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Abstract

Answering questions about why characters
perform certain actions is central to under-
standing and reasoning about narratives. De-
spite recent progress in QA, it is not clear
if existing models have the ability to answer
“why” questions that may require common-
sense knowledge external to the input narra-
tive. In this work, we introduce TellMeWhy,
a new crowd-sourced dataset that consists of
more than 30k questions and free-form an-
swers concerning why characters in short nar-
ratives perform the actions described. For
a third of this dataset, the answers are not
present within the narrative. Given the limita-
tions of automated evaluation for this task, we
also present a systematized human evaluation
interface for this dataset. Our evaluation of
state-of-the-art models show that they are far
below human performance on answering such
questions. They are especially worse on ques-
tions whose answers are external to the narra-
tive, thus providing a challenge for future QA
and narrative understanding research.

1 Introduction

The actions people perform are steps of plans to
achieve their desired goals. When interpreting lan-
guage, humans naturally understand the reasons
behind described actions, even when the reasons
are left unstated (Schank and Abelson, 1975). For
NLP systems, answering questions about why peo-
ple perform actions in a narrative can test this abil-
ity. Answering such questions often requires filling
the implicit gaps in the story itself.

Consider this narrative from ROCSto-
ries (Mostafazadeh et al., 2016b):
Rudy was convinced that bottled waters all tasted the same.

He went to the store and bought several popular brands. He

went back home and set them all on a table. He spent several

hours tasting them one by one. He came to the conclusion that

they actually did taste different.

Now try to answer the question, “Why did he
go to the store and buy several popular brands?”
The answer “he wanted to taste test” is not explicit
in the narrative and requires us to read between
the lines to fill in the gaps (Norvig, 1987). While
humans can visualise and process the events in a
story to hypothesize why they might have occurred
(Kintsch and Dijk, 1978), current NLP systems fall
well short of exhibiting similar capabilities. They
are unable to adequately formulate the reasons be-
hind actions in specific contexts.

How can we get NLP models to reason about
why actions are performed? One way is to consider
theories like script learning (Schank and Abelson,
1975; Pichotta and Mooney, 2014) or learning from
co-occurrence (Chambers and Jurafsky, 2009). But
they only partially capture this type of knowledge
– much like other forms of commonsense knowl-
edge, the reasons for why actions are performed
are often left implicit in text. Even though there are
many large scale QA datasets, they rarely contain
questions about why people perform actions.

Therefore, we introduce the TellMeWhy dataset,
a collection of 30,519 such why-questions, each
with 3 “gold standard” human answers. Each
record in TellMeWhy contains a short story, an
associated question, and its 3 possible answers.

Further, we focus on enabling human evaluation
of this dataset; human evaluation is more reliable
than automatic metrics to evaluate such systems
(Celikyilmaz et al., 2020; Gatt and Krahmer, 2018).
However, reliability of human judgment is substan-
tially impacted by experimental setup (Novikova
et al., 2018; Santhanam and Shaikh, 2019). There is
little consensus on how human evaluations should
be conducted, so results are often incomparable
across evaluations.

To this end, we present a systematized evaluation
framework on MTurk for the TellMeWhy text gen-
eration task – and release the framework for future
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researchers. The MTurk interface asks annotators
to rate generated answers on their grammatical-
ity and validity. We show that with our interface
human answers are judged to be of high quality
(99% grammatical, 96% valid) with strong inter-
annotator agreement at 0.88 Fleiss Kappa. This
indicates high agreement and also confirms the de-
sign of our interface.

Finally, we present baseline results for TellMe-
Why and compare against our human ceiling. We
finetune two large language models that have
proven to be effective for a variety of tasks, GPT-2
(Radford et al., 2019) and T5 (Raffel et al., 2020),
and a dedicated question answering model, Uni-
fiedQA (Khashabi et al., 2020), to perform this
task. Human evaluation is performed on their out-
puts from independent test data. All models signif-
icantly under-perform the human benchmark and
are especially worse on questions where the answer
cannot be simply copied over from text in the narra-
tive. The results clearly demonstrate the difficulty
for current models to convincingly answer such
why-questions.

This paper’s contributions are as follows: (1) we
introduce TellMeWhy, a large dataset of English
why-questions for narratives derived from ROC-
Stories (Mostafazadeh et al., 2016a) and CATERS
(Mostafazadeh et al., 2016b) along with answers
from 3 distinct humans, (2) a systematized hu-
man evaluation interface to calibrate model outputs
consistently, and (3) show that current models are
ill-equipped to perform this task. We release the
dataset and human evaluation suite at http://
lunr.cs.stonybrook.edu/tellmewhy.

2 Related Work

2.1 Datasets containing why-questions

Most of the datasets related to why-questions fall
into one or more of the following categories: (1)
very small size, (2) not focused on stories, or (3)
focused on connecting known events instead of
answering reasoning questions.

Some corpora of why-questions have been col-
lected manually: corpora described in Verberne
et al. (2006) and Verberne et al. (2007) both com-
prise fewer than 400 questions and corresponding
answers (one or two per question) formulated by
native speakers. Dunietz et al. (2020) demonstrate
that it is important to define what we want models
to comprehend when building datasets for machine
reading comprehension (MRC) tasks. They design

templates of understanding corresponding to the
four elements identified by Zwaan et al. (1995). For
201 questions, they design multiple-choice ques-
tions derived from (Lai et al., 2017) to test under-
standing of different categories of events. All of
these are very small corpora that cannot be viably
used to further a model’s understanding of why-
questions in stories.

Higashinaka and Isozaki (2008) extend an exist-
ing factoid QA system to answer why-questions
by integrating corpus based features, calling it
NAZEQA. Oh et al. (2012) extract a set of an-
swer candidates from a web corpus, and perform
re-ranking using SVMs to predict the right answer.
Oh et al. (2019) use an adversarial learning frame-
work to generate a vector representation from the
passage to judge whether the passage actually an-
swers the why-question. These papers focus on
Japanese news (Fukumoto et al., 2007; Oh et al.,
2012), including NTCIR-6, and most critically, all
these datasets are very small.

Some prior work focuses on knowledge extrac-
tion, not the reasons behind the actions. Mrozinski
et al. (2008) built a corpus of why-questions re-
lated to Wikipedia articles. These were general
knowledge questions with solicited answers from
paid workers. Dependency parsing can be used to
rephrase why-questions into statements with a ‘be-
cause’ prompt to elicit explanations from models
(Nie et al., 2019). PhotoshopQuiA (Dulceanu et al.,
2018) contains questions and answers specifically
about Photoshop.

NarrativeQA (Kočiský et al., 2018) provides a
dataset of 1,567 stories (books and movie scripts)
containing 46,765 wh-questions written and an-
swered by human annotators. Unfortunately, only
9.78% are why-questions, which makes for a small
collection. QuAIL (Rogers et al., 2020) has a small
subset of multiple choice questions pertaining to
causality in user stories. These datasets are tar-
geted at broad abilities of reading comprehension,
not specifically about explaining actions in stories.

Some recent datasets causally connect events
in text, but they do not target answering why-
questions. ATOMIC (Sap et al., 2019) consists
of entries that describe a likely cause/effect of
events. Most notably, ATOMIC is non-contextual
so it is more about general knowledge, not inter-
preting a specific story/context. Perhaps most rel-
evant is GLUCOSE (Mostafazadeh et al., 2020),
a crowdsourced dataset of implicit commonsense

http://lunr.cs.stonybrook.edu/tellmewhy
http://lunr.cs.stonybrook.edu/tellmewhy
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Dataset Size Domain

NTCIR-6 200 Japanese news
Mrozinski et al. (2008) 695 Wikipedia

PhotoshopQuiA 2,854 Product focused
NarrativeQA 4,573 Books+Movie scripts

Dunietz et al. (2020) 201 Exam questions

Table 1: Previous why-question corpora. Narra-
tiveQA has 46,765 questions of which 4,573 are why-
questions.

knowledge in the form of causal mini-theories
grounded in narrative context. These theories are
semi-structured inference rules. This dataset is not
aimed at answering why-questions, but at creating
direct relationships between events already men-
tioned in the story. They focus on capturing specific
cause-enable type relations. Annotators were given
a very constrained task – they had to select options
from a drop down menu describing inference rules.

Abductive commonsense reasoning tests
whether models can come up with a plausible
explanation to connect a set of events. Bhagavatula
et al. (2020) present ART with two abductive
tasks: 1) given two observations, select one out
of two plausible hypotheses, 2) and generate text
connecting two events. This line of work focuses
on connecting the dots between two events and
does not address explaining why an action was
performed. Our work crucially differs from these
because the answer is often not in the story at all.
StrategyQA (Geva et al., 2021) is a new dataset
focusing on performing better implicit reasoning
for multi-hop question answering tasks.

We summarize the different why-questions cor-
pora in Table 1. None of them represent a large
dataset focused on answering why-questions about
actions in a narrative.

2.2 Human evaluation for NLG tasks

Among language generation tasks, machine transla-
tion has received the most attention in terms of hu-
man evaluation. Qualified crowd workers score out-
put translations given the source or reference text to
calibrate MT systems (Sakaguchi and Van Durme,
2018; Graham et al., 2013, 2014). WMT conducts
annual evaluation of outputs of systems submitted
to the shared task and uses it as one of the primary
metrics (along with BLEU) to rank systems (Bo-
jar et al., 2016, 2017, 2018; Barrault et al., 2019,
2020).

ChatEval (Sedoc et al., 2019) is an evaluation

platform for chatbots. Zellers et al. (2020) present a
leaderboard for their advice generation task. These
platforms incorporate some manual analysis, but
focus on very different tasks. None of their Me-
chanical Turk interfaces can be used for our task.
We were unable to find a consistent interface for
human evaluation of an open-ended question an-
swering task. To address this flaw, we propose a
standard human intelligence task (HIT) evaluation
scheme for our dataset.

3 Dataset Creation

We want to test the abilities of models to understand
the reasoning behind actions in a story. Therefore,
we create a dataset of why questions that ask for
explanations for actions performed in a story. An-
swering these questions requires an understanding
of the events that are explicit in the story as well
as access to implicit common-sense knowledge on
how people use actions as parts of plans to achieve
goals. To cover a wide-range of common situations,
we utilize ROCStories (Mostafazadeh et al., 2016a),
a collection of 45,496 five-sentence commonsense
stories. We also develop a small “hidden” test set
that was only used for the final evaluation using
the CATERS (Mostafazadeh et al., 2016b) subset
of ROCStories.

3.1 Why-Question Generation

Our strategy for creating why questions is simple.
For each action in the narrative, we formulate a why
question by applying simple template-based trans-
formations. We dependency parse each sentence
using SpaCy’s en_core_web_sm model (Honnibal
et al., 2020). We use the generated parse tree to
rephrase the sentence into a question about the ac-
tion described. The generated parse tree is used to
extract the subject, object, and verb. We consider 3
types of sentences and design question templates
accordingly: (1) sentences that have a primary and
auxiliary verb, (2) sentences that only have a pri-
mary verb, and (3) sentences that only contain an
auxiliary verb. For the first, the question template
is: “Why {aux_verb} {subject} {verb} {object}?",
for the second: “Why did {subject} {verb_lemma}
{obj}?", and for the third; “Why {aux_verb} {sub-
ject} {obj}?".

This procedure yielded a little over 113k ques-
tions from ROCStories, and 489 questions from the
CATERS portion. We selected at random 32,165
questions from stories that had at least three ques-
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Split # stories # questions

Train 7558 23964
Dev 944 2992
Test 944 3099

Hidden Test 190 464

Total 9,636 30,519

Table 2: Dataset Statistics

tions1. We ensure that there is no overlap between
the two subsets.

3.2 Collecting Answers

We crowd-sourced answers to these questions us-
ing Amazon Mechanical Turk. Figure 1a shows
the interface used to collect these answers. Annota-
tors were presented a narrative and asked to answer
three why questions in free-form. For each ques-
tion, they were also asked to provide judgments
about the comprehensibility of the question, and
whether the narrative explicitly contained the an-
swer. They also selected the sentences from the
narrative which influenced their answer (if any).
To avoid variability in answer prefixes, we pro-
vide a prompt to start answering the question. We
rephrase the sentence from which the question was
generated to create these prompts. We consider
the same categorisation of sentences described in
subsection 3.1. For sentences that have both pri-
mary and auxiliary verbs, the answer prompt is of
the form: “{subject} {aux_verb} {verb} {object}
because...". When it only contains a primary verb,
it is of the form: “{subject} {verb} {object} be-
cause...". If it only contains an auxiliary verb, it is
of the form: “{subject} {aux_verb} {object} be-
cause...". We found, over several iterations of this
HIT, that providing a prompt gave workers an ini-
tial direction and improved the quality of answers
collected.

We ask three distinct annotators (three-way re-
dundant task) to answer each of these questions.
Annotators are not allowed to copy pieces of text
to make up an answer. We discard questions that
were deemed incomprehensible by any annotator.2

With this process, we obtained 3 answers each

1Since we ask annotators to read an entire story to an-
swer these questions, avoiding stories with fewer questions
optimizes reading time.

2On ROCStories we discarded 1,546 questions and on
CATERS we discarded 25 questions

Story: Sandra got a job at the zoo. She loved
coming to work and seeing all of the animals.
Sandra went to look at the polar bears during her
lunch break. She watched them eat fish and jump
in and out of the water. She took pictures and
shared them with her friends.
Question: Why did Sandra go to look at the polar
bears during her lunch break?
Ans: she wanted to take some pictures of them.

Story: Cam ordered a pizza and took it home. He
opened the box to take out a slice. Cam discov-
ered that the store did not cut the pizza for him.
He looked for his pizza cutter but did not find it.
He had to use his chef knife to cut a slice.
Question: Why did Cam order a pizza?
Ans: Cam was hungry.

Table 3: TellMeWhy examples. The first is answerable
directly from text in the story, but the second requires
external knowledge. We only show one out of three
available answers here.

from 30,055 questions from 9,636 stories (see Ap-
pendix B for more details). Table 2 shows basic
statistics of the dataset. We refer to annotations
from the CATERS data as the hidden test set. Ex-
amples of records in the dataset are presented in
Table 3. The narrative does not explicitly contain an
answer for the second question. We call these types
the implicit-answer questions; they require extra
common-sense inference to produce a plausible an-
swer. Questions are categorised as implicit-answer
if at least 2 out of 3 human annotators indicate
that the answer cannot be explicitly found in the
narrative. The annotators indicated as much and,
based on their commonsense knowledge, provided
plausible answers.

3.3 Validating Answers

To ensure an even higher-quality test set, we con-
ducted another round of crowdsourcing to validate
the answers by the first set of crowd-workers on the
CATERS portion (464 questions). This validation
interface is show in Figure 1b. It also serves as
the base design for our systematized human eval-
uation. Annotators are presented a story, a related
question, and the three answers that were collected
as described in Section 3.2.

Three new annotators then rated two aspects of
each answer:
(1) Grammaticality – Workers are asked to rate
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(a) Task 1: Answer collection (b) Task 2: Answer validation

Figure 1: MTurk interfaces used to curate data from crowd-source workers

the grammaticality of each answer on 5-point Lik-
ert scales, ranging from ‘Strongly Ungrammatical’
to ‘Strongly Grammatical’. An answer is strongly
grammatical if it follows all the rules of English
grammar. It is grammatical if there is a mistake in
tense, number, punctuation or something minor. It
is comprehensible if there are clear grammatical
mistakes but its meaning can be inferred, and it is
then considered to be neutral on the Likert scale.

(2) Validity – Workers are asked to rate the validity
of each answer on a 5-point Likert scale. Given
the story and question, the annotators check if the
given answer ‘is valid and makes sense with the
story’. An answer is considered invalid if it does
not give a plausible reason relevant to the question
asked and instead states irrelevant information.

Annotators agreed (by majority) that 99.07% of
answers are grammatical and 95.47% of answers
are valid. On grammaticality, there is some dis-
agreement in judgment 0.7% of the time, while
there is some disagreement in judgment 1% of
the time for answer validity. We measured the
inter-rater reliability of annotators’ judgments us-
ing weighted Fleiss’s Kappa (Marasini et al., 2016)
and follow the weighting scheme used by Bastan
et al. (2020). This measure has a penalty for each
dissimilar classification based on the distance be-
tween two classes. For instance, if two annotators
classify a document as a positive, the agreement
weight is 1, but if one classifies as a positive, and
the other classifies as slightly positive the agree-

ment weight is less. The weighted agreement score
for this subset is 0.88 for grammaticality annota-
tions and 0.81 for validity annotations, indicating
that the annotations are highly reliable. More de-
tails can be found in Appendix C.2.

4 Dataset Analysis

One of the key distinguishing aspects of answering
why questions is that, in addition to understanding
explicitly stated events, they also require access to
commonsense explanations that may be external to
the narrative. We conduct some analyses to inves-
tigate the prevalence of this phenomenon: (i) We
asked annotators to judge whether the answer to a
question could be found stated explicitly or only
implicitly in the narrative and find that at least two
out of three annotators could not find explicit an-
swers in the story 28.82% of the time. (ii) We also
asked crowd-workers to indicate which sentences
helped them answer the question. Out of 91,557
collected answers, we find that 39,661 answers
were provided without an influential sentence from
the story. (iii) Last, we observe that there is only a
57.04% lexical overlap between the words used in
answers and the original narrative. This suggests
that annotators included new inferred information
in their answers, instead of just copying something
from the story. We calculate lexical overlap as the
number of common tokens in the narrative and the
answer divided by the length of the answer.

We hypothesize that questions about the first
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action in a story are more difficult to answer since
there is no prior information to provide an explicit
answer. We find that 55.03% of such questions
were judged to be implicit-answer questions by a
majority of the assigned annotators. Such questions
help test systems’ ability to infer plausible answers
rather than just copy answers from the text.

We also evaluated the diversity of the answers
for each question using simple lexical overlap. Of
the 30k questions, only 150 questions had over
90% overlap in all 3 answers, i.e., essentially, the
3 distinct annotators wrote the same answer. For
4,243 other questions, two out of three answers
had over 90% overlap. But for the vast majority
of 26,068 questions, we obtained 3 fairly diverse
answers. The average overlap between them is
26.12%. On average, the answers were 7.59 words
long.

Overall, this analysis indicates how TellMeWhy
differs from prior datasets. The answers cannot
always be retrieved or connected to other events in
the given text.

5 Benchmarking

How well do large language models answer why
questions on narratives and what are their failure
modes? To answer these, we use TellMeWhy to
benchmark the performance of multiple state-of-
the-art models and provide an analysis of their per-
formance.

Formally, given a story S as context and a related
why-question Q, models are required to generate
a plausible answer A for the question. Since the
answers are open-ended texts we compare them on
standard automatic evaluation metrics for genera-
tion but also conduct a human evaluation.

5.1 QA Models

GPT-2 (Radford et al., 2019) is a large transformer-
based language model trained on an enormous web
corpus, which has been shown to be effective on
a wide-range of language related tasks including
question answering. It was one of the first mod-
els trained on diverse data to outperform domain-
specific language models.

We used Huggingface (Wolf et al., 2020) to fine-
tune a pretrained GPT-2 model on TellMeWhy. As
input, the model receives a concatenation of the
narrative and the related question (in that order),
and the target is the answer. The input and target
are separated using the ‘[SEP]’ token. We finetune

the model with batch size 16, learning rate 1e-5 and
maximum output length 25. The model is trained
until the dev loss fails to improve for 3 iterations.
T5 (Raffel et al., 2020) is an encoder-decoder
model pre-trained on a mixture of unsupervised
and supervised tasks in a multi-task setting, where
each task is converted into a text-to-text format.
It is a text-to-text model, which means it can be
trained on arbitrary tasks involving textual input
and output. T5 has achieved the state of the art on
many natural language understanding (NLU) tasks.
More details about hyperparameter sweeps can be
found in Appendix A.

We finetuned a pretrained T5-base model from
HuggingFace (Wolf et al., 2020) on TellMeWhy.
Since it is a natural language generation task related
to a story, we use the SQuAD format specified in
Appendix D.15 of Raffel et al. (2020) to format
our inputs. Our narrative serves as the ‘context’
and the why-question is used as the ‘question’ in
the selected input format. We train the model with
batch size 16, learning rate 5e-5, maximum source
length 75 and maximum answer length 30. The
model is trained until the dev loss fails to improve
for 3 iterations.
UnifiedQA (Khashabi et al., 2020) is a single pre-
trained model that performs well across 20 different
question answering datasets. It is built on top of a
T5 model and simplifies finetuning by unifying the
various formats used by T5. Its ability to perform
both extractive and abstractive QA tasks makes it
a suitable candidate for calibrating this task. A
pretrained version of this model is available via
HuggingFace (Wolf et al., 2020) under the name
“allenai/unifiedqa-t5-base". The input format for
this model is simple, just requiring the question and
the narrative to be separated by a newline symbol.
We train this model using learning rate 1e-5 (same
as the original paper) and retain other hyperparam-
eters from finetuning T5 as described above.

5.2 Automatic Evaluation

We evaluate all of the above models on both the
test set and the hidden test set (questions from
CATERS data). For automatic evaluation, we re-
port BLEU (Papineni et al., 2002), ROUGE-L (Lin,
2004), BLEURT (Sellam et al., 2020) scores us-
ing the bluert-base-128 checkpoint, and BertScore
(Zhang* et al., 2020) using the default roberta-large
checkpoint. These numbers are presented in Ta-
ble 4.
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Evaluated on Model BLEU RG-L F1 BLEURT BertScore

Full Test Set

GPT-2-OO 0.04 0.07 -1.30 0.08
GPT2-FT 1.3 0.13 -0.96 0.11

T5-OO 5.67 0.13 -1.20 0.14
T5-FT 13.33 0.24 -0.70 0.34

UnifiedQA 13.03 0.25 -0.71 0.30

Implicit-Answer Qs
in Test Set

GPT-2-OO 0.07 0.06 -1.30 0.05
GPT2-FT 1.39 0.12 -1.02 0.09

T5-OO 3.12 0.11 -1.24 0.12
T5-FT 7.27 0.17 -0.89 0.27

UnifiedQA 6.63 0.18 -0.89 0.24

Table 4: Performance of models on the full test set and on implicit-answer questions in the test set using automated
metrics. RG-L denotes ROUGE-L. The OO suffix denotes the vanilla version of the model while the FT version
denotes the finetuned version.

We select one human answer at a time and (us-
ing SacreBLEU (Post, 2018)) calculate the BLEU
scores for model output with all three references,
and select the maximum. Since BLEURT is a
sentence level metric, to calculate the reported
BLEURT, we average all the (output, reference)
scores to obtain a corpus score for each reference.
We then select the maximum BLEURT corpus
score over all 3 human references. It is important to
note that BLEURT was proposed as a metric for rel-
ative comparison, not absolute calibration. We also
report BertScore F13 (Zhang* et al., 2020) as an-
other semantic automatic evaluation metric. We re-
port a max BertScore in the same way as BLEURT
and BLEU: by taking the maximum score of the
model output with each human answer taken one
at a time.

Vanilla model results are obtained by loading an
existing pretrained model from HuggingFace and
running inference with the input formats described
above. They are not trained on TellMeWhy. We
see that vanilla pretrained models are unable to per-
form this task at all. Finetuning a pretrained model
results in improvements since it better models the
relationship between the story, the question, and
a possible answer. On the full test set, both the
finetuned T5 and the UnifiedQA model perform
the best on our task. However, the overall perfor-
mance of these models remains poor. In Table 4,
we also see that models perform a lot worse on
implicit-answer questions.

3idf and rescale_with_baseline flags are set to True.

5.3 Human Evaluation

For open-ended text generation tasks like answer-
ing why-questions, the absence of an automatic
evaluation that correlates well with human judg-
ments is a major challenge (Chen et al., 2019; Ma
et al., 2019; Caglayan et al., 2020; Howcroft et al.,
2020).

We conduct a human evaluation on the hidden
test set with a standardized interface to compare
different models. We want to measure whether a
model produces coherent and grammatical output
and more importantly, whether the produced output
is a valid answer for the given question. Our valida-
tion HIT subsection 3.3 showed a way to conduct
human evaluation of answers provided by other
crowd-workers. We modified this HIT design to
evaluate generated answers from models. For a
given question, we present just one answer from
a single model and then ask the crowd-workers to
assess its grammaticality and validity.

For each story, question, and a model’s answer,
we ask 3 distinct annotators to provide judgments
about grammaticality and validity. This serves as
the human evaluation interface for our task. A
sample HIT can be seen in Figure 1b.

We perform human evaluation of the fine-tuned
versions of T5 and UnifiedQA, the two models
that performed the best on automatic metrics. We
evaluate the outputs of these models on the hidden
test set. We calculated inter-annotator agreement
for these judgments using the method described
in subsection 3.3, and they were >80%, indicat-
ing high agreement. The models mostly produce
grammatical answers, but fail to adequately ex-



603

0

25

50

75

100

Grammaticality IA-Grammaticality Validity IA-Validity

T5 UnifiedQA Human

Figure 2: Human evaluated performance of answers.
The IA prefix denotes performance on implicit-answer
questions in the data.

plain many actions in the story. Figure 2 shows
that, under human evaluation, models significantly
under-perform humans at producing valid answers
to why-questions. Models fare worse when the an-
swers to the questions are external to the narrative.

Human evaluation is slow and expensive, so we
performed a correlation analysis between the au-
tomated metrics and human judgments to gauge
usefulness of popular automated metrics. Fig-
ure 3 shows that the embedding-based metrics are
only weakly correlated with human validity judg-
ments, while lexical metrics did even worse. None
of the automatic metrics show a strong correla-
tion, confirming our earlier assertion that human
evaluation is the most appropriate way to analyze
model performance on this open-ended generation
task. BertScore has at least a moderate correla-
tion with human validity judgments, and is there-
fore arguably the most useful for rapidly evaluating
models during development. BLEU and BertScore
improve their correlation with human judgments
slightly as the number of human reference answers
is increased; however, the increase is somewhat
disappointing. Inexplicably, BLEURT’s correla-
tion actually decreases slightly with increasing hu-
man references, raising additional questions with
respect to utilizing this metric. One possibility is
that, by using an increasing number of references
and taking the maximum score, BLEURT might
overestimate the quality of answers as compared to
human judgments.

Our human judgment interface can serve as a
standard human evaluation of any future model’s
performance on our dataset, and we will make code
available for automatically generating HITs for
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Figure 3: Correlation of automatic metrics with human
validity judgment of model outputs. For each question,
we have 3 crowdsourced human answers available to
us. We selected a number of human answers randomly
(X-axis) and calculated scores for each model output
across different automatic metrics. Finally, we ob-
tained Spearman’s correlation (Y-axis) of these scores
in comparison with Likert judgments provided by an-
notators for each human answer.

evaluating the outputs of any model. This stan-
dardized evaluation approach is similar in spirit to
GENIE (Khashabi et al., 2021), a contemporary
work that also presents an evaluation framework
for a large set of generation tasks.

5.4 Analysis

In order to better understand when models are gen-
erating valid answers, we analyzed the correlation
between model performance and a proxy for check-
ing when human provided answers were in the in-
put narrative. To this end, we aligned ROUGE F-1
scores with the lexical overlap of human answers
and the story text. Figure 4a shows how ROUGE
F-1 scores for our models increases as the lexical
overlap also increases between the answers and
corresponding story. The same is presented for
BLEU in Figure 4b. Perhaps not surprisingly, this
empirically shows that models do best when the
answer is in the text, and suffer greatly when it
is not (implicit answers). This further illustrates
the value of TellMeWhy, as well as its challenge,
that standard models are largely incapable of per-
forming the reasoning needed to produce plausible
answers that are assumed common knowledge by
the story writer.

Table 5 also shows that the best performing
models mainly learnt to copy complete or parts
from the narrative to generate answers, treating this
largely as an extractive task. On average, more than
three-fourths of T5 and UnifiedQA’s answers are
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(a) ROUGE F-1 trend

(b) BLEU trend

Figure 4: Model performance on different metrics with
change in lexical overlap between a question’s answers
(as provided by humans) and the related narrative.

System Copied ans Avg overlap

Vanilla GPT2 0% 23.09%
Finetuned GPT2 0% 28.94%

Vanilla T5 5.50% 53.71%
Finetuned T5 59.44% 85.91%
UnifiedQA 27.44% 76.51%

Human Answers 35.03% 57.04%

Table 5: Overlap between answers and the original nar-
rative. This indicate how much original text models
produce.

based on words in the narrative text. T5 is worse
compared to UnifiedQA in terms of copying, with
a much larger fraction of questions (59.44% vs
27.44) with high lexical overlap (i.e. lexical over-
lap > 90%). In comparison, the average narrative
overlap for human answers is much lower than the
best-performing models, since people are able to
infer answers that are not in the text. If the mod-
els are to successfully answer why questions, they
need to look beyond copying texts.

6 Conclusion

This paper introduces a large, novel QA dataset,
TellMeWhy, containing questions about why char-
acters in a narrative perform their depicted actions.
This challenge problem complements the variety
of existing QA datasets, addressing the scarcity of
“why” questions. Using both automated metrics
and human evaluation, we show that existing deep-
learned language models perform quite poorly at
answering such questions. We also illustrate the
uniqueness of this challenge where the answer is
sometimes in the story itself, but often not, thus
requiring a richer model that can draw on common-
sense knowledge or external reasoning abilities.

We believe that progress on answering such ques-
tions requires new systems that can reason about ac-
tions, plans, and goals in order to achieve a deeper
understanding of narrative text, as was initially ar-
gued over four decades ago (Schank and Abelson,
1977). We hope that TellMeWhy encourages fur-
ther research in this area.

Acknowledgement

This material is based on research that is sup-
ported in part by the Air Force Research Labo-
ratory (AFRL), DARPA, for the KAIROS program
under agreement number FA8750-19-2-1003 and
in part by the National Science Foundation under
the award IIS #2007290. The authors would like to
thank the anonymous reviewers and the area chair
for their feedback on this work. We would also
like to thank Horace Liu for helping us run some
experiments for the camera ready version.

References
Loïc Barrault, Magdalena Biesialska, Ondřej Bojar,
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Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom,
Chris Dyer, Karl Moritz Hermann, Gábor Melis, and
Edward Grefenstette. 2018. The NarrativeQA read-
ing comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317–
328.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
785–794, Copenhagen, Denmark. Association for
Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Qingsong Ma, Johnny Wei, Ondřej Bojar, and Yvette
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A Hyperparameter Sweep

We describe the hyperparameters and the range
of values we experimented with. The best hyper-
parameters are chosen on the basis of model loss
on the validation set. For both GPT-2 (Radford
et al., 2019) and T5 (Raffel et al., 2020), we con-
duct guided sweeps for learning rate, batch size
and epochs. We experiment with 1e-5, 5e-5 and
1e-4 for learning rate. Batch sizes of 8, 16 and
32 were tried. Models were trained for 20, 30 and
50 epochs, and we found that models converged
between 30 and 50 epochs. In the case of T5, we
also experiment with different lengths of inputs and
target outputs. We trained models with maximum
source lengths of 50, 60 and 75 tokens. For target
length, we experimented with 15, 25 and 30 tokens.
The maximum output length is treated as a hyper-
parameter for GPT-2, and we tried 15, 20, 25 and
30 tokens.

B Dataset Creation

The method described in subsection 3.1 creates
489 questions from the 200 stories in the CATERS
dataset – 36 stories with 1 question, 63 with 2,
59 with 3, 30 with 4, and 6 with 5. We collect
3 human answers for all questions. For ROCSto-
ries, this creates 113,213 questions from 45,496
stories – 7,555 stories with 1 question, 13,431 with
2, 13,349 with 3, 7356 with 4, and 1865 with 5. We
randomly select 32,165 questions from stories with
3 or 5 questions, for ease and efficiency of collect-
ing annotations. This is the smallest number for
which we could gather 3 answers for at least 30,000
questions, which is a reasonable-sized dataset for
training or fine-tuning large NLP models.

C Mechanical Turk tasks

C.1 Instructions

We present the instructions given to annotators for
both the tasks in Figure 5. Annotators were given
clear direction for both tasks. We restricted both
tasks to master turkers. The second task (answer
validity) was also used a sanity check for answers
collected in the first task (answer collection). Using
results of the answer validity task (mentioned in
subsection 3.3), we see that humans provided high
quality answers in the answer curation task.

C.2 Inter-annotator agreement
We use weighted Fleiss Kappa to calculate inter-
rater reliability. The weights between different
classes are shown in Table 6 where negative,
slightly negative, neutral, slightly positive, and pos-
itive classes are shown with -2, -1, 0, 1, and 2. We
follow the setup used in Bastan et al. (2020) for a
similar multi-class labeling task.

-2 -1 0 1 2

-2 1 cos π/8 cos π/4 cos 3π/8 0
-1 cos π/8 1 cos π/8 cos π/4 cos 3π/8
0 cos π/4 cos π/8 1 cos π/8 cos π/4
1 cos 3π/8 cos π/4 cos π/8 1 cos π/8
2 0 cos 3π/8 cos π/4 cos π/8 1

Table 6: Inter class weights used for computing inter
annotated agreement
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(a) Instructions for answer collection task

(b) Instructions for answer validation task

Figure 5: Instructions for MTurk tasks


