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Abstract

Multimodal sentiment analysis (MSA) draws
increasing attention with the availability of
multimodal data. The boost in performance of
MSA models is mainly hindered by two prob-
lems. On the one hand, recent MSA works
mostly focus on learning cross-modal dynam-
ics, but neglect to explore an optimal solution
for unimodal networks, which determines the
lower limit of MSA models. On the other hand,
noisy information hidden in each modality in-
terferes the learning of correct cross-modal dy-
namics. To address the above-mentioned prob-
lems, we propose a novel MSA framework
Modulation Model for Multimodal Sentiment
Analysis (M3SA) to identify the contribution
of modalities and reduce the impact of noisy
information, so as to better learn unimodal and
cross-modal dynamics. Specifically, modula-
tion loss is designed to modulate the loss con-
tribution based on the confidence of individ-
ual modalities in each utterance, so as to ex-
plore an optimal update solution for each uni-
modal network. Besides, contrary to most ex-
isting works which fail to explicitly filter out
noisy information, we devise a modality fil-
ter module to identify and filter out modality
noise for the learning of correct cross-modal
embedding. Extensive experiments on pub-
licly datasets demonstrate that our approach
achieves state-of-the-art performance.

1 introduction

The availability of multimodal data enables us to
perform many downstream tasks with cross-modal
information, such as conversation generation, mul-
timodal sentiment analysis, etc. In the field of senti-
ment analysis (MSA), recently researchers leverage
the rich information contained in different modal-
ities (e.g., audio, visual, language) to design mul-
timodal models, and existing works mainly focus
on exploring cross-modal dynamics and designing
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sophisticated fusion methods (Mai et al., 2020a;
Pham et al., 2019; Poria et al., 2017a; Hazarika
et al., 2020; Mai et al., 2021a).

While existing MSA models are mostly opti-
mized by multimodal loss, the design towards the
optimization of unimodal networks in MSA models
is often neglected. However, the reach of optimal
unimodal networks determines the lower limit of
the whole MSA models, which should specifically
addressed for the higher performance of the mod-
els. Besides, an optimal solution for each modality
also ensures the performance of MSA models even
with the absence of any modality.

Moreover, even with satisfactory unimodal net-
works, it is not always the case that multimodal
models reach higher performance than the uni-
modal ones (Mai et al., 2021b). The reason may
be that, a modality may not contain useful informa-
tion in some utterances and may even carry noises,
which hinders the learning of correct multimodal
embedding. Some attention-based methods lever-
age attention mechanism to determine modality
importance (Chauhan et al., 2019; Akhtar et al.,
2019), which can filter out noise information in
a certain degree, but those methods introduce a
large amount of parameters and increase the risk
of overfitting. Moreover, despite the attention on
informative modalities, the noisy modalities cannot
be explicitly filtered out.

Based on the aforementioned problem, we
mainly concern about two questions: how to ob-
tain an optimal unimodal network; which modality
is informative and how to filter out noisy modali-
ties. We hold the intuition that each modality car-
ries modality-specific information, whose impor-
tance varies from one another. Moreover, the role
of the same modality also varies (the amount of
useful and noisy information varies in different
utterances). To address these concerns, we pro-
pose a novel Modulation Model for Multimodal
Sentiment Analysis M3SA to modulate the train-
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ing of different modalities.
Specifically, modulation loss and modality filter

module are designed to identify import modalities
and reduce the negative impact of noisy informa-
tion. To learn an optimal unimodal network, mod-
ulation loss is proposed to modulate the training
of each unimodal network. The core idea is that
during the training stage, the modulation function
manages to modulate the loss contribution of each
modality according to the confidence of all the
modalities, which enables the model to balance
multi-modal information and identify the impor-
tance of each modality at each utterance. In this
way, the model can dynamically adjust the con-
tribution from different modalities so as to better
leverage the importance information hidden within
each modality to update the unimodal networks.
With our proposed modulation loss, the training
of individual unimodal networks is modulated and
they can be better optimized by reducing the infer-
ence of the noisy modalities at each utterance.

Besides, to obtain correct multimodal embed-
ding, we design a modality filter module (MFM)
to identify modality importance and explicitly fil-
ter out noisy modalities. We present two possible
candidates of the filter of MFM, i.e., a hard-filter
and a soft-filter, where the hard-filter provides a bi-
nary choice {0, 1} to retain or filter out individual
modalities, while the soft-filter outputs a number
between [0, 1] to filter out noisy information based
on the noise level. Moreover, instead of directly re-
moving the noisy modalities or tokens (Chen et al.,
2017; Zhang et al., 2019), we innovative to train a
baseline embedding for each modality and replace
the noisy embedding with it, such that our method
can be fitted into any fusion mechanisms and com-
pensate for the loss of unimodal information.

In brief, the contributions can be summarized as:

• We propose a novel framework M3SA to
modulate the training of MSA models, which
aims to explore optimal solution for unimodal
networks and multimodal embedding.

• A cross-modal modulation loss is devised to
modulate the contribution of each modality
based on the confidence of individual modali-
ties during the training stage, and it can reduce
the interference from noisy modalities so that
unimodal networks can be better optimized,
which is often neglected in existing works.

• A modality filter module (MFM) is designed

to identify noisy modalities and filter them
out where soft-filter, hard-filter and unimodal
embedding baselines are proposed, so as to
minimize the negative impact of noisy infor-
mation and obtain correct multimodal embed-
ding. Compared with attention-based meth-
ods, MFM introduces much less parameters
and can explicitly filter out noisy modalities.

• Our proposed method is compared with sev-
eral models on public datasets and achieves
state-of-the-art performance, which demon-
strates its effectiveness and superiority.

2 Related Work

In the field of MSA, each sample is an utterance
that captures different views with complementary
information. Most previous works focus on elab-
orately designing various fusion strategies so that
the model can explore inter-modal dynamics to suf-
ficiently learn a joint embedding, including simple
ways like early fusion and late fusion (Wollmer
et al., 2013; Rozgic et al., 2012; Poria et al., 2016,
2017b), and more advanced fusion strategies like
tensor-based fusion (Liu et al., 2018; Zadeh et al.,
2017; Mai et al., 2019), graph fusion (Mai et al.,
2020a; Zadeh et al., 2018b; Mai et al., 2020b), fac-
torization methods (Tsai et al., 2019b; Liang et al.,
2019), fine-tuning BERT (Rahman et al., 2020;
Yang et al., 2020) etc.

The above-mentioned methods focus on explor-
ing more advanced fusion strategies, and optimize
the whole network mostly based on multimodal
loss so as to achieve higher performance for MSA
task. While more attention is paid on the optimiza-
tion of multimodal networks, specifically designed
method for optimizing individual unimodal net-
works is neglected. We hold that apart from the
learning of cross-modal dynamics, it is also impor-
tant to reach an optimal solution for the optimiza-
tion of unimodal networks. To achieve this goal,
we specifically design a modulation loss to mod-
ulate the loss contribution of unimodal networks
based on their confidence. We train all unimodal
networks with the modulation loss across all data
points with the aim to reaching optimal parameters
on the corresponding dataset.

Another problem in the field of MSA is the inter-
ference between modalities. Noisy modalities can
interfere the learning of other modalities and the
correct multimodal embedding. Some attention-
based fusion methods such as Context-aware In-
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Figure 1: The diagram of our proposed M3SA.

teractive Attention (CIA) (Chauhan et al., 2019),
Multi-Task Learning (MTL) (Akhtar et al., 2019)
and Multilogue-Net (Shenoy and Sardana, 2020)
that apply cross-modal attention mechanism con-
sider the importance of different modalities and
assign different weights to them. But they focus on
identifying and highlighting important modalities,
and can not explicitly filter out noisy modalities.
Although these models have considered modality
importance, we format it from a different perspec-
tive instead of learning attention weights. Specif-
ically, we focus on identifying and filtering out
noisy modalities with a modality filter module
(MFM), which introduces much few parameters
than attention mechanisms and can explicitly fil-
ters out noisy information. Actually, there also
exists works that aim to filter out the noisy modali-
ties or the tokens within modality using reinforce-
ment learning (RL) (Chen et al., 2017; Zhang et al.,
2019). However, RL is unstable in training and
suffers from high variants and control variates that
requires auxiliary models or multiple evaluations
of the network (Louizos et al., 2017; Mnih and
Gregor, 2014). Moreover, they provide a binary
choice to retain or filter out the whole noisy modal-
ity, and modality-specific information may be lost.
Unlike it, our proposed MFM is much more eas-
ier to train, and at the same time MFM considers
the baseline embedding to compensate the loss of
modality-specific unimodal information.

3 Algorithm

3.1 Notations and Problem Formulation

Our task is to perform multimodal sentiment analy-
sis with multimodal data by scoring the sentiment
intensity. The input to the model is an utterance
(Olson, 1977) (i.e., a segment of a video bounded
by pauses and breaths), each of which has three
modalities, i.e., acoustic (a), visual (v), and lan-
guage (l). The sequences of acoustic, visual, and
language modalities are denoted as ua ∈ RTa×da ,
uv ∈ RTv×dv , and ul ∈ RTl×dl , where Ta, Tv
and Tl represent the length of the audio, visual and
language modality, respectively, and da, dv and dl
denote the dimensionality of the audio, visual and
language modality, respectively.

3.2 Overall Algorithm

Formally, a traditional multimodal learning system
can be formulated as:

xm = Fm(um; θm),m ∈ {l, a, v} (1)

yM = FM (xl,xa,xv; θM ) (2)

where yM is the prediction, Fm parameterized
by θm and FM parameterized by θM refer to the
unimodal and multimodal network, respectively.
Um ∈ RTm×dm is the input raw feature of modal-
ity m where Tm is the sequence length. To update
the parameters of the multimodal system, we have
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the following equation:

` = ||y − yM ||1, θ←θ − α∂`
∂θ

(3)

where y is the ground truth label, θ ∈
{θa, θv, θl, θM}, α is the learning rate, and ` is
mean absolute error (MAE).

Unlike the traditional multimodal learning sys-
tem which mostly focuses on optimizing the whole
multimodal framework, we decouple the learning
procedure of unimodal and multimodal networks,
introduce modulation losses to specifically opti-
mize the unimodal networks for learning better
unimodal representations, and design modality fil-
ter module (MFM) for identifying and filtering out
noisy modalities. As illustrated in Fig. 1, given
an input utterance of three modalities, we first ob-
tain the unimodal representations via unimodal net-
works. Modulation loss is specifically designed to
train individual unimodal networks by modulating
the loss contributions of each modality.Besides, the
output of each unimodal network will be sent to
the MFM, and in this way, noisy modalities can
be identified and filtered out. With our proposed
method, we can modulate the learning of correct
unimodal and multimodal dynamics, and minimize
the negative impact of noisy information. In a word,
our multimodal learning system is formulated as:

xm = Fm(um; θm),m ∈ {l, a, v} (4)

ym = C(xm; θc), `
m = |ym − y| (5)

lm2 = Modulation(`a, `v, `l; `m) (6)

xm2 = MFM(xl,xa,xv;xm) (7)

xM = FM (xl2,x
a
2,x

v
2; θM ) (8)

yM = C(xM ; θc), `M = |y − yM | (9)

where C is the classifier that takes encoded repre-
sentation as input and outputs the sentiment pre-
diction, which is shared across unimodal and mul-
timodal networks to force the learned unimodal
and multimodal representations to have approxi-
mately same distributions. As illustrated in Eq. 6,
the unimodal losses are adjusted by a Modulation
function, which helps to identify the contribution
of each modality of the current utterance to the op-
timization of the respective unimodal network. lm2
is used to update the respective unimodal network.

Moreover, in Eq. 7, MFM is introduced to identify
and replace the uninformative modalities with the
learned unimodal baseline embeddings to filter out
the noisy information that interferes the learning
of the cross-modal interactions. The detailed intro-
duction of the modulation function and the MFM
is shown in Section 3.3 and 3.4, respectively.

Unlike most existing works which need sophis-
ticated designed fusion methods to sufficiently ex-
plore cross-modal dynamics, our proposed M3SA
can leverage simple fusion method to reach the
state-of-the-art performance with better generaliza-
tion ability. Also note that our algorithm is model-
agnostic, and we can integrate any sequence learn-
ing networks into our unimodal networks Fm. In
this paper, we apply Transformer-based (Vaswani
et al., 2017) architectures to build up the unimodal
networks. As for the multimodal network FM , we
introduce different fusion mechanisms to evaluate
the algorithm. Please refer to Appendix for the de-
tails about the unimodal and multimodal networks.

3.3 Modulation Loss

The cross-modal modulation function is proposed
to modulate the loss contribution of each modality
as a function of the confidence of individual modal-
ities. This is based on the assumption that each
modality carries various modality-specific informa-
tion, whose importance varies from one modality to
another modality. And in different utterances, the
role of the same modality also varies (in some ut-
terances, this modality is important, while in other
utterance, it contains only the noisy information).
Instead of learning the fixed attention weight for
each modality as the previous methods do (Wang
et al., 2019; Mai et al., 2020a), we seek to dynami-
cally adjust the contribution from different modal-
ities so as to better leverage the important infor-
mation hidden within each modality to update the
network, and effectively reduces the interference
of the noisy utterances. Compared to the attention
mechanism, the modulation loss directly has influ-
ence on the optimization procedure, which is more
straightforward and non-parametric.

How do we dynamically determine the contribu-
tion of each modality during training? A intuitive
idea is that we can estimate the value of the uni-
modal loss, under the assumption that the smaller
the value of the unimodal loss, the more discrimi-
native it is for the task, and a higher weight shall be
assigned so as to better leverage the discriminative
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information hidden in this modality to update the
network. More importantly, when assigning weight
to each unimodal loss, we should have a global
view on all the modalities to consider the value of
the other unimodal losses to estimate the relative
importance and adjust the weight for this modality
accordingly. The modulation loss can be formu-
lated as (taking language modality as an example):

`l2 = Modulation(`l, `a, `v; `l) (10)

where `l2 is the modulation loss for language modal-
ity. The Modulation function aims to learn the
weight for unimodal loss by estimating the discrim-
inative information in all the modalities (this is
why we call it modulation). The formulation of the
Modulation function could have many choices. In
practice, we formulate it as:

α =
1

1
3

∑m∈{l,a,v}
m

1
lm

=
3∑m∈{l,a,v}

m
1
lm

(11)

αl = α× `a × `v (12)

`l2 = `l × αl (13)

where α is the harmonic mean of the three uni-
modal losses which performs a kind of scale on
the weight of unimodal losses, and αl is the weight
for the language loss. By using the loss values of
other modalities to compute weights for the cur-
rent modality, the weight of the current modality
reduces when the other modalities obtain relatively
low losses (i.e., other modalities have high confi-
dence for prediction). In other words, the modality
that has a relatively high loss obtains a low weight
when updating the corresponding unimodal net-
work, which dynamically reduces the influence of
noisy modalities to the network. This simple opera-
tion is shown to be very effective (see experiment).

3.4 Modality Filter Module
The problem of noisy modalities negatively affects
the learning of other informative modalities and
hinders higher performance of existing MSA mod-
els. Many existing works try to identify modality
importance with attention mechanisms (Mai et al.,
2020a; Liang et al., 2018), which can highlight
useful tokens or modalities and filter certain noisy
information out. However, those methods cannot
completely filter out the noisy information and only
tend to assign high weight to the informative modal-
ities. Chen et al. (2017) leverage reinforcement
learning (RL) to learn a gate controller for each

modality, which can shut off noisy modalities. But
RL suffers from high variance and introduces more
parameters and optimization objective (Louizos
et al., 2017), which is unstable in training.

Unlike previous methods, we propose a modal-
ity filter module (MFM) to selectively filter noisy
modalities out, in which way the negative impact
of noisy information can be minimized. Unlike
(Chen et al., 2017) which only considers non-
lexical modalities as the possible noisy modalities,
we aim to identify if the three modalities in each
utterance contain noisy information, and if they
should contribute to the final prediction.

Mathematically, the deployment of MFM firstly
takes the feature embeddings of all the modali-
ties as inputs, and calculates a feature shift of the
overall multimodal embedding to each specific uni-
modal embedding, which can be formulated as:

xM = xl ⊕ xa ⊕ xv

x′ = Linear(xM ; θL)

xm
shift =ReLU(x′ − xm),m ∈ {l, a, v}

(14)

where xM denotes a multimodal representation by
the concatenation of the embeddings of the three
modalities, x′ represents the processed multimodal
representation which preserves the same dimen-
sionality as individual modalities by a linear trans-
formation, and xm

shift is the feature shift of modal-
ity m compared to x′. By using all the unimodal
embeddings to modulate and determine the noisy
level of each specific modality, the model can have
a global view on all the modalities and determine
which is informative and which is not.

With the obtained feature shift of each modality,
MFM filters out noisy information by a Filter:

sm = Filter(xm
shift; θf ),m ∈ {l, a, v} (15)

where Filter parameterized by θf outputs sm,
which determines whether to filter the modality
m out based on its noise level. The Filter is trained
across all utterances, and it can identify and filter
out noisy modality. The realization of Filter has
many possibilities, and we put forward two can-
didates in Section 3.4.1 and Section 3.4.2. After
obtaining the output sm from the Filter, the final
embedding of the modality m can be determined:

xm
2 = sm · xm + (1− sm) · bm (16)

where xm
out represents the final embedding of the

modality m, which contains much less noisy in-
formation. xm

out of individual modalities is then
leveraged to learn a correct multimodal embedding
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for MSA task. Besides, we assume that filtering
out too much information of the noisy modality
may degrade the performance, for the model may
lose modality-specific information. To compensate
the modality-specific information of noisy modal-
ities, we learn a baseline embedding bm for each
modality. The unimodal baseline embedding bm is
a critical part of our MFM, which is trained across
multiple data points in the dataset. bm is assumed
to integrate the general distributions and properties
of each modality, and therefore it can compensate
the modality-specific information for fusion. More-
over, instead of directly removing the noisy modal-
ities or tokens (Chen et al., 2017; Zhang et al.,
2019), the unimodal baseline embedding enables
our model to fit into any fusion mechanism such as
tensor fusion or element-wise multiplication, pro-
viding more generalization ability.

With our proposed MFM, our model is capable
of identifying and filtering out noisy modalities.
In this way, our proposed model can dynamically
retain informative modalities to modulate the learn-
ing of correct multimodal embedding for each utter-
ance. Besides, to minimize the negative impact of
the absence of modality-specific information, the
learned baseline embedding bm of each modality
helps to sufficiently learn cross-modal dynamics.

3.4.1 Soft Filter
To realize the Filter function, we first consider the
soft filter mechanism whose output value is not
binary. The procedure for soft filter is shown below:

zm = FC(xm
shift; θfc) (17)

smi =
eλ·z

m
i∑2

j=1 e
λ·zmj

, sm = [sm1 , s
m
2 ] (18)

lp = 1− (sm1 − sm0 )2 (19)

where λ is the scale factor to widen the distance be-
tween the elements in s, FC is the fully-connected
network activate by ReLU, and sm ∈ R2 is the
assignment vector that determines the noisy level
of modality. lp is the penalty loss that encourages
the elements of sm to be close to 0 or 1. Neverthe-
less, the elements of sm are not likely to be binary
because they are continuous. But via the soft filter,
the model can learn to estimate how much informa-
tion in the modality can be filtered out instead of
directly filtering out all the information, providing
more fine-grained filtering effect. Since the out-
put of soft-filter is a 2-dimensional vector, Eq. 16

should be rewritten as:

xm
2 = sm1 · xm + sm2 · bm, sm1 + sm2 = 1 (20)

Soft filter differs from attention mechanism in fol-
lowing aspects: 1) introducing scale factor λ and
penalty loss lp to reach better filtering effect; 2)
introducing the unimodal baseline embedding to
compensate the filtered modality-specific informa-
tion; 3) merely modifying the unimodal embedding
and can be integrated with any fusion mechanisms.

3.4.2 Hard Filter
The output of the hard filter, i.e., sm, is a scalar
that is either 0 or 1. However, due to the dis-
crete nature of sm, training this kind of frame-
work using gradient-based optimization algorithm
is intractable. To resolve this problem, we fol-
low (Louizos et al., 2017) to use reparameteriza-
tion trick (Kingma and Welling, 2013) to compute
the unbiased and low variance gradients. Specif-
ically, we utilize the Hard Concrete distribution
introduced in (Louizos et al., 2017), which is a
mixed discrete-continuous distribution on the in-
terval [0, 1]. Hard Concrete assigns a continuous
probability to exact zeroes or ones, and meanwhile
it allows continuous outcomes in the unit interval
such that the gradient can be computed via the repa-
rameterization trick. The computation of sm for
hard filter is illustrated as follows:

zm = FC(xm
shift; θfc)

ŝm = Sigmoid((log
u

1− u
+ zm)/β)

s̄m = ŝm × (ζ − γ) + γ

sm = 1 iff s̄m > 0.5 else sm = 0

(21)

where β is the temperature, ζ and γ are the hyper-
parameter to scale sm, and u ∼ U(0, 1) (U de-
notes Gaussian distribution). Compared to using
RL (Chen et al., 2017; Zhang et al., 2019) to obtain
the exact binary weight, using the Hard Concrete
distribution is much more simple and stable in train-
ing, with no additional optimization objectives or
components introduced. Via the hard filter, the
model can completely filter out the noisy modali-
ties which cannot be realized by the attention mech-
anisms. For more details about Hard Concrete dis-
tribution, please refer to (Louizos et al., 2017).

4 Experiment

4.1 Experimental Setting
We use the CMU-MOSI (Zadeh et al., 2016a) and
CMU-MOSEI (Zadeh et al., 2018b) datasets to
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Table 1: The comparison with baselines on CMU-
MOSI. Note that QMF and MISA do not provide the
code so we present the result from their papers.

Acc7 Acc2 F1 MAE Corr
EF-LSTM 31.6 75.8 75.6 1.053 0.613
LF-LSTM 31.6 76.4 75.4 1.037 0.620

TFN (Zadeh et al., 2017) 32.2 76.4 76.3 1.017 0.604
LMF (Liu et al., 2018) 30.6 73.8 73.7 1.026 0.602

MFN (Zadeh et al., 2018a) 32.1 78.0 76.0 1.010 0.635
RAVEN (Wang et al., 2019) 33.8 78.8 76.9 0.968 0.667
MULT (Tsai et al., 2019a) 33.6 79.3 78.3 1.009 0.667

QMF (Li et al., 2021) 35.5 79.7 79.6 0.915 0.696
MAG-BERT (Rahman et al., 2020) 42.9 83.5 83.5 0.790 0.769

M3SA (Hard) 45.5 85.3 85.3 0.730 0.793
M3SA (Soft) 46.4 85.7 85.6 0.714 0.794

Table 2: The comparison with baselines on CMU-
MOSEI. Note that IMR cannot perform regression task
so that MAE and Corr are not available.

Acc7 Acc2 F1 MAE Corr
EF-LSTM 46.7 79.1 78.8 0.665 0.621
LF-LSTM 49.1 79.4 80.0 0.625 0.655

TFN (Zadeh et al., 2017) 49.8 79.4 79.7 0.610 0.671
LMF (Liu et al., 2018) 50.0 80.6 81.0 0.608 0.677

MFN (Zadeh et al., 2018a) 49.1 79.6 80.6 0.618 0.670
RAVEN (Wang et al., 2019) 50.2 79.0 79.4 0.605 0.680
MULT (Tsai et al., 2019a) 48.2 80.2 80.5 0.638 0.659

IMR (Tsai et al., 2020) 48.7 80.6 81.0 - -
QMF (Li et al., 2021) 47.9 80.7 79.8 0.640 0.658

MAG-BERT (Rahman et al., 2020) 51.9 85.0 85.0 0.602 0.778
M3SA (Hard) 52.7 85.6 85.5 0.587 0.789
M3SA (Soft) 52.5 85.2 85.1 0.599 0.781

evaluate the model. We provide details about the
datasets, evaluation protocols, baseline methods,
and other experimental details in Appendix.

During the training stage, we first update indi-
vidual unimodal sub-networks with the modulated
unimodal losses, after which the whole model is up-
dated with the multimodal loss derived from MFM.

4.2 Experimental Results

4.2.1 Comparison with Baselines
In this section, we compare our proposed model
with other baselines on two datasets CMU-MOSI
(Zadeh et al., 2016b) and CMU-MOSEI (Zadeh
et al., 2018b). As shown in Table 1 and 2, although
MAG-BERT outperforms other existing methods
and sets up a high baseline due to the effectiveness
of BERT (Devlin et al., 2019), it can be seen that
both of our proposed M3SA (Hard) and M3SA
(Soft) significantly outperform all baselines in most
cases. Specifically, on CMU-MOSI dataset, our
method achieves the best results on all metrics, and
M3SA (Soft) outperforms MAG-BERT by 3.5%
on Acc7, 2.2% on Acc2 and 2.1% on F1 score. On
CMU-MOSEI dataset, our proposedM3SA (Hard)
yields 0.8% improvement on Acc7, and 0.6% on
Acc2 and 0.5% on F1 score compared with MAG-
BERT. These results demonstrate the superiority of
our proposed model, indicating the effectiveness of

reaching optimal unimodal network and filtering
out noisy modalities.

4.2.2 Ablation Study
In this section, we perform ablation studies to ver-
ify the effectiveness of each component by remov-
ing it from the model.

Aiming to verify the effectiveness of the de-
signed modulation loss, we conduct experiments
where modulation loss is removed (see the cases
of ‘M3SA (Hard) (W/O ML)’ and ‘M3SA (Soft)
(W/O ML)’ in Table 3). From the experimental
results, it can be seen that removing the modula-
tion loss degrades the performance of the model.
Specifically, performance on Acc7, Acc2 and F1
score has seen a great drop. It is obvious that our
proposed contrastive learning method is effective
and can greatly boost the performance.

Meanwhile, we design two ablation experiments
to investigate the contribution of MFM (see the
cases of ‘M3SA (Hard) (W/O MFM)’ and ‘M3SA
(Soft) (W/O MFM) in Table 3). We can observe
that without MFM, our model sees a greater drop
in performance, which may be due to the reason
that noisy information interferes the learning of
other useful modalities. The results suggest the
necessity to identify and filter out noisy modalities
for a correct multimodal embedding, and in this
way informative modalities can also be highlighted.

We also perform ablation study on the design of
considering baseline embedding in MFM (see the
cases of ‘M3SA (Hard) (W/O BE)’ and ‘M3SA
(Soft) (W/O BE) in Table 3). We can see from the
results that removing the compensation of baseline
embedding in MFM degrades the performance of
M3SA severely compared to other cases. Specifi-
cally, the performance drops even greater than the
cases W/O MFM. It may be because, despite the
removal of noisy information, modality-specific in-
formation of the noisy modality is lost. The results
indicate that the learning of baseline embedding
in MFM is of necessity, for it compensates the
filtered modality-specific information.

4.2.3 Analysis of Generalization Ability
We also conduct experiments to verify that our
proposed M3SA is generalized to be applied
with different fusion strategies. Previous work
mostly rely on sophisticated fusion methods to
sufficiently learn cross-modal dynamics to reach
satisfactory results. Unlike them, our proposed
model can achieve state-of-the-art performance
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Table 3: Ablation studies on the CMU-MOSI
dataset. The ‘ML’, ‘MFM’ and ‘BE’ refer to our pro-
posed modulation loss, modality filter module and base-
line embedding, respectively.

Acc7 Acc2 F1 MAE Corr
M3SA (Hard) (W/O ML) 44.9 84.2 84.2 0.743 0.786
M3SA (Soft) (W/O ML) 46.2 85.0 84.9 0.729 0.794
M3SA (Hard) (W/O MFM) 47.0 84.8 84.8 0.725 0.791
M3SA (Soft) (W/O MFM) 44.2 83.9 83.9 0.737 0.794
M3SA (Hard) (W/O BE) 46.1 84.2 84.2 0.728 0.788
M3SA (Soft) (W/O BE) 46.1 83.9 83.9 0.733 0.794

M3SA (Hard) 45.5 85.3 85.3 0.730 0.793
M3SA (Soft) 46.4 85.7 85.6 0.714 0.794

Table 4: Discussion on the fusion strategies. Graph
fusion (Mai et al., 2020a) regards each unimodal, bi-
modal, and trimodal interaction as one node, and ex-
plicitly models their relationship. Tensor fusion (Zadeh
et al., 2017) applies outer product to explore interac-
tions, which introduces a large amount of parameters
and has high space complexity. The defaulted fusion
method is addition.

Acc7 Acc2 F1 MAE Corr
Concatenation+FC (Hard) 48.0 84.0 83.9 0.744 0.783

Addition (Hard) 45.5 85.3 85.3 0.730 0.793
Tensor Fusion (Hard) 43.1 84.3 84.3 0.772 0.786
Graph Fusion (Hard) 45.7 84.6 84.6 0.759 0.772

Concatenation+FC (Soft) 45.4 84.4 84.4 0.740 0.790
Addition (Soft) 46.4 85.7 85.6 0.714 0.794

Tensor Fusion (Soft) 43.8 84.7 84.7 0.742 0.787
Graph Fusion (Soft) 46.6 84.7 84.6 0.748 0.775

with simple fusion strategies. As shown in Ta-
ble 4, even with simple and direct fusion meth-
ods like concatenation and element-wise addi-
tion of unimodal representations, M3SA still
outperforms all baselines in most cases. Note
that despite the choice of M3SA (Hard) or M3SA
(Soft), all the variants of our model reach the
state-of-the-art performance compared to base-
lines. A conclusion can be reached that our de-
signed modulation loss and MFM is effective and
of satisfactory generalization ability. Also note that
our proposed modulation loss and MFM can be
applied to any cross-modal scenarios.

As shown in the Table, combining all the evalu-
ation metrics, the simple fusion method, i.e., Ad-
dition performs best. We argue that apart from
the modulation loss which can help to learn better
unimodal representation, it is partly because we
use the same classifier C to regularize the feature
distributions of unimodal and multimodal represen-
tations which forces them to have the same distri-
bution, such that direct addition is strong enough
to explore the complementary information and in-
teractions between modalities. Instead, the high-
complex learnable fusion methods may introduce

Figure 2: Visualization of the Mask Values of the
Three Modality Learned by Soft Filter.

noise to the distribution, which degrades the per-
formance. Specifically, we can observe that tenser
fusion (Zadeh et al., 2017) gets a relatively unfavor-
able results. The reason for it could be that tensor
fusion implements the outer product on vectors of
all modalities, which may change the distribution
of high-level features and exhaust the deep network
for introducing a lot of computation and parame-
ters.

4.2.4 Analysis on the Modality Importance
We provide a visualization for the learned mask
value of the soft filter for the testing utterances,
aiming to verify the effectiveness of MFM to iden-
tify and filter out noisy modalities. Note that the
value of ‘Mask1’ and ’Mask2’ represents the per-
centage of the preserved information and filtered
information of the corresponding modality. We can
infer from Fig. 2 that, the language modality is the
most informative modality that is rarely filtered out
(and this conclusion is consistent with other works
(Mai et al., 2021b)). Contrary to it, the acoustic
modality is frequently identified as noisy and fil-
tered out which is the most uninformative modality.
It can be seen that our MFM is capable to identify
and filter out noisy modalities, which can also high-
light the role of informative modalities when noisy
information is filtered. Notably, the mean mask
value is 0.998, 0.012, 0.088 for language, acoustic,
and visual modalities, respectively.

Also, from the visualization results we can ob-
serve that the learned mask value approximates
the 0-1 distribution (i.e, a modality is identified
as either very informative or very noisy), which
differs from existing attention mechanisms and the
difference is mostly due to our defined scale fac-
tor λ and penalty loss lp. Apart from highlighting
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important modalities as in attention mechanisms,
our MFM can reach better filtering effect and can
be integrated with any fusion mechanisms. The
visualization of M3SA (Hard) is similar, which is
not presented due to the page limitations.

5 Conclusions

We propose novel MSA framework to modulate
the learning of unimodal and cross-modal dynam-
ics, which is capable of exploring an optimal solu-
tion for unimodal networks and filtering out noisy
modalities. Specifically, modulation loss can mod-
ulate the learning of unimodal networks based on
their confidence of prediction, while modality filter
module can filter out noisy modalities for a correct
multimodal embedding. Experiments demonstrate
that our model outperforms state-of-the-art meth-
ods in two datasets.
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Appendix

A Unimodal Network: Fm

Since Transformer-based (Vaswani et al., 2017)
structure enables parallel computation in time di-
mension and can learn longer temporal dependency
in long sequences, we apply Transformer-based
(Vaswani et al., 2017) architectures to build up
the unimodal learning networks. Specifically, for
acoustic and visual modalities, we apply the stan-
dard Transformer to extract the high-level unimodal
representations. For language modality, the large-
pretrained Transformer model, i.e., BERT (Devlin
et al., 2019) is applied to extract the language rep-
resentation. The equations are shown as below:

X̂ l = BERT(U l)

X l = Conv 1D
(
X̂ l,Kl

)
∈ RTl×d

xl = X l
Tl
∈ Rd

(22)

where Conv 1D denotes the temporal convolution
operation with Kl being the kernel size, which
is used for mapping the output dimensionality of
BERT to the shared dimensionality d that are equal
for all modalities. Note that xl is the feature em-
bedding of X l in the last time step, and we only
use the feature embedding of the last time step to
conduct fusion and prediction such that our model
is suitable for handling the fusion of unimodal se-
quences of various length. For acoustic and visual
modalities, the equations are presented as follows:

X̂m = Conv 1D (Um,Km) ∈ RTm×d

Xm = Transformer(X̂m) ∈ RTm×d

xm = Xm
Tm ∈ R

d, m ∈ {a, v}
(23)

Different from the language processing procedure,
the temporal convolution operation for the other
modalities is used before the Transformer to map
the feature dimensionality to the same one.

B Multimodal Network: FM

Our algorithm is independent of the concrete fusion
mechanism, and we can inject various fusion meth-
ods into our multimodal learning structure. In this
paper, we mainly investigate four fusion methods to

verify the effectiveness of our algorithm. Note that
since the unimodal and multimodal representations
share the same classifier C, the dimensionality of
the fused multimodal representation shall be the
same as that of the unimodal representations. The
fusion methods are illustrated as follows:

1) Direct Addition:

xM = xl + xa + xv (24)

where xM ∈ Rd is the multimodal representation.
Since the addition will not change the feature di-
mensionality, we need not to apply a learnable layer
such as fully-connected layer to change the feature
dimensionality of the multimodal representation.
Therefore, this method of fusion is learnable. In
our experiment, we show that even with such a
simple fusion method, our algorithm can still reach
very competitive performance.

2) Concatenation:

xM = FC(xl ⊕ xa ⊕ xv) (25)

where FC ∈ R3×d → Rd denotes fully-connected
network to map the feature dimensionality to d.
This method is learnable as it uses fully-connected
layers to inject the multimodal representation into
the common embedding space as that of the uni-
modal representations. Together with Direct Ad-
dition, it serves as the baseline fusion methods
throughout the researches of multimodal learning.

3) Tensor Fusion: Tensor fusion (Zadeh et al.,
2017) is a widely-used fusion algorithm that at-
tracts significant attention (Mai et al., 2019; Liu
et al., 2018; Hou et al., 2019). By applying
outer product over the unimodal representations,
the generated multimodal representation has the
highest expressive power but meanwhile is high-
dimensional. The equations for tensor fusion are
shown below:

xm
′

= [xm, 1], m ∈ {l, v, a} (26)

x̂M = FC(
⊗
m

xm
′
), xm

′ ∈ Rd+1 (27)

where
⊗

denotes outer product of a set of vectors,
FC ∈ R(d+1)3 → Rd denotes fully-connected
network to map the feature dimensionality to d.
In Eq. 26, each unimodal representation is padded
with 1s to retain interactions of any subset of modal-
ities as in (Zadeh et al., 2017).

4) Graph Fusion: Graph fusion (Mai et al.,
2020a) regards each modality as one node, and
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conduct message passing between nodes to explore
unimodal, bimodal, and trimodal dynamics. The
final graph representation is obtained by averaging
the node embedding. For more details, please refer
to the Graph Fusion Network in (Mai et al., 2020a).

C Experimental Setting

C.1 Datasets

In this paper, two of the most commonly used pub-
lic datasets, i.e, CMU-MOSEI (Zadeh et al., 2018b)
and CMU-MOSI (Zadeh et al., 2016a) are adopted
to perform MSA in our experiments:

1) CMU-MOSI is a widely-used dataset for mul-
timodal sentiment analysis, which is a collection
of 2199 opinion video clips. Each opinion video is
annotated with sentiment on a [-3,3] Likert scale of:
[3 highly negative, 2 negative, 1 weakly negative, 0
neutral, +1 weakly positive, +2 positive, +3 highly
positive]. To be consistent with prior works, we
use 1,284 utterances for training, 229 utterances
for validation, and 686 utterances for testing.

2) CMU-MOSEI is a large dataset of multi-
modal sentiment analysis and emotion recognition.
The dataset consists of 23454 video utterances from
more than 1,000 YouTube speakers, covering 250
distinct topics. All the sentences utterance are ran-
domly chosen from various topics and monologue
videosand each utterance is annotated on two views:
emotion of six different values, and sentiment in
the range [-3,3]. In our work, we use the sentiment
label to perform MSA. We use 16,265 utterances
as training set, 1,869 utterances as validation set,
and 4,643 utterances as testing set.

C.2 Evaluation Protocol

In our experiments, the evaluation metrics for
CMU-MOSEI are the same as those for CMU-
MOSI dataset. We adopt various metrics to evalu-
ate the performance of each model: 1) Acc7: 7-way
accuracy, sentiment score classification; 2) Acc2:
binary accuracy, positive or negative; 3) F1 score;
4) MAE: mean absolute error and 5) Corr: the cor-
relation of the model’s prediction.

C.3 Baselines

We compare our proposed model with the follow-
ing state-of-the-art models:

1) Early Fusion LSTM (EF-LSTM), which is
the baseline fusion approach that concatenates the
input features of different modalities at word-level,
and then sends the concatenated features to an

LSTM layer. EF-LSTM is an RNN-based word-
level fusion model.

2) Late Fusion LSTM (LF-LSTM), which is
another baseline method that uses an LSTM net-
work for each modality to extract unimodal features
and infer decision, and then combine the unimodal
decisions by voting mechanism, etc.

3) Recurrent Attended Variation Embedding
Network (RAVEN) (Wang et al., 2019), which
models human language by shifting word repre-
sentations based on the features of the facial ex-
pressions and vocal patterns. It is an RNN-based
word-level fusion approaches.

4) Memory Fusion Network (MFN) (Zadeh
et al., 2018a) is also an RNN-based word-level
fusion method, which includes three components.
The first component is the systems of LSTMs
which is used to model unimodal dynamics. The
latter components are delta-attention module and
multi-view gated memory network which are used
for discovering cross-modal dynamics through
time.

5) Multimodal Transformer (MULT) (Tsai
et al., 2019a), which learns joint multimodal repre-
sentation by translating source modality into target
modality. It is a transformer-based model.

6) Interpretable Modality Fusion (IMR) (Tsai
et al., 2020), which improves the interpretable abil-
ity of MULT by introducing the multimodal rout-
ing mechanism. IMR is also a transformer-based
model.

7) Tensor Fusion Network (TFN) (Zadeh et al.,
2017), which applies 3-fold outer product from
modality embeddings to jointly learn unimodal,
bimodal and trimodal interactions.

8) Low-rank Modality Fusion (LMF) (Liu
et al., 2018), which leverages low-rank weight ten-
sors to reduce the complexity of tensor fusion with-
out compromising on performance.

9) Quantum-inspired Multimodal Fusion
(QMF) (Li et al., 2021), which addresses the inter-
pretable problem of multimodal fusion by taking
inspiration from the quantum theory.

10) Multimodal Adaption Gate BERT (MAG-
BERT) (Rahman et al., 2020): MAG-BERT pro-
poses an attachment to BERT and XLNet called
Multimodal Adaptation Gate (MAG), which allows
BERT and XLNet to accept multimodal nonver-
bal data during fine-tuning. The feature extraction
method of MAG-BERT is the same as that of our
method, which ensures fair comparison. MAG-
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BERT is currently the state-of-the-art algorithm on
multimodal sentiment analysis.

C.4 Experimental Details
For each baseline (except for QMF (Li et al., 2021)
whose codes are unavailable), following (Gkoumas
et al., 2021), we first perform fifty-times random
grid search on the hyper-parameters to fine-tune the
model, and save the hyper-parameter setting that
reaches the best performance. After that, we train
each model with the best hyper-parameters setting
for five times, and the final results are obtained by
calculating the mean results.

For CMU-MOSEI dataset, the input dimension-
ality of language, audio, and visual modality is 768,
74, and 35, respectively. While for CMU-MOSI,
the input dimensionality of language, audio, and
visual modality is 768, 74, and 47, respectively.
For feature extraction, Facet (iMotions 2017, 2017)
1 is used for the visual modality to extract a set of
features that are composed of facial action units,
facial landmarks, head pose, etc. These visual fea-
tures are extracted from the video utterance at the
frequency of 30Hz to form a sequence of facial
gestures over time. COVAREP (Degottex et al.,
2014) is utilized for extracting features of acous-
tic modality, including 12 Mel-frequency cepstral
coefficients, pitch tracking, speech polarity, glot-
tal closure instants, spectral envelope, etc. These
acoustic features are extracted from the full audio
clip of each utterance at 100Hz to form a sequence
that represents variations in the tone of voice across
the utterance.

We develop our model with the Pytorch frame-
work on GTX1080Ti with CUDA 10.1 and torch
1.1.0. Our proposed model is trained with Mean
Absolute Error (MAE) as loss function and with
Adam (Kingma and Ba, 2015) optimizer whose
learning rate is set to 0.00001. The scale factor λ
is set to 1000.

1iMotions 2017. https://imotions.com/


