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Abstract

Cross-language entity linking grounds men-
tions written in several languages to a mono-
lingual knowledge base. We use a simple neu-
ral ranking architecture for this task that uses
multilingual BERT representations of both the
mention and the context as input, so as to
explore the ability of a transformer model to
perform well on this task. We find that the
multilingual ability of BERT leads to good
performance in monolingual and multilingual
settings. Furthermore, we explore zero-shot
language transfer and find surprisingly robust
performance. We conduct several analyses
to identify the sources of performance degra-
dation in the zero-shot setting. Results indi-
cate that while multilingual transformer mod-
els transfer well between languages, issues re-
main in disambiguating similar entities unseen
in training.

1 Introduction

Entity linking grounds named entities mentioned
in text, such as Chancellor, to a reference knowl-
edge base (KB) or ontology entry, such as Angela
Merkel. Historically, entity linking work focused
on English documents and knowledge bases, but
subsequent work expanded the task to consider
multiple languages (McNamee et al., 2011). In
cross-language entity linking, entities in a set of
multilingual documents is linked to a KB in a sin-
gle language. The TAC KBP shared task (Ji et al.,
2015), for example, links mentions in Chinese and
Spanish documents with an English KB. Success
in building cross-language linking systems can be
helpful in tasks such as discovering all documents
relevant to an entity, regardless of language.

Successfully linking a mention across languages
requires adapting several common entity linking
components to the cross-language setting. Con-
sider the example in Figure 1, which contains the

Spanish mention Oficina de la Presidencia, a refer-
ence to the entity President of Mexico in an English
KB. To link the mention to the relevant entity we
must compare the mention text and its surround-
ing textual context in Spanish to the English entity
name and entity description, as well as compare
the mention and entity type. Previous work has
focused on transliteration or translation approaches
for name and context (McNamee et al., 2011; Pan
et al., 2015), or leveraging large amounts of cross-
language information (Tsai and Roth, 2016) and
multilingual embeddings (Upadhyay et al., 2018).

Since this work emerged, there have been ma-
jor advances in multilingual NLP (Wu and Dredze,
2019; Pires et al., 2019). Mainstream approaches
to multilingual learning now use multilingual en-
coders, trained on raw text from multiple lan-
guages (Devlin et al., 2019). These models, such
as multilingual BERT or XMLR (Conneau et al.,
2019), have achieved impressive results on a range
of multilingual NLP tasks, including part of speech
tagging (Tsai et al., 2019), parsing (Wang et al.,
2019; Kondratyuk and Straka, 2019), and seman-
tic similarity (Lo and Simard, 2019; Reimers and
Gurevych, 2019).

We propose to leverage text representations with
multilingual BERT (Devlin et al., 2019) for cross-
language entity linking to handle the mention text,
entity name, mention context and entity descrip-
tion1. We use a neural ranking objective and a deep
learning model to combine these representations,
along with a one-hot embedding for the entity and
mention type, to produce a cross-language linker.
We use this ranking architecture to highlight the
ability of mBERT to perform on this task without
a more complex architecture. Although previous
work tends to use multilingual encoders for one lan-
guage at a time, e.g., train a Spanish NER system

1Our code is available at https://github.com/
elliotschu/crosslingual-el

https://github.com/elliotschu/crosslingual-el
https://github.com/elliotschu/crosslingual-el
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with mBERT, we ask: can our model effectively
link entities across languages? We find that, some-
what surprisingly, our approach does exceedingly
well; scores are comparable to previously reported
best results that are trained on data not available to
our model (they have access to non-English names).
Next, we consider a multilingual setting, in which
a single system is simultaneously trained to link
mentions in multiple languages to an English KB.
Previous work (Upadhyay et al., 2018) has shown
that multilingual models can perform robustly on
cross-language entity linking. Again, we find that,
surprisingly, a model trained on multiple languages
at once does about as well, or in some cases better,
than the same model trained separately on every
language.

These encouraging results lead us to explore the
challenging task of zero-shot training, in which we
train a model to link single language documents
(e.g., English) to an English KB, but apply it to un-
seen languages (e.g., Chinese) documents. While
the resulting model certainly does worse on a lan-
guage that is unobserved, the reduction in perfor-
mance is remarkably small. This result leads us to
ask: 1) Why do zero-shot entity linking models do
so well? 2) What information is needed to allow
zero-shot models to perform as well as multilin-
gually trained models? Using a series of ablation
experiments we find that correctly comparing the
mention text and entity name is the most important
component of an entity linking model. Therefore,
we propose an auxiliary pre-training objective to
improve zero-shot performance. However, we find
that this text-focused approach does not improve
performance significantly. Rather, we find that
much of the remaining loss comes not from the
language transfer, but from mismatches of entities
mentioned across the datasets. This suggests that
future work on the remaining challenges in zero-
shot entity linking should focus on topic adaptation,
instead of improvements in cross-lingual represen-
tations.

In summary, this paper uses a simple ranker to
explore effective cross-language entity linking with
multiple languages. We demonstrate its effective-
ness at zero-shot linking, evaluate a pre-training
objective to improve zero-shot transfer, and lay out
guidelines to inform future research on zero-shot
linking.

2 Cross-Language Entity Linking

A long line of work on entity linking has developed
standard models to link textual mentions to entities
in a KB (Dredze et al., 2010; Durrett and Klein,
2014; Gupta et al., 2017). The models in this area
have served as the basis for developing multilin-
gual and cross-language entity linking systems, and
they inform our own model development. We de-
fine multilingual to mean a model that can operate
on mentions from more than one language at the
same time (link both English and Chinese mentions
to an ontology) and cross-language to refer to link-
ing mentions in one language (e.g., Spanish) to an
ontology in another (e.g., English).

A common approach to cross-language entity
linking is to use transliteration data to transform
non-English mentions into English strings. Early
transliteration work (McNamee et al., 2011) uses
a transliteration corpus to train a support vector
machine ranker, which uses common entity link-
ing features such as name and context matching,
co-occurring entities, and an indicator for NIL (no
matching candidate.) Pan et al. (2017) uses translit-
eration data for a set of 282 languages to generate
all possible combinations of mentions. A related
approach is to use machine translation to translate
a document into English, and then use an English
entity linker. However, an MT system may not be
available, and it further needs a specialized name
module to properly translate entity names. Several
systems from the TAC 2015 KBP Entity Discovery
and Linking task (Ji et al., 2015) translate non-
English documents into English, then use standard
Entity Linking systems.

Cross-language Wikification is a closely related
task, which uses links within Wikipedia, combined
with equivalent pages in other languages to train
an entity linker with Wikipedia as the KB. This ap-
proach typically uses English Wikipedia as the KB,
though it could use a KB in other languages. Tsai
and Roth (2016) use a two-step linking approach,
first using an IR-based triage system (which we
also use). Second, they use a candidate ranking
step based on a linear ranking SVM model with
several features, including contextual, document,
and coreference.

The most closely related work to our own is that
of Upadhyay et al. (2018), who use multilingual
embeddings as the basis for their representations,
and Wikipedia as training data. They use Fast-
Text (Bojanowski et al., 2017; Smith et al., 2017)
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... el jefe de la Oficina de
la Presidencia (m.01p1k,
ORG), Aurelio Nuño y ...

name President of Mex-
ico (m.01p1k)

desc. The President of
the United ...

type government office

Figure 1: Example Spanish mention Oficina de la Presidencia, which is a link to entity President of Mexico, and
the architecture for our neural ranker, using that example and a negatively-sampled entity The Office.

to align embeddings across languages, and a small
dictionary to identify alignments. They pass these
representations through a convolutional neural net-
work to create a mention representation. They in
turn use the other mention representations in the
document to create a contextual representation, and
also use a separate type vector. They train their
network on hyperlinks from multiple languages
in Wikipedia. Before the ranking step, they use
a triage system similar to that of Tsai and Roth
(2016). They evaluate on several entity linking
datasets, including TAC. As their system only uses
English Wikipedia as the KB, they set all mentions
that link to a entity outside of Wikipedia to NIL;
this results in a different evaluation setup than we
need for our work. Their results show that train-
ing on all languages, instead of monolingual or
bilingual training, generally performs best. For
zero-shot entity linking, they train on English lan-
guage Wikipedia. They find that their performance
is heavily dependent on a prior probability derived
from the triage system – otherwise, there is a large
drop in performance.

Rijhwani et al. (2019) investigate zero-shot en-
tity linking on low-resource languages. They pro-
pose a model consisting of a similarity model us-
ing encoders separately trained on high-resource
language mentions, related to the low-resource lan-
guage, and English entities. They then use the
high-resource language as a pivot language for
low resource language mentions, allowing them to
score mentions in an unseen language. Raiman and
Raiman (2018) consider multilingual entity linking,
in which they use a KB in the same language as the
mention, but exploit multilingual transfer for the
model’s type system. They formulate a type system

as a mixed integer problem, which they use to learn
a type system from knowledge graph relations.

3 Entity Linking Model

We propose a cross-language entity linker based
on a pointwise neural ranker that scores a mention
m and entity e pair, adapting from an architecture
discussed in Dehghani et al. (2017). Unlike a classi-
fication architecture, a ranking architecture is able
to score previously unseen entities. As is standard,
we use a two stage system: triage followed by rank-
ing; this reduces the number of entities that must
be ranked, and results in better performance. Our
system is shown in Figure 1. We select this archi-
tecture so as to focus on the ability of multilingual
transformers to handle this task.

The ranker takes as input information about the
mention and entity: 1) the mention string and en-
tity name; 2) the context of the mention and en-
tity description; and 3) the types of the mention
and entity. We represent the mention string, en-
tity name, mention context and entity description
using a pre-trained multilingual deep transformer
encoder (Devlin et al., 2019), while the mention
and entity type are represented as one-hot embed-
dings. We describe the multilingual representation,
model architecture and training procedure.

3.1 Multilingual Representations

We use multilingual BERT (mBERT) (Devlin et al.,
2019)2, which has been shown to create effective
multilingual representations for downstream NLP
tasks (Wu and Dredze, 2019). Consider the Spanish
example in Figure 1. First, we create a represen-

2We found that XLM-R (Conneau et al., 2019) performed
similarly and only report results on mBERT.



586

en
NN 0.195 0.463 0.550 0.502
Mono 0.586 0.703 0.619 0.658
MultiDS 0.509 0.873 0.478 0.618
Multi 0.602 0.691 0.626 0.655
MultiOr 0.654 0.773 0.641 0.703
Tri — 0.736 0.738 0.737

zh

NN 0.207 0.889 0.449 0.597
Mono 0.709 0.867 0.728 0.791
MultiDS 0.733 0.867 0.746 0.801
Multi 0.730 0.862 0.735 0.793
MultiOr 0.828 0.950 0.812 0.876
Tri — 0.854 0.809 0.831

es

NN 0.214 0.508 0.552 0.529
Mono 0.595 0.921 0.587 0.714
MultiDS 0.604 0.918 0.590 0.718
Multi 0.652 0.918 0.625 0.744
MultiOr 0.691 0.936 0.655 0.770
Tri — 0.804 0.804 0.804

Model micro prec. recall F1

ar

NN 0.171 0.414 0.602 0.491
Mono 0.660 0.683 0.816 0.743
Multi 0.637 0.661 0.778 0.715

fa

NN 0.330 0.694 0.734 0.714
Mono 0.702 0.780 0.881 0.827
Multi 0.762 0.817 0.919 0.863

ko

NN 0.269 0.816 0.597 0.690
Mono 0.752 0.832 0.861 0.846
Multi 0.805 0.850 0.902 0.875

ru

NN 0.358 0.841 0.529 0.649
Mono 0.694 0.834 0.843 0.837
Multi 0.740 0.865 0.876 0.871

Table 1: Micro-avg. precision, precision, recall, and F1
for TAC and Wiki datasets. In a majority of languages,
the Multi model outperforms the Mono model.

tation of the mention text ms, Oficina de la Pres-
idencia, by creating an mBERT representation of
the entire sentence, selecting the lowest layer rep-
resentations of each of the mention’s sub-words,3

and form a single representation using max pool-
ing. We create a representation of the entity name
es, President of Mexico in the same way, although
there is no surrounding context as in a sentence.

For the mention context mc we select the sur-
rounding sentences up to BERT’s 512 sub-word

3We experimented with several BERT layers and found
this to be the best performing on the TAC development set.

limit, positioning the mention in the middle, and
pass the text to BERT, using the resulting top layer
of the [CLS] token. We create a similar represen-
tation for the entity context ec from the definition
or other text in the KB, using the first 512 subword
tokens from that description. For the mention type
mt and entity type et we create one-hot embed-
dings, omitting ones that do not occur more than
100 times in the training set.

3.2 Architecture
We feed the representations of the name (ms and
es), context (mc, ec) and type (mt, et) into a neural
ranker. Each of these three pairs is passed into dis-
tinct multilayer perceptrons (MLPs), which each
produce an embedding that captures the similar-
ity between each type of information. For exam-
ple, we input ms and es into a text-specific hidden
layer, which produces a combined representation
rs. The same is done for the context and type rep-
resentations, producing representations rc and rt,
respectively. These three representations are then
fed into a final MLP, which produces a final score
([−1, 1].) The entire network is jointly trained with
the ADAM optimizer and a ranking objective. We
apply dropout at every layer, use ReLu as the in-
termediate activation function, and Tanh for the
final layer. While additional features such as entity
salience are likely useful for this task, we chose to
restrict our model as much as possible to use only
text features. This focuses on mBERT’s multilin-
gual ability, and allows for easier adaptation to new
KBs than with KB-specific features.

3.3 Model Training
We learn the parameters θ of our scoring function
S using a pairwise approach; this allows us to train
our model without annotated scores. Our ranker
scores a mention m and positive entity e+ pair, and
separately scores the same mention paired with n
sampled negative entities e−. We apply the hinge
loss between our correct entity and the highest scor-
ing negative entity,

L(θ) = max{0, ε− (S({m, e+}; θ)−
max{S({m, e0−}; θ) . . . S({m, cn−}; θ)}}

We jointly train all components of the network, in-
cluding the positive and negative portions of the net-
work. The major benefit of this pairwise approach
is that it does not rely on annotated scores, but in-
stead uses negative sampling to train the ranker. We
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tested random combinations of hidden layer sizes
and dropout rates to find the best configuration (see
Appendix A for parameter selection details).

4 Datasets

We conduct our evaluation on two cross-language
entity linking datasets. We predict NILs by ap-
plying a threshold; mentions where all entities are
below a given threshold are marked as NIL. We
evaluate all models using the evaluation script pro-
vided by Ji et al. (2015), which reports Precision,
Recall, F1, and Micro-averaged precision. For im-
plementation details, please see the appendix.

TAC. The 2015 TAC KBP Entity Linking
dataset (Ji et al., 2015) consists of newswire and dis-
cussion form posts in English, Spanish, and Man-
darin Chinese linked to an English KB. We use
their evaluation set, and provide a comparison to
the numbers noted in Ji et al. (2015). The refer-
enced systems had access to non-English language
KB text which we exclude, and thus are a goal
rather than a baseline. Later papers, such as Upad-
hyay et al. (2018), also use this dataset but only
for evaluation, instead training on Wikipedia and
treating mentions that are linked to TAC entities
without Wikipedia links as NIL. Therefore, we can-
not compare our evaluation to this work.

Wiki. We created a cross-language entity link-
ing dataset from Wikipedia links (Pan et al., 2017)
that includes Korean, Farsi, Arabic, and Russian.
A preprocessed version of Wikipedia has links in
non-English Wikipedia pages to other non-English
pages annotated with that link and an English page
link if a corresponding page was available. From
these annotations we created a dataset consisting of
non-English mentions linked to English-language
entities (Wikipedia page) using English Wikipedia
as the KB. We consider this to be silver-standard
data because–unlike the TAC dataset–the annota-
tions have not been reviewed by annotators. Since
we do not have a separate development set for this
dataset, we apply the hyperparameters selected on
TAC development data to this dataset.

Triage. We assume gold-standard mention
boundaries in our analysis. We use the triage sys-
tem of Upadhyay et al. (2018), which is largely
based on work in Tsai and Roth (2016). This allows
us to score a smaller set of entities for each mention
as opposed to the entire KB. For a give mention m,
a triage system will provide a set of k candidate
entities e1 . . . ek. The system uses Wikipedia cross-

links to generate a prior probability Pprior(ei|m)
by estimating counts from those mentions. This
prior is used to provide the top k English Wikipedia
page titles for each mention (k = 10 for TAC and
k = 100 for Wiki).

5 Model Evaluation

We consider several different training and evalu-
ation settings to explore the multilingual ability
of transformers on this task. Recent studies sug-
gest that multilingual models can achieve simi-
lar or even better performance on cross-language
entity linking (Upadhyay et al., 2018). Other
work (Mueller et al., 2020) has shown that this
is not always the case. Therefore, we begin by ask-
ing: does our linker do better when trained on all
languages (multilingual cross-language) or trained
separately on each individual language (monolin-
gual cross-language)?

We train our model on each of the 7 individ-
ual languages in the two datasets (noted as Mono).
Next, we train a single model for each dataset (3
languages in TAC, 4 in Wiki, each noted as Multi).
Mono and Multi share the exact same architecture -
there are no multilingual adjustments made, and the
model contains no language-specific features. As
Multi uses data available in all languages and thus
has more training data than Mono, we include a
model that is trained on a randomly-sampled subset
of the multilingual training data that set to match
the training size of Mono (MultiDS) . For TAC
Multi models, we also report results using a can-
didate oracle instead of triage (Multi+Or), where
the correct entity is always added to the candidate
list. For all Mono and Multi-based models we re-
port the average of three runs. The metric-specific
standard deviations were all small, with all but one
at or below 0.017. We note the best performing ar-
chitecture from (Ji et al., 2015) as Tri, again noting
that those systems have access to non-English text.
We also evaluate a simple nearest neighbor model
(noted as NN). This model scores each mention-
entity pair using the cosine similarity between the
mention name representation ms and the entity rep-
resentation es, and selects the highest-scoring pair.

Table 1 shows that for TAC there is a small dif-
ference between the Mono and Multi models. For
Wiki the difference is often larger. Multi often
does better than Mono, suggesting that additional
training data is helpful specifically for languages
(e.g., Farsi) with smaller amounts of data. Over-
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Evaluation Language
en zh es

Tr
ai

ni
ng

Se
tti

ng
Multi 0.66 0.79 0.74

en .00 −.03 −.02
zh −.05 .00 −.03
es −.06 −.06 −.03

ar fa ko ru

Multi 0.72 0.86 0.88 0.87

ar +.03 −.08 −.08 −.05
fa −.14 −.04 −.16 −.10
ko −.20 −.13 −.03 −.09
ru −.20 −.08 −.13 −.03

Table 2: ∆F1 for each single-language trained model,
compared to a multilingually-trained model, for each
evaluation language. Each column is an evaluated lan-
guage, and each row is a training setting. While mod-
els trained on the target language perform best, many
monolingually-trained models perform well on unseen
languages.

all, these results are encouraging as they suggest
that a single trained model for our system can be
used for cross-language linking for multiple lan-
guages. This can reduce the complexity associated
with developing, deploying and maintaining mul-
tiple models in a multilingual environment. For
some models, the Multi improvement may be due
to additional data available, as shown in the dif-
ference in performance between Multi and Mul-
tiDS (e.g., Spanish F1 Multi is +.026 over Mul-
tiDS). However, the small difference in perfor-
mance shows that even by providing additional out-
of-language training data, reasonable performance
can be achieved even with reduced in-language
training.

6 Zero-shot Language Transfer

Encouraged by the results on multilingual training,
we explore performance in a zero-shot setting. How
does a model trained on a single language perform
when applied to an unseen language? We consider
all pairs of languages, i.e., train on each language
and evaluate on all others in the same dataset4.

Table 2 shows the change in F1 for
monolingually-trained models compared to

4Work in Cross-language entity linking (Upadhyay et al.,
2018; Tsai and Roth, 2016) has done similar evaluations, but
focus on using external large data sources (Wikipedia) to train
their models.

en zh es
avg F1 avg F1 avg F1

name 0.59 0.70 0.45 0.71 0.42 0.73

+cont +.12 +.05 +.22 +.05 +.14 +.05
+type +.03 +.01 +.10 −.02 +.03 −.03
all +.12 +.05 +.26 +.08 +.19 +.06

Table 3: English-only trained ∆micro-average and ∆F1
when using a subset of linker features, compared to
the name-only model for each language in the Devel-
opment set. The name component of the model has the
highest performance impact, but context also leads to
better performance in almost all cases.

BERT Lang micro prec. recall F1

en en −.07 +.17 −.13 −.03
en es −.01 .00 −.02 −.01
ar ar −.08 −.08 −.03 −.06
ar fa −.09 −.05 −.08 −.06

Table 4: Change in performance for monolingually-
trained models using monolingually-trained BERT
models, compared to monolingually-trained models us-
ing mBERT.

multilingual models. While zero-shot perfor-
mance does worse than a model with access to
within-language training data, the degradation is
surprisingly small: often less than 0.1 F1. For
example, a model trained on all 3 TAC languages
achieves an F1 of 0.79 on Chinese, but if only
trained on English, achieves an F1 of 0.76. This
pattern is consistent across both models trained
on related languages (Arabic → Farsi, loss of
0.08 F1), and on unrelated languages (Russian→
Korean, loss of 0.13 F1).

Analysis. Why does zero-shot language transfer
do so well for cross-language entity linking? What
challenges remain to eliminate the degradation in
performance from zero-shot transfer?

We answer these questions by exploring the im-
portance of each component of our cross-language
ranking system: mention string, context, and type.
We conduct ablation experiments investigating the
performance loss from removing these informa-
tion sources. We then evaluate each model in an
English-trained zero-shot setting. First, we train a
zero shot model using only the mention text and
entity name. We then compare the performance
change that results from adding the context, the
type, and both context and type (all features).

Table 3 shows that comparing the name and men-
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tion text alone accounts for most of the model’s
performance, a sensible result given that most of
the task involves matching entity names. We find
that context accounts for most of the remaining per-
formance, with type information having a marginal
effect. This highlights the importance of the multi-
lingual encoder, since both name and context rely
on effective multilingual representations.

Separately, how does using a multilingual trans-
former model, such as mBERT, affect the perfor-
mance of our ranker? First, it is possible that using
a monolingual linker with a BERT model trained
only on the target language would improve perfor-
mance, since such a model does not need to repre-
sent several languages as the same time. As shown
in Table 4, model performance for these settings
is largely worse for English-only and Arabic-only
(Safaya et al., 2020) models when compared to
using mBERT, with the exception that precision in-
creases significantly for English. Second, perhaps
a monolingual linker with a BERT model trained
only on a related language – e.g., English BERT
for Spanish, Arabic BERT for Farsi – would pro-
duce acceptable results. Again, as shown in Table
4, the performance is most often worse, illustrating
that mBERT is an important aspect of the linker’s
performance.

7 Improving Zero-shot Transfer

7.1 Name Matching Objective

Given the importance of matching the mention
string with the entity name, will improving this
component enhance zero-shot transfer? While ob-
taining within-language entity linking data isn’t
possible in a zero-shot setting, we can use pairs of
translated names, which are often more easily avail-
able (Irvine et al., 2010; Peng et al., 2015). Since
Chinese performance suffers the most zero-shot
performance reduction when compared to the mul-
tilingual setting, we use Chinese English name pair
data (Huang, 2005) to support an auxiliary training
objective. An example name pair: “巴尔的摩－俄
亥俄铁路公司” and Baltimore & Ohio Railroad.

We augment model training as follows. For each
update in a mini-batch, we first calculate the loss
of the subset of the model that scores the men-
tion string and entity name on a randomly selected
pair k = 25, 000 of the Chinese/English name pair
corpus. We score the Chinese name z and the cor-
rectly matched English name e+ pair, and sepa-
rately score the same Chinese name paired with n

negatively sampled English names e−. We create
representations for both z and e using the method
described for names in §3.1 which are passed to
the name-only hidden layer. We add a matching-
specific hidden layer, which produces a score. We
apply the hinge loss between positive and negative
examples,

N (θ) = max{0, ε− (S({z, e+}; θ)−
max{S({z, e0−}; θ) . . . S({z, en−}; θ)}}

The name pair loss is then multiplied by a scalar
λ = 0.5 and added to the loss described in §3.3.
The resulting loss Ljoint(θ) = (λ ∗ N (θ)) + L(θ)
is jointly minimized. After training, we discard the
layer used to produce a score for name matches.
This procedure still only uses source language en-
tity linking training data, but makes use of auxiliary
resources to improve the name matching compo-
nent, the most important aspect of the model.

We analyze the resulting performance by con-
sidering modifications to our English-only training
setting, which are designed to replicate scenarios
where there is little training data available. To show
the effect of a smaller training corpus, we select
a random 50% of mentions, partitioned by docu-
ment (Rand). To show the importance of training
on frequently occurring entities, we select 50% of
mentions that are linked to the least frequent enti-
ties in the English dataset (Tail).

Table 5 shows the results on each of the three de-
velopment TAC languages compared to the Multi
model. For the Rand training set, we see a large im-
provement in Chinese micro-average and a small
one in F1, but otherwise see small reductions in
performance. In the Tail training setting, a simi-
lar pattern occurs, with the exception that Chinese
is less improved than in Rand. Overall, perfor-
mance loss remains from zero-shot transfer which
suggests that improvements need to be explored
beyond just name matching.

7.2 Entities
Another possible source of zero-shot degradation
is the lack of information on specific entities men-
tioned in the target language. For entity linking,
knowledge of the distribution over the ontology
can be very helpful in making linking decisions.
While zero-shot models have access to general do-
main text, i.e., news, they often lack text discussing
the same entities. For example, some entities that
only occur in Chinese (231 unique entities in Dev),
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en zh es en zh es
avg F1 avg F1 avg F1 avg F1 avg F1 avg F1

0.64 0.75 0.51 0.69 0.53 0.75 Rand Tail 0.53 0.66 0.45 0.66 0.42 0.70

.00 −.01 +.07 +.02 −.02 −.02 w/ Name −.02 −.02 +.02 +.01 −.01 −.01

.00 +.01 +.06 +.04 +.01 +.02 w/ Pop-Train −.02 +.04 .00 +.07 −.01 +.06
+.04 +.03 +.12 +.06 +.10 +.06 w/ Pop-All +.13 +.10 +.20 +.11 +.22 +.10

Table 5: For each proposed Name matching or popularity re-ranking model, the change in performance (∆F1 and
∆micro-average) compared to the original Rand (left) and Tail (right) models. While the name matching increased
performance somewhat, the additional of popularity was more impactful.

en zh es
avg F1 avg F1 avg F1

Multi 0.70 0.73 0.77 0.81 0.68 0.82

Rand −.04 -.02 −.26 −.12 −.15 −.07
N-1 +.01 +.02 −.04 −.02 −.08 −.03
N-1U −.24 -.14 −.49 −.22 −.38 −.19
Tail −.16 -.08 −.31 −.15 −.26 −.12

Table 6: For each of the English-only training data sub-
sets described in §7.2, ∆Micro-average and ∆F1 com-
pared to the full Multi model. Models that see even a
single example of an entity (e.g., N-1) outperform mod-
els that see a portion (e.g., Tail) or none (e.g., N-1U).

such as the frequently occurring entity Hong Kong,
have a number of similar entities and thus are more
challenging to disambiguate.

We measure this effect through several diagnos-
tic experiments where we evaluate on the develop-
ment set for all languages, but train on a reduced
amount of English training data in the following
ways: In addition to the Rand and Tail settings,
we sample a single example mention for each en-
tity (N-1), resulting in a much smaller training as
compared to those datasets. We also take N-1 and
remove all evaluation set entities (N-1U), leaving
all evaluation entities unseen at train time.

Table 6 reports results on these reduced training
sets. All languages use a −1 NIL threshold. Com-
pared to the multilingual baseline (Multi) trained
on all languages, there is a decrease in performance
in all settings. Several patterns emerge. First, the
models trained on a subset of the English training
data containing more example entities - e.g., N-1
- have much higher performance than the models
that do not. This is true even in non-English lan-
guages. Unobserved entities do poorly at test time,
suggesting that observing entities in the training
data is important.

However, a mention training example can im-
prove the performance of a mention in another lan-
guage if linked to the same entity, which suggests
that this provides the model with data-specific en-
tity information. Therefore, the remaining zero-
shot performance degradation can be largely at-
tributed not to a change in language, but to a change
in topic, i.e., what entities are commonly linked to
in the data. This may also explain why although the
name matching component is so important in zero-
shot transfer, our auxiliary training objective was
unable to fully mitigate the problem. The model
may be overfitting to observed entities, forcing the
name component to memorize specific names of
popular entities seen in the training data. This
means we are faced with a topic adaptation rather
than a language adaptation problem.

We validate this hypothesis by experimenting
with information about entity popularity. Will in-
cluding information about which entities are pop-
ular improve zero-shot transfer? We answer this
question by re-ranking the entity linker’s top ten
predicted entities using popularity information, se-
lecting the most most popular entity from the list.
Adding this feature into the model and re-training
did not lead to a significant performance gain. We
define the popularity of an entity to be the number
of times it occurred in the training data. We report
results for two popularity measures–one using the
popularity of the English subset of the data used
for training, and one using all of the training data
(including for Spanish and Chinese).

Table 5 shows that both strategies improve F1,
meaning that a missing component of zero-shot
transfer is information about which entities are fa-
vored in a specific dataset. The gain from using
popularity estimated from the training data only
is smaller than using the popularity data drawn
from all of TAC. With more accurate popularity
information, we can better mitigate loss.
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Several patterns emerge from most common cor-
rections made with the Population reranking for
Tail, included in Table 8. Many errors arise from
selecting related entities that are closely related
to the correct entity – for example, United States
Congress instead of the United States of America.
Additionally, people with similar names are often
confused (e.g. Edmund Hillary instead of Hillary
Clinton). Finally, many appear to be annotation
decisions – often both the original prediction (e.g.
Islamic State) and the corrected popular prediction
(e.g. Islamic State of Iraq and Syria) appear rea-
sonable choices. While most corrections were in
Chinese (632), some occurred in both English (419)
and Spanish (187). These errors – especially those
in English – illustrate that much of the remaining
error is in failing to adapt to unseen entities.

8 Conclusion

We demonstrate that a basic neural ranking architec-
ture for cross-language entity linking can leverage
the power of multilingual transformer representa-
tions to perform well on cross-lingual entity linking.
Further, this enables a multilingual entity linker to
achieve good performance, eliminating the need
for language-specific models. Additionally, we
find that this model does surprisingly well at zero-
shot language transfer. We find that the zero-shot
transfer loss can be partly mitigated by an auxiliary
training objective to improve the name matching
components. However, we find that the remaining
error is not due to language transfer, but to topic
transfer. Future work that improves zero-shot trans-
fer should focus on better ways to adapt to entity
popularity in target datasets, instead of relying on
further improvements in multilingual representa-
tions. Focusing on adapting to the topic and entities
present in a given document is critical. This could
be accomplished by adding a document-level rep-
resentation or by leveraging other mentions in the
document. English-focused work on rare entity
performance (Orr et al., 2020; Jin et al., 2014) may
provide additional direction.
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A Architecture information

Parameter Values
Context Layer(s) [768], [512], [256],

[512,256]
Mention Layer(s) [768], [512], [256],

[512,256]
Type Layer [128], [64], [32], [16]
Final Layer(s) [512,256], [256,128],

[128,64], [1024,512],
[512], [256]

Dropout probability 0.1, 0.2, 0.5
Learning rate 1e-5, 5e-4, 1e-4, 5e-3,

1e-3

Table 6: To select parameters for the ranker, we tried 10
random combinations of the above parameters, and se-
lected the configuration that performed best on the TAC
development set. The selected parameter is in bold.
We report results after training for 500 epochs for TAC
and 800 for Wiki. The full TAC multilingual model
takes approximately 1 day to train on a single NVIDIA
GeForce Titan RTX GPU, including candidate genera-
tion, representation caching, and prediction on the full
evaluation dataset.

B Dataset Details

The NIL threshold is selected based on the devel-
opmentTAC dataset. Unless noted, we use −0.8
for English and −1 otherwise.

TAC: The training set consists of 30,834 men-
tions (6,857 NIL) across 447 documents. We re-
served a randomly selected 20% of these docu-
ments as our development set, and will release
development splits. The evaluation set consists
of 32,459 mentions (8,756 NIL) across 502 docu-
ments. A mention is linked to NIL if there is no
relevant entity in the KB, and the KB is derived
from a version of BaseKB.

TAC Triage: We use the system discussed in for
both the TAC and Wiki datasets. However, while
the triage system provides candidates in the same
KB as the Wiki data, not all entities in the TAC
KB have Wikipedia page titles. Therefore, the TAC
triage step requires an intermediate step - using the
Wikipedia titles generated by triage (k = 10), we
query a Lucene database of BaseKB for relevant
entities. For each title, we query BaseKB propor-
tional to the prior provided by the triage system,
meaning that we retrieve more BaseKB entities for
titles that have a higher triage score, resulting in

l = 200 entities. First, entities with Wikipedia ti-
tles are queried, followed by the entity name itself.
If none are found, we query the mention string -
this provides a small increase in triage recall. This
necessary intermediate step results in a lower recall
rate for the TAC dataset (85.1% for the evaluation
set) than the Wiki dataset, which was 96.3% for
the evaluation set .

Wiki: Some BaseKB entities used in the TAC
dataset have Wikipedia links provided; we used
those links as seed entities for retrieving mentions,
retrieving mentions in proportion to their presence
in the TAC dataset, and to sample a roughly equiv-
alent number of non-TAC entities. We mark 20%
of the remaining mentions as NIL. In total, we train
and evaluate on 5,923 and 1,859 Arabic, 3,927 and
1,033 Farsi, 5,978 and 1,694 Korean, and 5,337 and
1,337 Russian mentions, respectively.
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Original Prediction Popular Correction Count

United States Department of State United States of America 146
united states congress United States of America 121
Soviet Union Russian 57
Central Intelligence Agency United States of America 41
healthcare of cuba Cuba 36
islamic state Islamic State of Iraq and Syria 33
edmund hillary First lady Hillary Rodham Clinton 32
United States Department of Defense United States of America 32
Tamerlan Tsarnaev Dzhokhar A. Tsarnaev 27
Carl Pistorius Oscar Leonard Carl Pistorius 23
CUBA Defending Socialism ... documentary Cuba 22
Barack Obama Sr. Barack Hussein Obama II 18
Iraq War Iraq 14
Dzhokhar Dudayev Dzhokhar A. Tsarnaev 13
Sumter County / Cuba town Cuba 13
United States Army United States of America 13
military of the united states United States of America 13
Republic of Somaliland Somalian 13
ISIS Islamic State of Iraq and Syria 13
Islamic State of Iraq and Syria Islamic State of Iraq and Syria 12
National Assembly of People’s Power Cuba 11
Sara Netanyahu Benjamin Netanyahu 10

Table 8: All pairs of original prediction and popular prediction altered by the reranking procedure described in
Section 7.2, for the Tail model


