f is calculated by the co-
sine distance between u and v as follows:

f(xi, yi) =
1

2
(1− u · v

||u|| × ||v||
) (6)

We incorporate the generated label distributions
into the Retriever model as auxiliary supervision

1https://github.com/google-research/
bert

information. Given the training data with both hard
labels and label distributions as follows:

Xi = {(〈xi, yi〉, di, li)}Ni=1 (7)

The model parameters are estimated by minimiz-
ing the following loss function:

L =

N∑
i=1

(α(f(xi, yi) + di − 1)2

+ (1− α)(f(xi, yi) + li − 1)2)

(8)

where α ∈ [0, 1] denotes the loss weight of label
distribution, which is used as a trade-off to get a
suitable fitting target.

4 Experiment Settings

4.1 Datasets

Following Chang et al. (2020), we consider
the Retrieval Question-Answering (ReQA) bench-
mark proposed by Ahmad et al. (2019). We use
SQuAD (Rajpurkar et al., 2016) and Natural Ques-
tions (Kwiatkowski et al., 2019) for English, and
CMRC 2018 (Cui et al., 2019) and DRCD (Shao
et al., 2018) for Chinese. Note that Ahmad et al.
(2019) is targetting at Ranker, while our goal is to
improve the Retriever. Therefore our approaches
are not directly comparable to the results presented
in their paper.

Each entry of QA datasets is a tuple (q, a, p),
where q is the question, a is the answer span, and
p is the evidence passage containing a. Following
Ahmad et al. (2019); Liu et al. (2021), we split
a passage into sentences p = s1s2...sn. For a
query q, we need to retrieve the correct sentence
from a candidate set consisting of sentences of all
passages. A query-sentence pair (q, s) is labeled as
1 if s is the sentence containing the corresponding
answer span, and labeled as 0 otherwise. This
problem is more challenging than retrieving the
evidence passage only since the larger number of
candidates to be retrieved.

For each dataset, the training/test split of the
data is 60%/20%, and the 20% of the training set
is held out as the validation set for hyper-parameter
tuning2. We apply four-fold cross-validation to do
significant tests.

2Note that all of our LE methods are only used in the
training set, and we split the dataset according to questions so
that there are no same questions in the training, validation and
test set.

https://github.com/google-research/bert
https://github.com/google-research/bert
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Dataset Model R@1 R@10 R@50 R@100

SQuAD

TF-IDF 40.24 62.01 71.09 75.81
BM25 41.33 63.42 72.45 76.27
F-EBR 21.78 45.43 66.30 71.72
SBERT 35.27 48.48 68.21 78.85
LE-BS 48.94 64.62 80.21 86.03

Natural Questions

TF-IDF 5.07 16.58 24.48 26.99
BM25 5.02 16.33 24.11 26.74
F-EBR 13.22 36.84 53.48 59.03
SBERT 20.02 44.69 58.40 69.42
LE-BS 23.62 56.23 73.38 78.31

CMRC

TF-IDF 50.88 71.23 77.29 81.58
BM25 50.82 71.07 77.21 81.44
F-EBR 52.60 72.33 79.03 84.14
SBERT 52.89 73.34 81.90 85.72
LE-BS 63.60 82.71 90.09 94.48

DRCD

TF-IDF 3.12 37.13 45.29 52.18
BM25 3.48 37.81 46.13 53.38
F-EBR 4.01 39.38 47.01 54.54
SBERT 4.07 40.23 50.56 62.43
LE-BS 4.59 52.49 65.00 67.87

Table 1: Experimental results of TF-IDF, BM25, F-
EBR, SBERT, and LE-BS, where R@K represents Re-
call@K. Numbers are in percentage (%).

4.2 Baselines
We compare our method against the following six
baselines. The first four are existing widely used
large-scale Retriever models, and the latter two are
models equipped with alternative label enhance-
ment methods.

• TF-IDF and BM25 are two widely used term
weighting methods (Spärck Jones, 1972, 2004;
Robertson and Zaragoza, 2009).

• F-EBR is the most widely used word-
embedding-based multi-tower Retriever
model proposed by Facebook Search (Huang
and Sharma, 2020).

• SBERT is a competitive BERT-based multi-
tower Retriever proposed by Reimers and
Gurevych (2019).

• LE-TFIDF is a variant of our method in
which the label distribution is generated based
on static TF-IDF weights.

• LE-Distill is another variant in which the
label distribution set as predicting scores
of SBERT. This method is similar to
self-distillation process in born-again net-
works (Furlanello et al., 2018).

For the convenience of comparison, we refer to
our Label Enhancement method based on BERT
Scorer as LE-BS.

0%
10%
20%
30%
40%
50%
60%
70%
80%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pe
rc

en
ta

ge
 o

f P
ai

rs

Cosine Distance Scores

SBERT LE-BS F-EBR

Figure 5: Comparison of the prediction score distribu-
tion.

4.3 Evaluation Metric

Since the goal of the retrieval phase is to capture the
positives in the top-k results, we select Recall@k
as the evaluation metric. Recall@k is computed by
the following equation:

Recall@k =
1

|D|
∑
xi∈D

∑
yi∈Rk

l<xi,yi>∑
yi∈D l<xi,yi>

(9)

where Rk is the top k results recalled by our model.
D is the dataset. xi and yi are the i-th query and
i-th document separately.

5 Experiment Results

5.1 Comparison with Retriever Models

The experimental results3 are shown in the Table 1,
from which we have three observations:

1. Term weighting methods perform exception-
ally well for the SQuAD benchmark, as
the data collection process and human an-
notations of this dataset are biased towards
question-answer pairs with overlapping to-
kens. They perform poorly in the Natu-
ral Questions dataset, where there are fewer
overlapping tokens and the embedding-based
model perform well. Our LE-BS combines the
advantage of term weighting and embedding-
based methods to perform well in all datasets.

2. It is as expected that LE-BS and SBERT out-
perform F-EBR by a large margin since pre-
trained language models yield much more ro-
bust representation than word embeddings.

3The experiment results in this paper are statistically sig-
nificant with p < 0.05.
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Dataset Model R@1 R@10 R@50 R@100
Standard

SQuAD

LE-None 35.27 48.48 68.21 78.85
LE-Distill 37.62 55.89 72.54 80.50
LE-TFIDF 41.03 61.29 78.45 83.89
LE-BS 48.94 64.62 80.21 86.03

Natural Questions

LE-None 20.02 44.69 58.40 69.42
LE-Distill 21.71 48.37 62.60 72.18
LE-TFIDF 21.80 48.75 68.43 74.03
LE-BS 23.62 56.23 73.38 78.31

Cold-start

SQuAD

LE-None 6.20 9.85 16.69 21.35
LE-Distill 6.35 9.97 17.24 21.66
LE-TFIDF 7.11 10.90 17.93 22.51
LE-BS 11.80 14.42 19.77 24.85

Natural Questions

LE-None 4.68 5.90 6.45 6.80
LE-Distill 5.11 6.44 7.34 8.69
LE-TFIDF 5.20 6.96 8.30 10.90
LE-BS 7.21 8.78 11.60 14.08

Table 2: Experimental results of different LE method.

3. LE-BS further achieves significant improve-
ment over SBERT. LE-BS can be viewed as
an enhanced SBERT variant that incorporates
label enhancement. We could observe the im-
provement of LE-BS over SBERT on both
English and Chinese datasets, verifying that
the label distributions generated by our BERT-
Scorer provide helpful supervision signals for
Retriever models in a language-independent
manner.

5.2 Impact of Label Distribution

We further investigate why label distribution can
bring recall improvement observed above. We take
the SQuAD dataset as an example and get all pre-
dicting distance scores of testing pairs. We split the
range of [0,1] into ten equal sub-ranges including
(0, 0.1], (0.1, 0.2],..., and (0.9, 1], and count propor-
tions of pairs whose scores are in each sub-range.
The three multi-tower models’ statistics are shown
in Figure 5.

From Figure 5, we find the distance scores of
most testing pairs are close to 1. It is a natural result
since most testing pairs are labeled as irrelevant by
hard labels. Compared with F-EBR and SBERT,
the curve of LE-BS is much smoother, meaning
more pairs have a smaller query-document distance.
We attribute this to the supplementary training ob-
jective of fitting the label distribution in addition
to the 0-1 hard label. The trend of LE-BS’s curve
partly expresses why LE-BS achieves much bet-
ter recall scores. In other words, we can safely
conclude that with label distribution LE-BS can

Dataset Model R@1 R@10 R@50 R@100
Standard

SQuAD

α = 0 24.69 47.11 68.39 74.70
α = 0.2 28.35 59.89 72.77 80.99
α = 0.5 30.09 62.52 76.80 81.16
α = 0.8 31.47 63.84 78.83 83.26
α = 1 48.94 64.62 80.21 86.03

Natural Questions

α = 0 21.13 44.97 53.29 68.78
α = 0.2 23.62 56.23 73.38 78.31
α = 0.5 22.86 51.97 72.47 77.60
α = 0.8 21.05 52.53 72.04 77.65
α = 1 22.11 53.55 71.84 76.80

Cold-start

SQuAD

α = 0 5.87 9.79 16.86 20.54
α = 0.2 7.58 8.84 16.05 20.51
α = 0.5 7.33 10.00 16.65 21.93
α = 0.8 8.86 11.70 16.76 23.06
α = 1 11.80 14.42 19.77 24.85

Natural Questions

α = 0 3.79 5.35 6.51 7.45
α = 0.2 5.10 6.85 8.82 9.78
α = 0.5 5.00 6.06 9.55 9.72
α = 0.8 5.59 7.78 9.40 11.40
α = 1 7.21 8.78 11.60 14.08

Table 3: Effect of different weights of label distribu-
tion.

identify more relevant candidates without introduc-
ing too many false positives. Note that better recall
is a fundamental goal of Retriever because we want
to feed Ranker with as many relevant candidates as
possible.

5.3 Analysis of Label Enhancement Method

The intuition of our label enhancement method in
retrieval scenarios is to incorporate prior knowl-
edge from static term weighting methods into dy-
namic contextual embeddings. To verify the supe-
riority of our label enhancement method, we com-
pare two alternative label enhancement techniques.
The empirical results are demonstrated in Table
2. For the convenience and clarity of comparison,
here we also put the performance of SBERT. Its ex-
perimental results are demonstrated as LE-None
to indicate that no LE method is employed.

To further analyze the effectiveness of label
enhancement, we consider two different settings
for each dataset. The first one is the standard-
setting, where the training/test split of the data
is 60%/20%, and the 20% of the training set is
held out as the validation set. The second one is
the cold-start setting that assumes there are not
enough training data to use. The only difference
from the standard-setting is that the training/test
split of the data is 20%/60%. We have the follow-
ing five observations:
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1. All LE-based models outperform the LE-
None model, which clearly verifies the effec-
tiveness of label distribution for the retrieval
task.

2. The improvement of LE-TFIDF over LE-
None shows that static TF-IDF weights serve
as beneficial prior knowledge to characterize
label distribution.

3. LE-Distill also achieves notable enhance-
ments. This observation is consistent with
other knowledge distillation works (Hinton
et al., 2015; Furlanello et al., 2018). The
self-distillation process brings valuable dark
knowledge via the generated soft predicting
scores even without utilizing TF-IDF informa-
tion.

4. Relative performance improvement brought
by LE under the cold-start setting is more ev-
ident than the standard-setting. The possible
reason is that relevance degree information
could play a more important role when there
are not enough training data. This observation
is also consistent with other data-lacking sce-
narios of using label distribution (e.g., knowl-
edge distillation (Hinton et al., 2015)).

5. Our LE-BS has clear superiority over LE-
Distill and LE-TFIDF among all datasets un-
der both the standard and cold-start settings.
Rather than predicting relevance score directly
as LE-Distill, LE-BS predicts dynamic term
weights by BERT-Scorer in a way incorporat-
ing useful TF-IDF information into contex-
tual BERT representation. Therefore, the final
generated label distribution integrates explicit
prior TF-IDF knowledge, and some helpful
“dark” knowledge (Furlanello et al., 2018) is
produced during the training step. We believe
that is the main reason behind this superiority
of our method.

5.4 Collaboration between Label
Distribution and Hard Label

As a critical hyper-parameter of our LE-BS method,
α denotes how to weight the optimization objec-
tives of hard labels and label distributions. This
section investigates the collaboration between hard
labels and label distributions with different α set-
tings. This analysis could provide more systematic
guidance on how to incorporate label distribution.

We train our LE-BS with α is set to 0, 0.2, 0.5,
0.8, and 1, respectively, and report the empirical re-
sults of the SQuAD and Natural Questions datasets.
Note that setting α as 0 means using only hard
labels, and setting α as 1 means using only label
distributions. The experimental results are shown
in Table 3, from which we find tuning α is essen-
tial – different α can result in recall variation of
5%− 10%.

For the standard-setting, we find that when α
is set to be larger, our LE-BS performs exception-
ally well for the SQuAD benchmark. Note that the
data collection process and human annotations of
SQuAD are biased towards question-answer pairs
with overlapping tokens (Rajpurkar et al., 2016).
We can naturally expect that the generated label dis-
tribution could better characterize query-document
relevance degree in the SQuAD dataset due to the
capability of BERT-Scorer to identify overlapped
highly-representative tokens. Regarding the Nat-
ural Question dataset, LE-BS is best performed
when the α is set as 0.2. This dataset is built based
on Google search logs, so the connection between
queries and document are more challenging to cap-
ture. In this scenario, if we rely too much on the
supervision signal from the generated label dis-
tributions, unreasonable noisy information can be
brought in and thereby hinders model performance.

For the cold-start setting, models with a larger
α consistently achieve better performance. In such
data-lacking scenarios, models cannot get sufficient
supervision information from training sets’ hard
labels. When α becomes larger, more auxiliary
supervision information from the label distribution
could be utilized. Though this is a rather rough
explanation for this observation, it can serve as
trustworthy guidance in practice for information
retrieval researchers and engineers.

6 Conclusion

This paper first introduced label distribution to char-
acterize the relevance degree between queries and
documents in large-scale retrieval problems. Then
we designed a novel and effective label enhance-
ment method that generates label distributions via
fusing context-free TF-IDF information and contex-
tual BERT representation. An improved Retriever
model was achieved easily by incorporating the
generated label distributions as auxiliary supervi-
sion information. Our method’s superiority can be
observed on four datasets of English and Chinese.
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