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Abstract

Popular dialog data sets such as MultiWOZ
(Budzianowski et al., 2018) are created by
providing crowd workers an instruction, ex-
pressed in natural language, that describes the
task to be accomplished. Crowd workers play
the role of a user and an agent to generate di-
alogs to accomplish tasks involving booking
restaurant tables, calling a taxi etc. In this pa-
per, we present a data creation strategy that
uses the pre-trained language model, GPT2
(Radford et al., 2018), to simulate the inter-
action between crowd workers by creating a
user bot and an agent bot. We train the sim-
ulators using a smaller percentage of actual
crowd-generated conversations and their cor-
responding instructions. We demonstrate that
by using the simulated data, we achieve sig-
nificant improvements in low-resource settings
on two publicly available datasets - MultiWOZ
dataset (Budzianowski et al., 2018) and the
Persona chat dataset (Zhang et al., 2018a).

1 Introduction

Building dialog systems typically requires a large
collection of conversation logs for training models.
There exists a scarcity of the data required to train
a dialog system for most tasks. Various methods
have been proposed to tackle this issue including
paraphrase techniques to generate artificial train-
ing data (Kumar et al., 2021; Du and Black, 2018),
generating annotations including intent-slots and
dialog acts (Yoo et al., 2019, 2020a,b) or even in-
jecting noise to improve robustness in dialog act
prediction for ASR data (Wang et al., 2020).

Crowd-sourcing is a popular method for gener-
ating new large datasets. For instance, to create
datasets for task oriented dialogs, crowd workers
may be provided with instructions that describes
the task; workers then play the roles of a user and
an agent to generate conversations (Budzianowski

∗Work done during internship at IBM Research AI

Instruction : You are looking for a train. The train should arrive by 11:45
and should leave on Saturday. The train should go to Cambridge and
should depart from Ely . Once you find the train you want to make a booking
for 8 people. Make sure you get the reference number.

CHAT GENERATED BY CROWD-WORKERS:
User: I need to find a train for Saturday.
Agent: I have many trains that depart saturday. Where will you be departing
from and where is your destination?
User: I will be departing from Ely and traveling to Cambridge.
Agent: Okay, and what time do you want to leave after or arrive by?
User: I need to arrive by 11:45.
Agent: There are 3 trains here. Do you want me to book any tickets?
User: Yes please. I need it to be booked for 8 people.
Agent: Booking was successful, the total fee is 28.16 GBP payable at the sta-
tion .Reference number is : ZVERHBT3.
User: Thank you, that is all I need.
Agent: You’re welcome, thank you for calling the Cambridge TownInfo cen-
tre. Have a great day.

CHAT GENERATED BY SIMULATORS:
User: I am looking for a train to Cambridge.
Agent: There are many trains available. Where will you be departing from?
User: I will be departing from Ely.
Agent: How about TR7994 that leaves at 05:35?
User: That would work, can you book it for 8 people?
Agent: I have booked 8 tickets on that train, the total fee is 35.2 gbp payable
at the station. Reference number is ZXQSGIN7.
User: thank you. that is all i need.
Agent: You are quite welcome. I am glad I could help. Enjoy your trip !

Figure 1: An instruction from the MultiWOZ dialog
corpus (Budzianowski et al., 2018) and the correspond-
ing conversation generated by real crowd-sourced
workers and crowd-worker simulators.

et al., 2018). The user worker begins the conver-
sation by stating their requirement and the agent
worker provides information to the user by query-
ing a knowledge base (KB), if required. Together,
both workers interact with each other via natural
language to generate conversations. Similarly in
Persona chat (Zhang et al., 2018a), the workers are
provided different personalities to role play con-
versations. However, creating large crowd-sourced
datasets can be time consuming and expensive.

Pre-trained transformer-based language models
such as GPT-2 (Radford et al., 2018), that are
trained on a large number of documents crawled
from the web have achieved extensive generaliza-
tion in natural language understanding and genera-
tion across a variety of diverse tasks (Budzianowski
et al., 2018; Rajpurkar et al., 2016; Welleck et al.,
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Figure 2: Generation of a conversation conditioned on the instructions and knowledge base (KB). Although not
displayed in this diagram, each module (in green) also receives the dialog history as input.

2019). Recent works have exploited the prior
knowledge in these models to train effective mod-
els for machine translation (Araabi and Monz,
2020), language understanding in low resource set-
tings (Dou et al., 2019) and few-shot language mod-
els (Brown et al., 2020).

In this paper we demonstrate how such large
pre-trained models can also be used to follow in-
structions and generate conversations. We create
a user simulator and an agent simulator. The user
simulator has access to the instructions while the
agent simulator has access to a knowledge base
(KB). The agent simulator maps the current dia-
log context to a belief state (query), that can be
executed over a knowledge base (KB), to retrieve
a set of results if required. Thus, the simulators
are trained to interact with each other to gener-
ate conversations conditioned on the instructions
and the KB. In our work we train these simulators
using just 5-20% of crowd-sourced conversations
by fine-tuning the pre-trained language models —
GPT2 (Radford et al., 2018) and Longformer (Belt-
agy et al., 2020). We use the external knowledge
present in these language models to help generate
effective artificial data on low-resourced datasets.
An example of a generated conversation is shown
in Figure 1.

Our experiments further show that from a small
number of existing conversations we are able to
train meaningful user and agent bots that in-turn
generate new conversations. This in principle,
is somewhat similar to a noisy student-teacher
model (Xie et al., 2020) where a weaker teacher
model is used to generate labels(dialogs in our case)
which is then used to train a new student model that
significantly outperforms the teacher model in end
task. Due to its simplicity and generality, our model
could be used on a wide variety of dialog systems
by taking different forms of instructions.

Contributions: (1) We present a novel technique
that effectively uses weak generative models to
create new artificial data which are used to train
final end task models (2) We introduce a simple yet
effective dialog-generation framework1 that mim-
ics the roles played by crowd workers to gener-
ate complete conversations. (3) We demonstrate
the generality of our model by generating data for
two different types of dialog tasks - task oriented
conversations and persona-guided conversations.
We show that pre-trained language models can be
successfully used for generating artificial data in
low resource dialog settings leading to a 7-13% im-
provement in combined score in MultiWOZ 2.0 and
2-10% improvement in Hits@1 metric in Persona
Chat. (4) We present a human-study to assess the
quality of our simulated dialogs. We find that the
generated conversations are grammatically sound
and meaningfully move the conversations forward.

2 Related Work

The method of interacting different models to con-
verse with each other has seen some recent suc-
cesses (Shah et al., 2018; Papangelis et al., 2019).
(Hou et al., 2019) has previously used simulators
to generate conversational artificial data. However
the work uses hand-crafted templates for generat-
ing dialogs. Our approach is more general and less
cumbersome as demonstrated through the effective-
ness of our approach on two different tasks. (Lin
et al., 2020a) tries to use a similar simulator ap-
proach but uses human in the loop in order to bring
variations to the dialogs. On the other hand, our
approach doesn’t require any human involvement
apart from providing diverse instructions which are
easy to produce in large quantities.

Unlike existing data augmentation methods, like
those based on paraphrase generation (Malandrakis

1http://ibm.biz/simulatedchats
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Figure 3: The input and output formats for User and Agent Bot. [GOAL] indicates end of instruction, [CAN]
indicates candidate for selector, [St@rt] indicates start of conversation, [Q] and [KB] indicate Queries and KBs.

et al., 2019; Gao et al., 2020; Anaby-Tavor et al.,
2020), simulators create completely new conversa-
tions which create more diverse examples, helping
train better end-task models (Section 4).

Teacher model has been used to train student
models, based on the idea of knowledge distillation
(Hinton et al., 2015), teach dynamic loss functions
(Wu et al., 2018) or for adaptation under meta-
learning settings (Qian et al., 2021). To the best
of our knowledge, we are the first to adopt such a
model for data generation in dialog systems.

3 Model

In order to generate the data, we train our GPT-2
based agent and user bots(teacher models) using
a subset of original data to simulate low-resource
environment(5% or 20%). In case of task oriented
dialogs, we require a third model for generating
belief states as well. Longformer based selector
models are trained to chose from a list of responses
generated by the teacher generator models as seen
in Figure 2. Note that all the modules in figure
(shown in green) also receive dialog history as in-
put which has not been shown in the figure for ease
of presentation. Finally the generated data from the
process is mixed with the original low resourced
data to create a new dataset. To test the effective-
ness of new dataset, we compare the performance
of newly trained student model on the new data to
that of the teacher model and other baseline models
on the respective end tasks of the datasets.

3.1 Overview
We assume that the dialog comprises of a sequence
of utterances between a user and an agent i.e. D =
(u1, a1, . . . , un, an) where ui is a user utterance
while ai is an agent utterance. A turn is a pair
of user and agent utterance. At any given turn m,
the sequence of utterances prior to the turn, that

is, cm = (u1, a1, . . . , um−1, am−1) is referred to
as dialog context or dialog history. Apart from the
dialog D, we have access to a set of instructions I
and a knowledge base KB. The aim is to learn a
model that can generate the dialog D conditioned
on the instructions I and the knowledge base KB.
That is, we wish to model p(D|I,KB).

The dialog generation framework mimics the
human-to-human data collection approach used in
MultiWOZ (Budzianowski et al., 2018). The dialog
is generated in a sequence of turns. The user bot
has access to instructions I while the agent bot
can query the knowledge base KB. Thus, the joint
distribution of the dialog decomposes as follows:

p(D|I,KB) =
n∏

i=1

p(ui|ci, I)p(ai|ci, ui,KB) .

(1)
The dialog history for the first turn, c1, is an empty
set. The first factor in the product on the left cor-
responds to user bot which conditions on the in-
structions, as well as, the dialog history to output
the user utterance. The second factor models the
distribution of the agent bot over the responses,
conditioned on the dialog history and knowledge
base. A pictorial representation of the interaction
between the two bots is shown in Figure 2. We dis-
cuss the various modules of both the bots in further
detail below. The input and output formats for the
various networks of these modules are shown in
Figure 3.

3.2 User Bot
The user bot generates utterances conditioned on
the dialog history and the instructions, that is, it
models p(ui|ci, I). For the sake of readability, we
will remove the turn index i from the distribution.
As shown in Figure 2, this distribution is modeled
in two steps. Firstly, the dialog history and the
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instructions are fed to a response generator mod-
ule which outputs a pool of candidate responses
P u = (ū1, . . . , ūr). A response selector module
then assigns a score suk to each response ūk in the
pool. Based on these scores, we define the distribu-
tion p(u|c, I) as follows:

p(u|c, I) =

{ exp(suk)∑r
j=1 exp(s

u
j )
, if u = ūk ∈ P u

0, if u /∈ P u

(2)
The candidate response with the highest probability
is selected as the next user utterance and sent to the
agent bot. Next, we discuss the various modules in
the user bot and how they are trained.

3.2.1 Response Generator
The aim of response generator module is to output
a pool of candidate user utterances for the given
dialog history and the instructions. To achieve this,
an autoregressive distribution over the tokens of the
utterance u is defined. We finetune the pretrained
GPT-2 network to model this distribution. Specifi-
cally, given the tokens in the instructions and the
dialog history, the GPT-2 network is trained to out-
put the tokens of the user utterance. The utterance
generated are in delexicalised format which are
lexicalised from the values present in instruction
before being shown to the agent bot(once selected
by the selector) as shown in Figure 3.

While it is possible to sample an utterance from
the GPT-2 network via greedy sampling or beam
search, this poses several issues. Firstly, autoregres-
sive distributions tend to assign high probability to
short utterances. Secondly, commonly occurring
utterances in the corpus tend to have higher proba-
bility than the informative responses that are less
frequent. We noticed that in lower data settings,
the greedy response may not always be a relevant
response. Nucleus sampling generates diverse re-
sponses which helps the response selector to pick
more informative responses w.r.t the given context.

Hence, once the network has been trained, we
sample multiple user responses from the network
via nucleus sampling (Holtzman et al., 2019)
to obtain a pool of candidate responses P u =
(ū1, . . . , ūr). This pool of candidates is fed to the
response selector module as shown in Figure 2.

3.2.2 Response Selector
The aim of the response selector module is to assign
a score to each candidate response in the pool based
on its relevance to the context. We achieve this by

feeding the tokens of the context and the candidate
response(concatenating them with [CAN] token) to
a Longformer network architecture (Beltagy et al.,
2020). The network outputs a contextualized em-
bedding for each token. We feed the embedding of
the [CLS] token through a linear layer followed by
a sigmoid unit. The output of the network corre-
sponds to the score assigned to the response for the
given context.

The network is trained to assign high scores to
the positive (or ground-truth) responses while as-
signing low score to the negatively sampled re-
sponses. For each gold context-response pair, we
provide a total of 10 negative response samples.
These samples contain 5 random responses, 2 re-
sponses which are already part of the context (to
stop the response selector from picking such re-
sponses) and 3 responses formed by concatenating
2 random responses to discourage the selector from
picking longer candidate responses.

The network is trained via the triplet
loss (Chechik et al., 2010; Hoffer and Ailon, 2015).
Specifically, given the context c, the ground-truth
response up and a negatively sampled response un,
the triplet loss is defined as follows:

L(c, up, un) = max(0, s(c, un)− s(c, up) + α) ,
(3)

where s(c, u) is the score assigned by the network
to the response u for the given context c. We use
α = .05 in our experiments.

3.3 Agent Bot

The agent bot (distinct from user bot) models the
distribution of the agent response a conditioned on
the context c, the user utterance u and the knowl-
edge base KB, that is, p(a|c, u,KB). This distribu-
tion is modeled in four steps as shown in Figure 2.
Firstly, the agent bot feeds the context and the last
user utterance to the belief state generator module
which outputs a belief state of slot-value pairs (also
referred to as query). Next, the query is executed
over the knowledge base and a set of entities e,
whose attributes match the values in the query, are
returned. The total number of entities, the belief
state, the dialog history and the previous user ut-
terance are fed to the response generator which
outputs a pool P a = (ā1, . . . , ār) of candidate re-
sponses in delexicalised format as seen in Figure 3.
Finally, the responses in the pool are scored by the
response selector. Based on these scores, we define
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the distribution of the agent response as follows:

p(a|c, u,KB) =

{ exp(sak)∑m
j=1 exp(s

a
j )
, if a = āk ∈ P a

0, if a /∈ P a

(4)
where sak is the score of the kth candidate response.
Note that in equation, we do not show agent utter-
ance being dependant on the belief state since it is
calculated internally using context c and previous
user utterance u. The candidate response with the
highest probability is selected and sent to the user
bot to generate the next turn. This interaction be-
tween the user and agent bots is repeated until the
user bot outputs the end-of-dialogue token.

Next, we discuss in detail about the modules in
the agent bot and how these modules are trained.
Note that these modules do not share weights with
the corresponding modules of the user bot.

3.3.1 Belief State (query) Generator
The aim of the belief state generator is to generate a
belief state for the given dialog history and last user
utterance. Here, belief state contains the current do-
main followed by a sequence of key-value pairs of
the form <attribute_name=attribute_value>. To
achieve this, we define a distribution over the be-
lief states that can be executed over the knowledge
base. The belief state generator treats the belief
state as a sequence of tokens q = (wq

1, . . . , w
q
t ).

We train a GPT-2 network to model the distribution
of the belief state tokens given the tokens of the
dialog history and user utterance. Once the belief
state generator has been trained, a belief state is
sampled by greedy sampling and executed over the
knowledge base.

3.3.2 Response Generator
This module mimics the response generator of the
user bot with the exception that the input to the
GPT-2 network comprises the context, the last user
utterance, the belief state and the total number of
KB entities satisfying the belief state. We provide
only the number of entities instead of entire en-
tities to the agent response. This is done as the
response would be different for 0, 1 and more than
1 matched entities and further information about en-
tities could be filled while lexicalising the response.
The GPT-2 network is used to define an autore-
gressive distribution over the tokens of the agent
response and is trained using maximum likelihood.
Once the module is trained, a pool of candidate re-
sponses P a is sampled via nucleus sampling. The

Instruction : You are looking for a particular hotel . Its name is
called bridge guest house. Make sure you get hotel type and phone
number .

User: hi, i am looking for information on the bridge guest house.

GREEDY RESPONSE:
Agent Response: i have [value_count] guesthouses and [value_count]
hotel -s that fit that criteria . do you have a preference for price range?

NUCLEUS DECODING SAMPLES(Top 5):
Response 1: i have [value_count] guesthouses available, how many are
in your area or price range?
Score : 0.54
Response 2: i have [value_count] options, [hotel_name] and [ho-
tel_name], both of which offer free wifi and parking. do you have any
other preferences?
Score : 0.31
Response 3: there are several guesthouses in the [value_pricerange]
price range. do you have a preference?
Score : 0.54
Response 4: i have [value_count] results. what area would you like to
stay in?
Score : 0.52
Response 5: i found the [hotel_name], which is located on the
[value_area] side of town in the [value_pricerange] price range. would
you like to book a room?
Score : 0.89

Figure 4: A goal along with context from the Multi-
WOZ dialog corpus where responses are generated us-
ing Greedy and Nucleus Sampling methods. Response
highlighted in blue(highest score) was finally chosen
by the model.

response is lexicalised using the values from the
belief state before being shown to the user bot. Fig-
ure 4 illustrates the advantages of using nucleus
sampling for our decoders followed by use of a
response selector.

3.3.3 Response Selector
This module outputs the score of each agent re-
sponse in the candidate pool. To achieve this, the
context, the last user utterance and the agent re-
sponse are fed to the Longformer network archi-
tecture. The training of this network as well as the
selection of negative samples mimics the training
of the response selector for the user bot. Once the
model has been trained, it outputs a score sa for
each agent response in the candidate pool.

All the user and agent utterances, belief states
and KB results created form the generated dialog.

4 Experiments

4.1 Datasets

To demonstrate the strength of our work we ex-
periment on two different types of tasks - (i) Task
oriented dialogs using the MultiWOZ 2.0 dataset
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(Budzianowski et al., 2018) (ii) Persona-based con-
versation generation using the PersonaChat dataset
(Zhang et al., 2018b).

4.1.1 Task-Oriented Dialog
MultiWOZ (Budzianowski et al., 2018) is a large
scale multi-domain dialogue dataset consisting of
8438 training, 1000 validation and 1000 test conver-
sations distributed across 7 domains. Each conver-
sation is associated with instructions which were
were used by the crowd workers to generate the con-
versations. 30% of the dataset consists of conversa-
tions with a single goal while the rest are multi-goal
dialogues, i.e, conversations accomplish more than
one task – example, booking a train followed by
making a restaurant reservation.

4.1.2 Persona-based Conversation
PersonaChat (Zhang et al., 2018a) is a large scale
non task-oriented dataset containing a set of 1155
distinct characters, each consisting of at least 5 pro-
file sentences. The dataset is collected via Amazon
Mechanical Turk where each of the pair of speakers
condition their dialogue on a given profile, which
is provided. It contains a total of 10,907 dialogs
out of which 1000 dialogs are used for validation
while 968 dialogs are used for testing.

4.2 Data Generation using Simulators

MultiWoz: As mentioned previously, our simu-
lator allows the generation of new conversations
based on instructions. In our experiments, we op-
erate our simulators using 5% (421/8438), 20%
(1684/8438) and 100% of the original training data.
For 5% and 20%, we use the instructions of the re-
maining training datasets (i.e. remaining 95% and
80% respectively) to generate simulated conversa-
tions. The simulated conversations are added to the
original conversations, thereby ensuring that the
size of the datasets remains unchanged. In case of
100% we train our simulators on the entire training
data and then generate simulated conversations us-
ing the instructions of the same data. The simulated
conversations are then appended to the original con-
versations. The resulting dataset has twice as many
conversations as the original dataset.

Recall that each conversation requires KB and
belief state by the agent. Our agent simulator gen-
erates queries for the simulated data using belief
state generators as described earlier. While train-
ing the end-task dialog models using the simulated
data, we use these generated values as the oracle

belief state for our simulated data. Similar to ex-
isting work on this dataset, we use delexicalised
agent utterances using the format followed by Mul-
tiWOZ (Budzianowski et al., 2018) which are later
updated with KB values based on the results of the
query. Hyper-parameter settings are available in
supplementary notes.
PersonaChat: In case of PersonaChat dataset,
we train a single user bot to mimic both the users
of a conversation. To generate the utterance for
a specific user, the corresponding persona is fed
to the bot along with the dialog context. Thus,
a single bot is able to simulate a conversation be-
tween two distinct personas. We use 5%(447/8939),
20%(1788/8939) and 100% of the training data in
our experiments just like in MultiWoz.

4.3 End-Task Models

MultiWoz: We experiment with two recent end-
task models: Soloist (initialized with GPT2-small)
(Peng et al., 2021) and MinTL-T5 (initialized with
T5-small) (Lin et al., 2020b). Soloist is a trans-
former based auto-regressive model that incorpo-
rates dialog modules, including the query generator,
into a single network. The original model was pre-
trained on a variety of dialog tasks and then applied
to MutliWoz in few-shot settings. However, we use
an untrained instance of Soloist, initialized only us-
ing GPT2-small, as our goal is only to demonstrate
that simulated-data based augmentation can help
train useful end-task models. MinTL-T5 is another
recent model that also uses pre-trained transform-
ers along with an improved method for updating
belief states.
PersonaChat: We use GPT2-small based end-
task model to test effectiveness of simulated chat.

4.4 Baselines

MultiWoz: As baselines, we study the perfor-
mance of our end-task models based on Soloist and
MinTL-T5, when they are trained in the absence of
data augmentation. We look at non-augmentation
based recent baseline model DAMD (Zhang et al.,
2020). Additionally, we compare the performance
of our simulation based augmentation, against a
recent approach - DAMD-MADA (Zhang et al.,
2020) which uses dialog-states based augmentation
and PARG-TSCP (Gao et al., 2020) which uses
paraphrases to help improve response generation
done by TSCP (Lei et al., 2018). Additionally, we
experiment with a T5 (Raffel et al., 2020) based
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Model 5% 20% 100%

B I S C B I S C B I S C
DAMD (Zhang et al., 2020) 9.5 48.4 25.8 46.6 12.4 54.1 32.3 55.6 16.9 72.7 60.3 83.5
DAMD-MADA (Zhang et al., 2020) 9.5 50.5 33.9 51.8 13.1 60.1 42.9 64.6 16.6 76.3 60.4 85.0
PARG - TSCP (Gao et al., 2020) 13.1 53.5 39.2 59.4 13.0 63.6 48.9 69.2 15.4 80.1 63.1 87.0
Soloist (Peng et al., 2021) 12.5 52.5 32.9 55.2 14.0 60.9 50.0 69.5 16.8 80.5 63.2 88.6
Soloist (Paraphrase) 10.9 57.8 38.4 59.0 13.9 62.9 52.7 71.7 16.4 82.2 62.6 88.8
Soloist (Sim. Aug.) 14.0 55.3 41.4 62.3 14.8 70.5 56.4 78.3 17.6 76.5 60.9 86.3
MinTL-T5-Small (Lin et al., 2020b) 12.5 50.9 33.9 55.7 15.8 63.5 48.8 72.0 17.4 80.1 64.7 89.8
MinTL-T5-Small (Sim. Aug) 13.1 57.6 36.1 60.0 16.0 68.0 55.1 76.6 18.5 79.5 57.1 86.8

Table 1: Performance of models using varying sizes of MultiWOZ 2.0 dataset (B,I,S,C stand for BLEU, Inform,
Success and Combined scores respectively). ‘Sim. Aug.’ refers to the use of our simulated data. Bold values
indicate the highest scores.

.

Model 5% 10% 20% 100%

PPL Hits@1 PPL Hits@1 PPL Hits@1 PPL Hits@1
GPT2-small 40.4 11.1 41.2 13.3 33.6 13.8 35.8 14.6
GPT2-small (Sim. Aug.) 41.1 12.2 39.1 14.5 40.2 14.0 43.0 15.9
Lost In Conversation (Dinan et al., 2019) - - - - - - - 17.3

Table 2: Performance of models using varying sizes of Persona dataset. PPL stands for Perplexity
.

paraphrase generation model2 fine-tuned on the
PAWS dataset (Zhang et al., 2019) – we use this
model to generate paraphrases and augment train-
ing data and refer this model as Soloist(Paraphrase)
in Table 1(Details in Supplementary).
PersonaChat: We compare the performance of
an end-task model based on GPT2-small with and
without augmented data. We report the perfor-
mance of the ‘Lost in Conversation’ model (Dinan
et al., 2019), the winner of the ConvAI2 challenge.3

4.5 Metrics

MultiWoz: We evaluate the usefulness of our gen-
erated data by using it to train a dialog model
for the end-task. We therefore use BLEU (B),
Inform (I) and Success (S) rates as defined
by Budzianowski et al., along with Combined(C)
score (Mehri et al., 2019) given by,BLEU+0.5×
(Inform+ Success). While BLEU evaluates the
fluency of the generated response, Inform and
Success measure the relevance of the agent utter-
ances. Specifically, the Inform Rate measures
the correctness of the entity provided by the agent,
while the Success Rate measures how often the
agent was able to provide correct attributes when
requested by the user. We note that there are mi-
nor (but significant) differences in delexicalization
used by different models and this makes the direct
comparison using the metrics inaccurate. In our
experiments, we use the delexicalisation scheme

2https://huggingface.co/Vamsi/T5_Paraphrase_Paws
3https://parl.ai/projects/convai2/

used by (Budzianowski et al., 2018) and their4 task-
evaluation scripts to report results. Hence we see
slight drop in the scores in table 1 for Soloist and
MinTL models compared to the scores cited in their
respective papers(see suplementary for details).

PersonaChat: We use Hits@1 and Perplexity
as in (Zhang et al., 2018a) to evaluate the mod-
els. While Perplexity(PPL) measures the log
likelihood of the correct sequence, Hits@1 scores
the responses in a next-utterance (response) predic-
tion task – given an input context and persona, the
goal is to predict the correct(ground-truth) response
from a set consisting of other incorrect responses.

4.6 Results

We study the following research questions: (1)
Would the new student model trained on simu-
lated conversations along with crowd generated
low(95% + 5%) and medium (20% + 80%) data
perform better than teacher models trained only on
only low(5%) and medium(20%) resourced data?
(2) How does simulated-data based augmentation
compare with recent work on augmentation? (3)
How does the student model perform compared to
models trained on 100% human generated data? (4)
Can we use this technique to improve the models
trained already on 100% human generated data?
(5) What is the qualitative difference between sim-
ulated and crowd-sourced chats?

4https://github.com/budzianowski/multiwoz
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4.6.1 Use of simulated data in End-task

MultiWoz: Table 1 shows the use of simulated
data helps improve performance in low data set-
tings (5%) and medium data settings (20%). The
use of simulated data helps improve performance
of both Soloist and MinTL-T5 (gains of 7-8% in
combined metric) in 5% data setting. We also see a
higher improvement in medium data setting i.e. an
increase of 7% in combined score for MinTL and
13% for Soloist model suggesting the effectiveness
of our method in low and medium resource setting.

We further compare the performance of our aug-
mented data w.r.t the original 100% dataset for
both Soloist and MinTL. Adding additional 80%
augmented data to our Soloist model trained on
20% dataset substantially increases the combined
score from 69.5 to 78.3 although it lags behind
the model when trained on 100% human gener-
ated dataset which gives a combined score of 88.6.
Similarly for MinTL, the combined score improves
from 72 to 76.6 but falls short of the performance
on original 100% human generated dataset. Our
model behaves according to the common knowl-
edge that noisy student models do not perform
as good as a teacher model trained on a simi-
lar sized data(100%). Through this experiment
we show how the diverse knowledge contained in
Longformer could be transferred to our augmented
dataset by using it as a selector. The teacher gen-
erator model generates a list of diverse candidate
responses(by top-p sampling) which is provided
to the selector to pick the most relevant response
helping the selector induce its knowledge through
the process. Thus we see that the method improves
the models trained on low-medium sized datasets
and can be used effectively when larger datasets
are not available.

Our data generation technique is not able to in-
crease the performance of models trained on 100%
human generated data( i.e.200% not performing
better than 100%) the reasons for which are dis-
cussed under human study section. Additional
qualitative results on the MultiWOZ dataset are
available in the supplementary material.

Comparing with other baseline models, student
models trained on simulated data(Sim. Aug.) on
Soloist and MinTL outperforms existing end-task
models such as dialog-state based augmentation
(DAMD-MADA) and paraphrase-based augmen-
tation(PARG and Soloist(paraphrase)) in low and
medium data settings as seen in Table 1. Soloist

(Sim. Aug) gets combined score of 62.3 in 5% data
compared to 59.4 obtained by the best performing
augmentation based baseline model PARG-TSCP.
Similarly Soloist (Sim. Aug) scores 78.3 in 20%
data compared to 69.2 obtained by PARG-TSCP.
Persona Chat: Table 2 shows improvement
in Hits@1 when the GPT2-small based end-task
model is trained on simulation-based augmented
data. Gain in Hits@1 (2-10%) demonstrates that
the model is able to learn the context and persona
of the given characters better which results in bet-
ter conversations. The augmented data helps im-
prove the performance of a simple GPT2-small
model(fine-tuned on dataset) in Hits@1 from 14.6
to 15.9 which is very close to 17.3 achieved by Lost
in Conversation. The Perplexity (PPL) gives mixed
results suggesting that the language style of simu-
lated conversations differs from the language style
of the original dataset. This is because GPT2-small
incorporates its pre-trained knowledge in the simu-
lated conversations. However the fact that Hits@1
consistently increases across all dataset sizes sug-
gests that the generated simulated conversations
help the model capture the context and persona
better despite changing its language style.

Original Data Simulated Data
Relevance 4.7 4.0
Grammar 4.6 4.5
User Bot Fluency 4.5 4.1
Agent Bot Fluency 4.6 4.1

Table 3: Human evaluation scores(scale of 1-5) on orig-
inal and simulated data

.

4.6.2 Human Study
To assess the qualitative difference between simu-
lated data and crowd-sourced data, we conducted a
blind human-study involving six participants. Par-
ticipants were presented the crowd-annotation in-
structions from MultiWOZ and were asked to as-
sess the quality of a pair of dialogs correspond-
ing to the same instruction – one generated by the
crowd workers (from the original dataset) and the
other generated by our simulators. The participants
were blind to the source of the dialog (crowd or
simulator). Each dialog was scored on the Likert
scale(1-5) by answering the following questions:
1) ‘How relevant is the dialog w.r.t the dialog gen-
eration instruction?’ 2) ‘How good is the grammar
of the utterances?’ 3) ‘Are the user utterances re-
sponding to agent utterances fluently and meaning-
fully?’ 4) ‘Are the agent utterances responding to



1198

user utterances fluently and meaningfully?’. Each
participant evaluated 25 pairs resulting in a total
evaluation set of 150 pairs.

As seen in Table 3, the simulated data is of high
quality with the bots scoring well on fluency as well
as grammar. As expected, there is a slight deteri-
oration in relevance to the instructions compared
to crowd-sourced conversations. This happens be-
cause the simulated conversations may not use all
the information present in the instructions. This
also answers why the simulated data doesn’t in-
crease the performance of models trained on 100%
dataset in Table 1. In lower data settings, the orig-
inal dialogs of the remaining instructions (i.e. re-
maining 95% in case of 5% training data) were not
part of dialog used for the end-task model. Hence,
the simulated data provided new dialogs that were
never seen by the model. In 100% data setting,
since the model had already seen the original di-
alogs, the simulated dialogs did not improve the
performance as they lacked some relevance w.r.t
the instructions when compared with human gener-
ated data. The same issue causes the model trained
on 100% original dataset to perform better than our
augmented datasets i.e. (20+80)% and (5+95)%.

5 Conclusion

In this paper, we demonstrated a dialog genera-
tion framework that mimics the data creation pro-
cess employed by crowd workers. We find that
our method is able to generate meaningful con-
versations that aids the training of end-task dia-
log models in low resource data settings. The use
of additional simulated data to train end-task dia-
log models result in a performance improvement
of 7-13% in low resource settings of MultiWOZ
2.0 dataset and 2-10% increase in Hits@1 in case
of PersonaChat. The simulation-framework does
not make strict assumptions about the domain or
dataset and can be applied to diverse dialog tasks
such as task-oriented dialog and persona-based
chat. In future, it would be interesting to compare
the strengths of different augmentation methods
and how they may be effectively combined.
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A Appendix Overview

Section B provides information on the hyperparam-
eter settings of models used in the experiments.
Section C does the cost analysis and Section D dis-
cusses about the inconsistencies in evaluation of

various models in details. The paraphrase based
augmentation method used to train an end-task
Soloist (Peng et al., 2021) model has been de-
scribed in Section E. We also show further experi-
mental results in Section F and G while additional
qualitative study is shown in Section H.

B Hyperparameter Settings

MultiWoz: We create separate user bots and agent
bots along with their constituent modules consist-
ing of query models (for tracking belief state), re-
sponse generators and response selectors. We use
GPT2-small (12 layered, 768 hidden size, 117M pa-
rameters) from the ‘Transformers’ library by Hug-
gingface (Wolf et al., 2019) for the response gener-
ator . For response selectors, we use Longformers
(12 layered, 1024 hidden size, 149M parameters)
(Beltagy et al., 2020) for both user and agent mod-
els. We train on 5%, 10%, 30% and 100% of the
training data with a learning rate of 1e-5. Adam
optimizer with default settings is used for all the
models.
PersonaChat: Similar to MultiWOZ, the response
generators use GPT2-small while response selec-
tors use Longformers. There is no belief state gen-
erator and only single user model is trained i.e. no
separate agent model exists. Adam optimizer is
used with a learning rate of 1e-5.

C Cost comparison

The response generator, belief state generator and
response selector models(total 5) each take 1 day
on a single V100 GPU to generate the dialogues(for
100% data). MultiWOZ data creation, on the other
hand, required 1249 workers for the entire process.
An Amazon EC2 P3 instance costs $3.06 per hour
in an On-Demand setup costing less than $400 for
the entire process. Generating 10.4K dialogs with
1249 workers (2 workers per conversation) means
15-16 dialogues per worker and assuming they take
an hour to generate the conversation with a mini-
mum wage of $6 per hour payment, it leads upto
$7.5k. Our method is clearly both cost and time ef-
fective when compared with the crowdsource work-
ers.

D Evaluation Inconsistency

We noticed the delexicalisation used in models
such as PARG (Gao et al., 2020), DAMD (Zhang
et al., 2020) and MinTL (Lin et al., 2020b) was
different from the delexicalisation used in original
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MultiWOZ code. Since, the delexicalised agent
responses are used by the official evaluation script
to score the dialogs there were discrepancies in the
evaluation of different models. Some delexicali-
sation differences included use of tokens such as
[restaurant_phone] or [hotel_address] in original
format while some models used [value_phone] for
such requestables. This lead to difference in evalu-
ation script since the official script looks at the do-
main of requestable i.e. [train_address] should have
been used if the utterance domain is ’Train’ and
not [hotel_address]. Replacing these tokens with
a generic [value_address] as used in other models
reduces the complexity of such dialogs leading to
higher innform and success scores. The Soloist and
MinTL models used in our experiments are trained
on the delexicalisation used in the MultiWoz origi-
nal code5. This leads to a small drop in the overall
performance of the models.

E Soloist Paraphrase Model

In order to train a soloist (Peng et al., 2021) end
task model using paraphrases generated from orig-
inal training data, we use T5 (Raffel et al., 2020)
based paraphrase generation model6 fine-tuned on
the PAWS dataset (Zhang et al., 2019). We also add
training paraphrase data from PARG (Gao et al.,
2020) to create a mixture of corresponding para-
phrases for each utterance. In low resource set-
ting(5% and 20% of training dataset) we generate
enough paraphrases to take the whole size of aug-
mented data to 100% of original training data. i.e.
We add paraphrases equaling the size of 95% of to-
tal data in case of 5% and 80% of total data in case
of 20%. Adding paraphrases from T5 fine-tuned
model and PARG provides the model with diversity
inn training data for final end-task model.

F MultiWoz 2.1 Performance

In order to check our performance on the revised
version of MultiWoz, we experimented with Multi-
Woz 2.1 as well. Since not many baseline models
have results on this version of the dataset, we used
MultiWOZ 2.0 as the dataset to compare our model
with other baselines. Table 4 presents results using
the Soloist end-task model for MultiWOZ 2.1. Ad-
ditional data generated by our simulators results in
a significant improvement on the Combined metric

5https://github.com/budzianowski/multiwoz
6https://huggingface.co/Vamsi/T5_Paraphrase_Paws

for both the oracle belief states(O) and the gener-
ated belief states(G) in the end-task model. The
use of our simulated data results in a 18-25% im-
provement in combined metrics for low-medium
resource setting. The performance of generated be-
lief states shows that the query generator produces
accurate queries most of the time.

ORIGINAL INSTRUCTIONS : You are looking for a restaurant . The
restaurant should be in the expensive price range and should serve italian
food . Once you find the restaurant you want to book a table for 5 people
at 11:30 on sunday . If the booking fails how about 10:30 . Make sure
you get the reference number .

User: hi, i’m trying to find an expensive italian restaurant.
Agent: i have found several [value_pricerange] [value_food] restaurant -s
. is there a specific area of town that you are looking for ?
User: i would like to go to the south, please.
Agent: there is an [value_pricerange] restaurant called [restaurant_name]
in the [value_area] . would you like to make a reservation?
User: yes, i’d like to book a table for 5 at 11:30 on sunday.
Agent: i am sorry , but we did not get that reservation . would you like to
try another day or time slot?
User: can you try for 10:30 instead?
Agent: booked at [restaurant_name] for [value_count] people . reference
number is [restaurant_reference] .
User: thank you so much. that’s all i needed. bye.
Agent: thank you for contacting towninfo centers . enjoy your dining
experience.

PERTURBED INSTRUCTIONS : You are looking for a restaurant . The
restaurant should be in the cheap price range and should serve indian food
. Restaurant should be in north. Once you find the restaurant you want
to book a table for 5 people at 11:30 on sunday. If the booking fails how
about 10:30. Make sure you get the reference number.
User: hi! can you help me find a cheap indian restaurant in the north?
Agent: sure , [restaurant_name] is in the [value_area] part of town . it is
located at [restaurant_address].
User: i would like to book a table for 5 people at 11:30 on sunday.
Agent: i am sorry booking was unsuccessful , do you need to find another
restaurant ?
User: can you try for 10:30 ?
Agent: i have booked you a table for [value_count] people at [value_time]
on [value_day] . your reference number is [restaurant_reference] .
User: thank you so much. that is all i needed today. bye.
Agent: enjoy your meal !

Figure 5: Examples of generated samples using orig-
inal instructions from MultiWOZ dataset against per-
turbed instructions with minor changes. The generated
dialogues show the robustness of our generator model
which is able to generate an entirely new conversation
with slight variations in the goal.

G Single Goal Dialogs

We also evaluate the performance of our model
when trained on single goal dialogs of MultiWOZ
2.1 to test whether the model can learn generating
multiple goal dialogs using just single goal
data. We train separate models(generators and
selectors) for each domains and the simulated
single dialog chats were combined (pair of
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Data
Size

Belief
State

Without Augmentation With Augmentation

BLEU (B) Inform (I) Success (S) Comb. (C) BLEU (B) Inform (I) Success (S) Comb. (C)
5% O 12.5 47.3 33.8 53.1 12.2 67.8 40.4 66.3
10% O 13.8 51.9 37.6 58.5 13.8 68.1 49.5 72.6
20% O 15.2 61.3 48.7 70.2 13.7 81.8 64.1 86.7

100% O 16.4 85.8 74.4 96.5 17.2 80.1 67.7 91.2
5% G 12.5 39.6 26.8 45.6 12.0 54.8 32.3 55.6
10% G 13.5 46.2 31.9 52.6 13.7 52.6 38.5 59.3
20% G 15.1 55.4 42.8 64.2 13.5 71.2 54.7 76.5

100% G 15.9 80.1 64.3 88.1 16.2 75.8 58.5 83.4

Table 4: Performance of the query generator and the end-task model Soloist (Peng et al., 2021) when trained on
different dataset sizes with and without the use of additional simulated data for MultiWOZ 2.1. ‘O’ and ‘G’ in
column two refer to the use of ‘oracle’ and ‘generated’ belief states respectively.

Dataset Belief State BLEU Inform Success Combined
w. w/o. w. w/o. w. w/o. w. w/o.

5% Oracle 9.3 8.0 88.5 82.0 64.1 60.6 85.7 79.4
10% Oracle 10.8 10.8 92.5 84.5 75.2 69 94.7 87.6
30% Oracle 11.9 12.4 90.3 82.3 73.0 65.5 93.6 86.3

100% Oracle - 14.9 - 82.8 - 78.3 - 95.5

Table 5: Score against single goal conversations in test dataset with oracle belief state

Dataset Belief State BLEU Inform Success Combined
w/o. w. w/o. w. w/o. w. w/o. w.

5% Oracle 7.1 9.2 63.2 73.2 34.4 42.6 55.9 67.1
10% Oracle 9.6 10.8 63.8 78.2 38.9 52.9 61.0 76.4
30% Oracle 9.8 12.4 66.6 77.0 34.9 52.3 60.6 77.1

100% Oracle 15.9 - 72.8 - 63.7 - 84.2 -

Table 6: Score against entire test dataset containing both single and multiple goal conversations with oracle belief
state

dialogs) from different domains using a basic
script and trained the final end-task model. Our
method achieves significant improvement over
non-augmented(w/o.) dataset as seen in Table 5,
6, 7 and 8. Tables 5 and 7 show the performance
of the model for the oracle and generated belief
state on single domain goal conversations of the
test dataset. We see an improvement of 7-8 % in
combined score across all dataset sizes on applying
our augmentation technique(w.). We are able to
achieve a combined score of 94.7% with just 10%
of the dataset which is very close to the combined
score of 95.53% when trained on the entire dataset.

Tables 6 and 8 show the performance of the
model when we use the oracle and generated belief
state on the entire test dataset. We see a massive im-
provement in both the oracle and generated belief
state setting. While the oracle belief state results
improve the combined score by 20.02%, 25.2%
and 17.98% for 5%, 10% and 30% of the dataset

respectively, we see an even bigger improvement
of 146.11%, 21.82% and 29.12% when using gen-
erated belief states for 5%, 10% and 30% of dataset
respectively. The augmentation helps in improving
the combined score by a huge margin thus bring-
ing them close to the score of entire dataset(100
percent). The results show that simulated data gen-
erated from single goal dialogs can also do a good
job at generalising to multiple goal dialogs. This
insight would be useful in combining various single
goal dialogs from different datasets.

H Qualitative Study - Instruction
Perturbation

We now present a qualitative study demonstrating
how our simulator is able to accommodate changes
to instructions and reflect them in a conversation.
Figure 5 shows the generated dialogs from an orig-
inal instruction in MultiWOZ and another from
instructions created by perturbing the original in-
structions. The generated dialogs demonstrate the
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Dataset Belief State BLEU Inform Success Combined
w/o. w. w/o. w. w/o. w. w/o. w.

5% Generated 7.6 9.6 40.0 80.9 30.1 60.6 42.7 80.4
10% Generated 10.7 10.7 77.4 84.5 61.5 66.3 80.1 86.2
30% Generated 12.2 11.8 77.8 84.1 60.2 63.3 81.2 85.5

100% Generated 14.8 - 81.4 - 76.1 - 93.5 -

Table 7: Score against single goal conversations in test dataset with generated belief state

Dataset Belief State BLEU Inform Success Combined
w/o. w. w/o. w. w/o. w. w/o. w.

5% Generated 6.8 9.8 19.3 54.7 10.2 31.9 21.6 53.1
10% Generated 9.5 10.7 52.3 61.2 29.9 40.6 50.6 61.6
30% Generated 9.5 12.4 50.9 59.4 24.9 38.3 47.4 61.2

100% Generated 15.9 - 66.2 - 55.4 - 76.7 -

Table 8: Score against entire test dataset containing both single and multiple goal conversations with generated
belief state

robustness of our generator model which is able
to produce new and meaningful conversations us-
ing new entities from the perturbed instructions.
Further, the dialogues generated are very different
from each other which shows the wide variety of
conversations the simulators are capable of produc-
ing, when provided with similar goals.


