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Abstract

Image-text matching has been a popular re-
search topic which bridges vision and lan-
guage through semantic understanding. Re-
cent works mainly focus on exploring the in-
teractions between images and sentences to im-
prove the performance without considering in-
ference efficiency. Specifically, for the large
scale databases, it is unacceptable to perform
such time-consuming mechanisms between a
query (text/image) and each candidate data-
point (image/text) in the whole retrieval set
during inference. To tackle this problem, we
propose a novel hashing based efficient infer-
ence module called HEI, which can be plugged
into the existing framework to speed up the
inference step without reducing the retrieval
performance. In details, HEI learns to map
the original datapoints into short binary hash
codes and coarsely preserve the heterologous
matching relationship. Thus, in the infer-
ence phase, the proposed HEI module uses
the hash codes to quickly select a few can-
didate datapoints from the retrieval set for a
given query. Then, the image-text matching
model fine ranks the candidate set to find the
matching datapoint. Extensive experiments on
two widely used benchmark MS-COCO and
Flickr30k with four baseline methods demon-
strate the efficiency and effectiveness of our
proposed HEI module.

1 Introduction

Language and vision understanding plays a fun-
damental role for human to understand the real
world. A large amount of works has been proposed
to bridge these two modalities. Image-text match-
ing is one of the fundamental topics in this field,
which benefits a series of downstream applications,
such as visual captioning(Zhang et al., 2019; Wang
et al., 2018) and visual grounding (Chen et al.,
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2018; Plummer et al., 2017). Specifically, given
an image (text), its target is to match the closest
textual description (image) for the image (text).

Early works (Karpathy and Fei-Fei, 2015; Wang
et al., 2016; Niu et al., 2017; Faghri et al., 2017)
achieve this goal by learning two modality-specific
deep neural networks to directly map all the data-
points from the two modality into a common joint
space without using attention mechanism, and then
measures their similarities by feature distances in
the joint space. Compared with these methods,
recent works (Lee et al., 2018; Liu et al., 2019;
Wang et al., 2019; Chen et al., 2020) mainly fo-
cus on incorporating variant attention mechanisms
into the image-text matching models to explore
the fine-grained interactions between vision and
language. By using the attention mechanisms, the
image-text matching models are able to filter out ir-
relevant information, and find the fine-grained cues
to achieve a great matching performance. For exam-
ple, CAMP (Wang et al., 2019) takes comprehen-
sive and fine-grained cross-modal interactions into
account, and also properly handles negative pairs
and irrelevant information with an adaptive gating
scheme to improve the matching performance.

Although existing attention mechanism based
methods achieve great performance, they do not
take the inference efficiency into account. Specif-
ically, for the large scale databases, due to the at-
tention mechanisms being time-consuming, it is
unacceptable to perform such complex attention
mechanisms between the query (text/image) and
each candidate datapoint (image/text) in the whole
retrieval set during inference. Thus, it is critical to
improve the inference speed of these methods.

Intuitively, if a small candidate set containing
positive datapoints can be quickly selected out, the
image-text matching models can greatly speed up
through only fine ranking such a small candidate
set instead of the whole retrieval set. Then the key
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challenge is how to quickly select such a small can-
didate set. Hashing is widely used in the field of
data search with fast retrieval speed. Besides, al-
though it can hardly perform the accurate matching,
hashing is capable of quickly selecting a high qual-
ity candidate set containing the positive datapoints.

Hence, in this paper, we propose a novel hash-
ing based efficient inference module, called HEI,
which can be plugged into the existing attention
mechanism based image-text matching framework
to speed up the inference step without reducing
the retrieval performance. Specifically, a matching
score based hashing loss is proposed, which con-
sists of two items: one is used to make Hamming
similarity between hash codes of matching datapair
be as large as possible; the other item is to make the
Hamming similarity between hash codes of mis-
matching datapair no larger than their correspond-
ing matching score. By minimizing the proposed
hashing loss, the HEI module is optimized to map
the original datapoints into short binary hash codes
and coarsely preserve the heterologous matching
relationship between datapoints. Thus, the trained
HEI module can be used to speed up the inference
step without reducing the retrieval performance.
Extensive experiments on two widely used bench-
mark MS-COCO and Flickr30k with four baselines
demonstrate the effectiveness of our proposed HEI
module.

2 Related Work

2.1 Text-image Matching

Recently, many image-text matching methods have
been proposed, which can be roughly grouped
into one-to-one matching methods learning corre-
spondence between the whole image and text, and
many-to-many matching methods learning corre-
spondence between the regions of image and the
words of text.

The one-to-one matching methods (Wang et al.,
2016; Kiros et al., 2014; Zhang and Lu, 2018;
Zheng et al., 2020) mainly aim to explore the het-
erologous relationship globally by mapping the
whole images and the full texts into a common
feature space. However, owing to these methods
doing not explore the correspondence between im-
age regions and text words, it might lead to learn
sub-optimal features, which will damage the text-
image matching performance.

By utilizing variant cross-modal attention mech-
anisms, many-to-many matching methods can ex-

plore the correspondence between image regions
and text words, thus, these attention mechanism
based methods can achieve the state-of-the-art per-
formance. For instance, BFAN (Liu et al., 2019)
is proposed to eliminate partial irrelevant words
and regions from the shared semantic in image-
text pairs to achieves state-of-the-art performance
on several benchmark datasets. IMRAM (Chen
et al., 2020) proposes a recurrent attention memory
which incorporates a cross-modal attention unit and
a memory distillation unit to refine the correspon-
dence between image regions and text words. How-
ever, those attention mechanisms used by the many-
to-many matching methods are usually complicated
with high computation complexity. Hence, it is un-
acceptable to perform such time-consuming atten-
tion mechanisms between the query (text/image)
and each candidate datapoint (corresponding to im-
age/text) in the whole retrieval set during inference
especially for the large scale databases.

Different from previous methods, our model ex-
plores hashing technology to improve the inference
speed of the existing many-to-many text-image
matching methods without reducing their perfor-
mance.

2.2 Cross-Modal Hashing

The core of cross-modal hashing is to project the
datapoints of different modalities into compact bi-
nary hash codes, meanwhile, preserve the semantic
similarity of original datapoints. Then, in the cross-
modal retrieval phase, the datapoints of the retrieval
set can be sorted by the Hamming distance between
their corresponding binary hash codes calculated
by the ‘XOR’ operation, which has fast retrieval
speed. Due to this advantage, a mount of cross-
modal hashing methods have been proposed (Hu
et al., 2020; Su et al., 2019; Lin et al., 2020; Tu
et al., 2020; Shi et al., 2019). For example, SDCH
(Lin et al., 2020) utilizes a semantic label branches
to preserve semantic information of the learned fea-
tures by integrating with inter-modal pairwise loss,
cross-entropy loss and quantization loss.

However, due to these hashing methods be-
longing to approximate nearest neighbour (ANN)
searching technology, they can hardly to accurately
find the matching datapoint for a query. Hence,
few works explore the hashing technology for text-
image matching. To our best knowledge, this is the
first work to explore the use of hashing to improve
the inference speed of existing attention mecha-
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Figure 1: The architecture of image-text method with the HEI module.

nism based image-text matching methods.

3 Methodology

As shown in Figure 1, different from the architec-
ture of existing matching models, our framework
introduces an extra hashing based efficient infer-
ence module, called HEI, which consists of an im-
age modal hashing layer and a text modal hashing
layer, and each hashing layer is a fully-connected
layer with k units where k is the hash codes length.

3.1 Problem formulation and notations

Without loss of generality, suppose there are
datasets with M images X = {xi}Mi=1 and N
texts Y = {yi}Ni=1. Given an image xi with
its region-level visual features denoted as V i =
[vi

1, · · · ,vi
m], and a text yj with its word-level tex-

tual features denoted as T j = [tj1, · · · , t
j
n], the

goal of image-text matching is to calculate a match-
ing score sij for the image xi and the text yj based
on their features V i and T j . Moreover, if the im-
age xi and the text yj are matching, the matching
score sij should be large, otherwise sij should be
small.

Furthermore, the goal of hashing based efficient
inference module is to learn the two modality-
specific hashing layer which can map their corre-
sponding modal datapoints into binary hash codes
with the heterologous matching relationship pre-
served.

3.2 Cross-modal Feature Representation

3.2.1 Image region-level visual features

To obtain the region-level visual features V i =
[vi

1, · · · ,vi
m] of the image xi, we first employ

the Faster R-CNN (Ren et al., 2016) model us-
ing ResNet-101 (He et al., 2016) as the backbone,
which is pre-trained on the Visual Genomes dataset
(Krishna et al., 2017) by (Anderson et al., 2018),
to extract the top m region proposals of the image.
Then, by average-pooling the spatial feature map,
a feature vector vi′

j ∈ R2048 for the jth region
proposal is calculated. Finally, We obtain the d-
dimentional region features with a linear projection
layer:

vi
j = W vv

i′
j + bv (1)

where W v and bv are to-be-learned parameters,
and vi

j is the visual feature for the jth region of
image xi.

3.2.2 Text word-level textual features

To obtain the textual features of a input text yj

with n words, we first embed each word wi of
the input text yj into a 300-dimensional vector
tj′i . Then, to enhance the word-level feature with
sufficient context information, we use a single-
layer bi-directional GRU (Cho et al., 2014) with
d-dimensional hidden to summarize information
from both forward and backward directions of the
input text yj :

−→
hj
i =
−−−→
GRU(

−−→
hj
i−1, t

j′
i ),

←−
hj
i =
←−−−
GRU(

←−−
hj
i−1, t

j′
i ).

(2)
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where
−→
hj
i and

←−
hj
i denote hidden states from the

forward GRU and the backward GRU, respectively.
Then, the textual feature of the word wj

i in the text
yj is defined as:

tji =

−→
hj
i +
←−
hj
i

2
(3)

3.3 General Attention Framework

Existing attention mechanism based image-text
matching methods mainly learn to associate shared
semantics between the region-level feature V i of
image xi and word-level feature T j of text yj

through variant cross-attention mechanisms to cal-
culate the matching score sij , which can be formu-
lated as follows:

sij = CAM(V i,T j ;W ) (4)

where CAM(·;W ) denotes the cross-modal at-
tention mechanism and W is the set of learnable
parameters. For example, in BFAN (Liu et al.,
2019), CAM(·;W ) denotes the Focal attention
mechanism proposed in the original paper.

Then to maximize matching scores of the match-
ing image-text pairs and minimize the ones of the
mismatching datapairs, a hinge-based triplet rank-
ing loss with emphasis on the hard negatives are
used as the loss function. Specifically, given a pair
of matching image-text xi and yj , we denote their
matching score as sij ; j̄ = argmaxt6=jsit denotes
the hard negative when using the image to match
text; ī = argmaxt6=istj denotes the hard nega-
tive when using the text to match image, then the
ranking loss is formulated as:

Lrank = [α− sij + sij̄ ]+ + [α− sij + sīj ]+ (5)

where α is the margin for the ranking loss, and
[a]+ = max(0, a).

Finally, after optimizing the matching model,
given a query datapoint, it will be used to calcu-
lated the matching score with each datapoint in the
retrieval set to find the most matching one by the
cross-attention mechanism. However, the cross-
attention mechanism is time-consuming which
means it unacceptable to calculate a matching score
between the query and each point in retrieval set
with the attention mechanism during inference.
Thus, we propose a hashing based efficient infer-
ence module to improve the inference speed.

3.4 Hashing based Efficient Inference module

Specifically, the input of the HEI module is the
fragment-level feature of datapoint, i.e., the region-
level feature V i for an image modal input xi or
the word-level feature T j for a text modal input yj .
We further aggregate the fragment-level feature V i

(T i) into an instance-level feature v̂i (t̂i) for an
image (text) datapoint xi (yi):

v̂i =
m∑
j=1

ajv
i
j ; aj =

viT
j wv

m∑
k=1

viT
k wv

. (6)

t̂i =

n∑
j=1

qjt
i
j ; qj =

tiTj wt

n∑
k=1

tiTk wt

. (7)

where wt and wv denote learnable parameter.
Then by forwarding the instance-level feature v̂i

(t̂i) into the image (text) modal hashing layer, the
hash codes bvi (bti) of image xi (text yi) can be
generate as:

bvi = sgn(Hx(v̂i; Θv)) ∈ {−1, 1}k

bti = sgn(Hy(t̂i; Θt)) ∈ {−1, 1}k
(8)

whereHx(v̂i; Θv) denotes the image modal hash-
ing layer and Θv denotes the set of parameters in
the image hashing layer; k is the length of hash
codes;Hy(t̂i; Θt) represents the text modal hash-
ing layer and Θt represents the set of parameters
in the text hashing layer; sgn(·) is an element-wise
sign function, which returns 1 if the element is
positive and returns −1 otherwise.

Furthermore, the core of hashing based efficient
inference module is to learn two modality-specific
hashing layer to map the datapoints into binary
hash codes which are used to select a few candi-
date datapoints from the retrieval set for an query.
To achieve this goal, the learned hash codes should
coarsely preserve the heterologous matching rela-
tionship between datapoints, i.e., if two datapoints
are matching, then the Hamming distance between
their corresponding binary hash codes should be
small, otherwise it should be large.

Considering that the Hamming distance between
bvi and btj can be difined as: DH(bvi , b

t
j) = 0.5(k−

bvTi btj), where k denotes the code length. It means
when 1

kb
vT
i btj is close to 1, the Hamming dis-

tance DH(bvi , b
t
j) is close to 0; and when 1

kb
vT
i btj

is close to -1, the Hamming distance DH(bvi , b
t
j)
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is close to k. Thus, 1
kb

vT
i btj can be used to de-

note the Hamming similarity between bvi and btj ,
and measure the heterologous matching relation-
ship preserved by bvi and btj . Furthermore, as the
mathching score sij ∈ [0, 1] of image xi and
text yj computed by the cross-attention mecha-
nism may preserve the heterologous matching re-
lationship to a certain extent, then we can use it
as soft target to supervise the learning of similar-
ity between hash codes of mismatching data pairs.
Owing to 1

kb
vT
i btj ∈ [−1, 1], we re-scale sij as

ŝij = 2sij − 1 ∈ [−1, 1].
Thus, based on these observations, we proposed

a matching score based hashing loss:

L1 =
1

|N+
i |

∑
j∈N+

i

(
1

k
bvTi btj − 1)2

+
1∑

j∈N−
i

Iij

∑
j∈N−

i

Iij(
1

k
bvTi btj − ŝij)

2
(9)

Iij =

{
1, 1

kb
vT
i btj>ŝij ,

0, otherwise.
(10)

where N+
i denotes the set of text datapoints which

are matching with the image xi, and N−i denotes
the set of text datapoints which are not matching
with the image xi; sij denotes the matching score
between the image xi and text yj ;

It can be found that the first item ofL1 is to make
1
kb

vT
i btj be close to 1, i.e., make the Hamming dis-

tance between the hash codes of matching datapair
be small. The second item of L1 is constructed to
penalize the mismatching datapair that the Ham-
ming similarity between their hash codes is larger
than their matching score sij , i.e., the goal of L1 is
to make the Hamming distance between their hash
codes be large. Thus, by minimizing the hashing
loss L1, the learned binary hash codes can coarsely
preserve the heterologous matching relationship.

Furthermore, as the sgn(·) function is in-
differentiable at zero and the derivation of it will
be zeros for a non-zero input, the parameters of
hashing model will not be updated with the back-
propagation algorithm when minimizing the hash-
ing loss function L1. Thus, we directly discard
the sgn(·) function to ensure the parameters of our
hashing model can be updated, and use tanh(·) to
approximate the sgn(·) function to make each el-
ement of output of hashing layer can be close to
“+1” or “-1”. Then the final hashing loss function

can be formulated as follows:

Lh =
1

|N+
i |

∑
j∈N+

i

(
1

k
b̂
vT
i b̂

t
j − 1)2

+
1∑

j∈N−
i

Iij

∑
j∈N−

i

Iij(
1

k
b̂
vT
i b̂

t
j − ŝij)

2.

(11)
where b̂

v
i = tanh(Hx(v̂i; Θv)) and b̂

t
j =

tanh(Hy(t̂j ; Θt))

3.5 Inference
After training the image-text matching model and
HEI module well, we can generate the hash codes
{bvi }Ni=1 ({bti}Mi=1) for all the images {xi}Mi=1 (text
{yi}Ni=1) in the retrieval set using the HEI module.
When given a query image xq (text yq), we also
use HEI module map it into a hash code bvq (btq),
and calculate the Hamming distances between bvq
(btq) and each code in {bti}Mi=1 ({bvi }Ni=1). Then,
we sort the texts (images) in the retrieval set in as-
cending order according to the Hamming distances,
and select a few of the top texts (images) as the
candidate set. Finally, we only need to do the fine-
grained matching in the candidate set to find the
matching datapoints.

4 Experiments

4.1 Datasets
We evaluate the performance of the proposed HEI
module on two public used datasets: Flickr30K
(Plummer et al., 2015) and MS-COCO (Lin et al.,
2014). Specifically, Flickr30k contains 31783 im-
ages collected from the Flickr website. Each image
is accompanied with five human annotated sen-
tences descriptions. Following the setting of pre-
vious works (Wang et al., 2019; Liu et al., 2020),
this dataset is split into 29,000 images, 1,000 im-
ages, and 1,000 images for training set, validation
set, and testing set respectively. We report the
performance evaluation of image-text retrieval on
1000 testing set. MS-COCO is another large-scale
image-caption benchmark which consists of about
123,287 images with each image also roughly an-
notated with five sentence descriptions. Following
the widely used split (Karpathy et al., 2014; Chen
et al., 2020), we use 113,287 images for training,
1000 images for validation and 5000 images for
testing. Moreover, we evaluate our method on both
the 5 folds of 1K test images and the full 5K test
images for MS-COCO.
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Method
Text Retrieval Image Retrieval

R@1 R@5 R@10 Time(s) R@1 R@2 R@10 Time(s)
BFAN (Liu et al., 2019) 0.692 0.914 0.962 76.72 0.500 0.772 0.848 31.29

BFAN-random 0.582 0.814 0.883 37.00 0.291 0.419 0.451 17.00
BFAN-HEI 0.692 0.912 0.962 22.31 0.499 0.772 0.846 11.38

CAMP (Wang et al., 2019) 0.675 0.914 0.954 568.57 0.527 0.787 0.850 514.52
CAMP-random 0.599 0.823 0.873 295.61 0.318 0.436 0.461 280.06

CAMP-HEI 0.676 0.909 0.950 168.15 0.526 0.782 0.844 166.21
IMRAN (Chen et al., 2020) 0.710 0.920 0.963 1858.82 0.531 0.799 0.862 692.16

IMRAN-radom 0.594 0.842 0.892 956.44 0.314 o.432 0.465 353.75
IMRAN-HEI 0.710 0.920 0.964 574.93 0.532 0.797 0.858 219.72

GSMN (Liu et al., 2020) 0.733 0.918 0.964 518.32 0.524 0.792 0.863 146.70
GSMN-random 0.611 0.839 0.890 149.65 0.302 0.426 0.458 72.37

GSMN-HEI 0.734 0.919 0.967 99.30 0.524 0.790 0.860 51.02

Table 1: Comparison in terms of R@N scores and time cost of two retrieval tasks on Flickr30K

Method
Text Retrieval Image Retrieval

R@1 R@5 R@10 Time(s) R@1 R@2 R@10 Time(s)
BFAN (Liu et al., 2019) 0.753 0.961 0.989 62.84 0.610 0.896 0.954 32.45

BFAN-random 0.657 0.899 0.930 29.87 0.361 0.486 0.502 16.15
BFAN-HEI 0.753 0.962 0.989 18.21 0.610 0.896 0.953 12.24

CAMP (Wang et al., 2019) 0.711 0.953 0.977 567.86 0.581 0.882 0.948 515.18
CAMP-random 0.648 0.890 0.935 302.29 0.340 0.469 0.486 284.65

CAMP-HEI 0.713 0.953 0.977 169.24 0.580 0.882 0.946 168.39
IMRAN (Chen et al., 2020) 0.784 0.964 0.991 1808.01 0.644 0.912 0.960 662.59

IMRAN-random 0.688 0.904 0.935 868.64 0.370 0.484 0.496 332.95
IMRAN-HEI 0.784 0.964 0.991 504.64 0.644 0.912 0.960 215.15

GSMN (Liu et al., 2020) 0.758 0.960 0.992 465.75 0.607 0.897 0.955 205.89
GSMN-random 0.658 0.903 0.946 120.56 0.302 0.426 0.458 99.23

GSMN-HEI 0.758 0.960 0.992 80.38 0.607 0.894 0.953 70.69

Table 2: Comparison in terms of R@N scores and time cost of two retrieval tasks on MS-COCO 1K

4.2 Evaluation

Following the setting in (Chen et al., 2020; Liu
et al., 2020), we evaluate the performance of our
proposed approach by reporting Recall@K (K =
1, 5, 10) values for bi-directional matching tasks,
i.e. matching texts given an image query (Text Re-
trieval) and matching images given a text query
(Image Retrieval). The Recall computes the propor-
tion of correct image or text being retrieved among
top K results. In addition, we also record the infer-
ence time in seconds to evaluate the efficiency of
our proposed HEI.

4.3 Baselines

To evaluate the performance of our proposed HEI,
some state-of-the-art attention mechanism based

image-text matching methods are selected as our
baselines, including BFAN (Liu et al., 2019),
CAMP (Wang et al., 2019), IMRAN (Chen et al.,
2020) and GSMN (Liu et al., 2020). It should be
noted that the proposed HEI focuses on explor-
ing a novel and efficient hashing based efficient
inference module that can be universally plugged
into existing attention mechanism based image-text
methods to speed up the inference speed rather than
redesigning a new cross-modal attention mecha-
nism to improve their matching performance.

4.4 Implementation Details

All our experiments are implemented in PyTorch
and conducted on a NVIDIA Tesla V100 GPU. For
representing visual modality, the amount of regions
in each image is m = 36, and the dimensionality
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Method
Text Retrieval Image Retrieval

R@1 R@5 R@10 Time(s) R@1 R@2 R@10 Time(s)
BFAN 0.499 0.795 0.888 9461.96 0.369 0.657 0.772 3797.68

BFAN-random 0.426 0.705 0.807 5521.66 0.231 0.381 0.428 2903.52
BFAN-HEI 0.496 0.791 0.884 3355.99 0.369 0.657 0.772 2177.12

CAMP 0.433 0.751 0.863 18646.21 0.324 0.633 0.753 16344.43
CAMP-random 0.361 0.661 0.763 11515.34 0.211 0.373 0.423 9615.76

CAMP-HEI 0.434 0.750 0.862 8198.13 0.323 0.632 0.751 6277.92
IMRAN 0.525 0.812 0.898 39030.95 0.391 0.684 0.795 16877.68

IMRAN-random 0.447 0.721 0.814 19423.71 0.244 0.390 0.435 8505.07
IMRAN-HEI 0.525 0.813 0.898 8265.47 0.390 0.683 0.794 3315.97

GSMN 0.494 0.793 0.888 25261.93 0.359 0.655 0.769 12226.86
GSMN-random 0.414 0.696 0.795 6453.45 0.229 0.383 0.435 7461.81

GSMN-HEI 0.493 0.793 0.888 3561.13 0.359 0.654 0.767 4607.29

Table 3: Comparison in terms of R@N scores and time cost of two retrieval tasks on MS-COCO 5K

of the final region representation vectors is set as
1024. Moreover, the dimensionality of hidden state

(i.e.,
−→
hj
i and

←−
hj
i in Formula (2)) in the GRU is also

set as 1024. The length of hash codes is set as 64.
In the training phase, we first train the base cross-
modal attention module for 20 epochs, then train
the HEI module jointly. We adopt SGD with a mini-
batch size of 128 and a learning rate within 10−2

to 10−3 to optimize the HEI modul. The optimiza-
tion algorithm for the base cross-modal attention
module is the same with the ones defined in the
original method, for example, when plugging HEI
module into GSMN, the optimization algorithm for
cross-modal attention module is Adam.

4.5 Main results

We conduct extensive experiments on Flickr30K
and MS-COCO. The image-text matching results
on Flickr30K, MS-COCO dataset with 1K test
points and 5K test points are shown in Table 1,
2 and 3, respectively. ”method”-HEI denotes the
method using the proposed HEI module, for exam-
ple, BFAN-HEI means plugging HEI into BFAN to
speed up the inference speed. Similarly, ”method”-
random denotes randomly selecting 50% datapoints
from retrieval set as the candidate set to speed up
the inference speed of the method.

Based on the results shown in these tables, the
following observations can be got: (1) our proposed
HEI module can greatly improve the matching effi-
ciency of all the four baselines almost without re-
ducing the matching performance, and even slightly
improve the performance of some baselines. For

example, as shown in Table 1, comparing GSMN-
HEI with GSMN, GSMN-HEI achieves an increase
of 0.1% on the R@1 metric in the text retrieval
task, and greatly reduces the inference time from
518.32 seconds to 99.30 seconds. The reason why
plugging the HEI module can slightly improve the
performance maybe that for some query, there are
some false positive datapoints which can misguide
the image-text model, but the Hamming distance
between the hash codes of queries and the ones of
false positive datapoints are large, i.e., the false pos-
itive datapoints will not be selected as the candidate
points. Thus, without the effect of the false posi-
tive datapoints, the image-text model can find the
matching points successfully and improve the re-
trieval performance. (2) The proposed HEI module
can map datapoints into hash codes with the orig-
inal heterologous matching relationship coarsely
preserved. For instance, as shown in Table 1, 2 and
3, all the methods with the proposed HEI module
achieve not only better performance than the meth-
ods with the randomly selected candidate, but also
lower inference time. It means that the number of
datapoints in the candidate set selected by our pro-
posed HEI module is smaller but the possibility of
the candidate set containing the matching datapoint
is higher.

4.6 Discussion
4.6.1 Ablation study
To further investigate the impact of the length of
hash codes, we construct there variants of HEI mod-
ule with code length being 16, 32, and 128 bits with
two baselines on Flickr30K, respectively. The re-
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Method
Text Retrieval Image Retrieval

R@1 R@5 R@10 Time(s) R@1 R@2 R@10 Time(s)
BFAN-HEI16bits 0.687 0.903 0.958 20.85 0.485 0.742 0.810 11.02
BFAN-HEI32bits 0.685 0.907 0.957 21.03 0.498 0.765 0.838 11.17
BFAN-HEI128bits 0.690 0.913 0.961 21.46 0.500 0.771 0.846 11.55

BFAN-HEI 0.692 0.912 0.962 21.31 0.499 0.772 0.846 11.38
GSMN-HEI16bits 0.719 0.911 0.956 99.13 0.506 0.756 0.821 50.84
GSMN-HEI32bits 0.731 0.916 0.966 99.22 0.519 0.779 0.847 50.92
GSMN-HEI128bits 0.734 0.919 0.965 99.51 0.520 0.788 0.855 51.23

GSMN-HEI 0.734 0.919 0.967 99.31 0.524 0.790 0.860 51.02

Table 4: Comparison in terms of R@N scores and time cost of two retrieval tasks on Flickr30K
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Figure 2: The Figure 2(a) and (b) denotes the results of
BFAN-HEI on MS-COCO(5k) in text retrieval task and
image retrieval task, respectively. Moreover, in each
figure, the axis X denotes selecting how much percent-
age of points in the retrieval set as candidate set, and
the axis Y for the red line is in the left which is the
value of R@1, and the axis Y for the blue line is in
the right which denotes the inference time taken for the
transaction in seconds.

sults are shown in Table 4. From these results, it
can be found: (1) The length of hash codes rarely in-
fluence the inference time that each baseline with a
different hash code length of HEI consumes nearly
the same inference time. This is because that the
speed of the “XOR” operation between hash codes
is far faster than the ones of the cross-modal atten-
tion mechanism. Thus, it implicitly demonstrates
the availability of speeding up the inference speed
of baselines by using the proposed HEI to fast se-
lect the candidate set. (2) The matching perfor-
mance first increases as the hash code length varies
from 16 to 64, and then tend to be stable when the
length varies from 64 to 128. Thus, for the other
experiments, the hash code length is set as 64.

4.6.2 Efficiency and performance
We also conduct experiments to further investi-
gate the trade-off between inference efficiency and
matching performance.

As the results shown in Figure 2, with the size
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Figure 3: Compare the inference time of BFAN and the
one of BFAN-HEI in large retrieval set under the con-
dition that BFAN-HEI achieves the same performance
of BDAN

of candidate increasing, the matching performance
of BFAN-HEI (the red lines) increase rapidly and
then tend to stable, and BFAN-HEI consumes more
inference time (the blue lines). It can be found
that when selecting only 20% of datapoints in the
retrieval set as the candidate set by the proposed
HEI module, BFAN-HEI can already achieve the
best performance, and greatly reduce the inference
time. Thus, it demonstrates the effectiveness of our
proposed HEI module.

4.6.3 Scalability for the large retrieval set

To further investigate the scalability of the pro-
posed HEI module for the large retrieval set, when
doing experiments on the MS-COCO (1K) with
the BFAN baseline, we directly use training data
to expand the data volume of the retrieval set. The
curves of inference time w.r.t. the volume of re-
trieval set are shown in Figure 3. It can be found
that with volume of the retrieval set increasing, our
proposed HEI module can still be used to speed up
the inference speed without reducing the matching
performance, which demonstrates the scalability of
our proposed HEI module for large retrieval sets.
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5 Conclusion

In this paper, we have proposed a novel Hashing
based Efficient module, called HEI, which can
be plugged into the existing image-text matching
methods to speed up the inference step without
reducing the matching performance. Extensive
experiments on two widely used benchmark MS-
COCO and Flickr30k with four baseline methods
demonstrate the efficiency and effectiveness of our
proposed HEI module.
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