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Abstract
Conventional autoregressive models have
achieved great success in text generation but
suffer from the exposure bias problem in that
token sequences in the training and in the gen-
eration stages are mismatched. While gener-
ative adversarial networks (GANs) can rem-
edy this problem, existing implementations
of GANs directly on discrete outputs tend
to be unstable and lack diversity. In this
work, we propose TILGAN, a Transformer-
based Implicit Latent GAN, which combines
a Transformer autoencoder and GAN in the la-
tent space with a novel design and distribution
matching based on the Kullback-Leibler (KL)
divergence. Specifically, to improve local and
global coherence, we explicitly introduce a
multi-scale discriminator to capture the seman-
tic information at varying scales among the
sequence of hidden representations encoded
by Transformer. Moreover, the decoder is en-
hanced by an additional KL loss to be consis-
tent with the latent-generator. Experimental re-
sults on three benchmark datasets demonstrate
the validity and effectiveness of our model, by
obtaining significant improvements and a bet-
ter quality-diversity trade-off in automatic and
human evaluation for both unconditional and
conditional generation tasks.1

1 Introduction

In recent years, Transformer-based autoregres-
sive (AR) models have made a dramatic impact
in text generation tasks such as machine transla-
tion (Vaswani et al., 2017; Wang et al., 2019) and
dialogue systems (Le et al., 2019; Ham et al., 2020),
especially with the emergence of large pre-trained
language models (Radford et al., 2019; Brown et al.,
2020; Wu et al., 2020). However, AR models pre-
dict the next token conditioned on the ground truth

*Equal Contribution.
1Our code is available at https://github.com/

shizhediao/TILGAN.

during training and on its own previously generated
token during inference, which leads to a mismatch
between training and generation stages, and this
causes low quality of generated texts and bad gen-
eralization ability of models on unseen data (Wise-
man and Rush, 2016; Welleck et al., 2020).

Generative adversarial networks (GANs, Good-
fellow et al., 2014) provide a promising approach
to solve the exposure bias problem (Yu et al., 2017;
Kusner and Hernández-Lobato, 2016; Zhang et al.,
2017). This is because GANs aim at matching the
distributions of the generated and real data instead
of forcing the model output to align with the single
correct sequence, and thus provide the potential
to bypass the discrepancy issue. However, it is
non-trivial to apply GANs to discrete data since
the gradients cannot be normally back-propagated
through discrete tokens. Existing approaches have
implemented the adversarial discrete generation
training by reinforcement learning (RL) (Yu et al.,
2017; Lin et al., 2017; Guo et al., 2018; Fedus
et al., 2018) and Gumbel-Softmax (Kusner and
Hernández-Lobato, 2016). Nevertheless, these ap-
proaches suffer from the high variance problem
which causes unstable performance and slow con-
vergence, leading to other methods based on fea-
ture matching (Zhang et al., 2017; Zhao et al., 2018;
Chen et al., 2018).

In this work, we propose TILGAN, a
Transformer-based Implicit Latent GAN, which
combines a Transformer autoencoder and a GAN
in the latent space with novel designs and a learning
formulation based on the Kullback-Leibler (KL)
divergence to enhance the text generation perfor-
mance in both fidelity and diversity. Specifically,
inspired by the representation capacity of Trans-
former AR models, we firstly incorporate Trans-
former architectures to improve GANs in text gen-
eration. Note that the previous latent feature match-
ing methods are mostly RNN-based and assume

https://github.com/shizhediao/TILGAN
https://github.com/shizhediao/TILGAN
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a single vector in the latent space, which do not
directly handle a sequence of latent representations
encoded by a Transformer. However, single latent
vector representation hinders the incorporation of
correlations among different tokens, leading to the
loss of crucial semantic information captured by
a Transformer structure. This is especially prob-
lematic for local and global coherence (Bińkowski
et al., 2020). In this paper, we directly match the
distributions of multi-token sequences in the latent
space, which is better suited for the Transformer
structure. To do so, we have to resolve two chal-
lenges, the first being how to do distribution match-
ing. We introduce a multi-scale discriminator over
the Transformer latent space to utilize the seman-
tic information on different scales, where a global
discriminator takes the entire sequence of latent rep-
resentations as the input, and a local discriminator
takes only a randomly-sampled local neighborhood.
The second challenge is how to train the decoder
reliably. We enhance an autoencoder loss by an-
other KL loss optimized by GAN, forcing the latent
representations of the decoding output to be com-
patible with the generated latent representations
from the latent-generator.

We provide a theoretical justification for the pro-
posed formulation by connecting it to the standard
goal of generative modeling. Experimental results
on three datasets illustrate that TILGAN outper-
forms all baselines in both unconditional and con-
ditional generation tasks, achieving state-of-the-art
performance. Particularly, TILGAN exhibits a
better quality-diversity trade-off evaluated by au-
tomatic metrics such as SelfBLEU and TestBLEU
as well as human evaluation. Further analyses also
confirm the effectiveness of each component of
our method, where decoder enhancement greatly
benefits generation quality, while the multi-scale
discriminator and KL objective provide great per-
formance gains in generation diversity, and the im-
plicit prior contributes to both.

2 The Approach

2.1 Model and Formulation

In this section, we introduce the proposed model
and the learning formulation. Let x ∈ X denote a
sentence following the real data distribution pr(x)
with X = Vn where V is the vocabulary, m = |V|
is the vocabulary size, and n is the sequence length,
and z ∈ Z be the latent variable following a
prior distribution pz(z). We consider a probabilis-

tic model containing an encoder Eφ : X → Z
and a decoder Gθ : Z → X . Both are gener-
ally stochastic mappings with parameters φ and
θ, and induce the encoder conditional distribution
qφ(z|x) and the decoder conditional pθ(x|z) re-
spectively. Note that previous approaches to text
generation use deterministic encoders and decoders
(Zhao et al., 2018), which restricts the expressive-
ness of the modeled distribution family. We first
ensure the consistency between Eφ and Gθ by min-
imizing the negation of the expected reconstruction
log-likelihood

Lc(φ, θ) = −Ex∼prEz∼qφ(z|x)[ln pθ(x|z)], (1)

which coincides with the reconstruction term in the
evidence lower bound (ELBO).

The generated data distribution is given by
pG(x) = Ez∼pz [pθ(x|z)]. To achieve good gen-
eration performance, we design the model so that
the distribution family of pG(x) is large enough to
contain the real one pr(x). As described in Sec-
tion 2.3, we use Transformer to model E and G,
which we assume to have sufficient capacity to
reconstruct data well and learn informative latent
representations. In this way, pθ(x|z) is assumed
to be expressive enough. To further enhance the
capacity of pG(x), we propose to use an implicit
prior pz , by transforming samples from a simple
distribution with a deep neural network.

Consider a random vector ε ∈ E following
some simple distribution pε like a standard Gaus-
sian. We then propose to learn a latent-generator
gβ : E → Z with parameter β so that the distribu-
tion of gβ(ε) matches that ofEφ(x), by minimizing
the KL divergence

Lg(φ, β) = DKL(qφ(z)‖pβ(z)),

where pβ(z) denotes the distribution of gβ(ε) and
qφ(z) = Ex∼pr [qφ(z|x)] is the distribution of
E(x), a.k.a., the aggregated posterior. The advan-
tage of KL divergence is that it imposes a heavy
penalty when qφ(z) > 0 but pβ(z) ≈ 0, which
means that it favors a g that covers all the diverse
modes of qφ(z). This is commonly known and
verified empirically in Shen et al. (2020). Hence
minimizing KL encourages a better diversity in
generation compared with the Jensen–Shannon (JS)
divergence or Wasserstein distance which are often
used in the literature on generative models.

Therefore, we formulate the overall objective
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Figure 1: The overall architecture of TILGAN. Blue and orange stand for the global and local discriminators,
respectively, and green denotes the route of the enhanced decoder.

function to be minimized as follows

Lc(φ, θ) + λLg(φ, β), (2)

where λ > 0 is a coefficient to balance both terms.

Decoder Enhancement During testing, a new sen-
tence is generated by first sampling ε ∼ pε, then
computing the latent variable g(ε) and finally gener-
ating G(g(ε)), which means the decoder takes the
output of the latent-generator g as the input which
it has never seen throughout the training. Although
the KL term aims at matching the distributions of
g(ε) and E(x), it is possible that they do not match
perfectly. In such cases, the decoder may generate
data with poor fidelity and far from being real data.
To resolve this and reliably train the decoder, we
propose to enhance the decoder by letting it see the
generated latent g(ε) during training. Formally, let
p̃g be the distribution of E(G(g(ε))). We add an-
other term to the loss function (2) with coefficient
λ1 > 0:

λ1DKL(qφ(z)‖p̃g(z)). (3)

Since this term is designed to enhance the decoder,
we regard the encoder and prior parameters φ and β
as fixed constants. In other words, in optimization,
we do not propagate gradients of this term with
respect to φ and β and only update the decoder
parameter θ.

2.2 Algorithm
In this section, we propose a GAN-based algo-
rithm for the optimization of the above formulation.
Since pβ(z) is implicit, the KL term Lg in (2) does

not allow a closed form to be optimized directly.
We introduce a discriminator to estimate the gradi-
ents, following Shen et al. (2020). In Lemma 1, we
present the gradient formulas of Lg.

Lemma 1. Let D(z) = ln(qφ(z)/pβ(z)). Then

∇φLg = E[∇zD(Eφ(x))>∇φEφ(x)],

∇βLg = −E[sD(gβ(ε))∇zD(gβ(ε))>∇βgβ(ε)],

where sD(z) = eD(z) is the scaling factor and the
expectations are taken over all the randomness.

Since D depends on the unknown densities qφ
and pβ so that the gradients in Lemma 1 can not
be directly computed from the data, we estimate
the gradients by training a discriminator Dψ with
parameter ψ via the empirical logistic regression:

min
ψ

[ ∑
z∈Se

ln(1 + e−Dψ(z))

|Se|
+
∑
z∈Sg

ln(1 + eDψ(z))

|Sg|

]
,

where Se and Sg are finite samples from qφ(z) and
pβ(z) respectively. This leads to a GAN algorithm.
The optimization of the enhanced loss (3) is similar.

However, GAN is commonly known to suf-
fer from unstable training or gradient vanishing.
To stabilize our algorithm, we adopt the scaling
clipping technique from Shen et al. (2020) and
clip the scaling factor into a range of [r0, 1/r0],
where r0 = 0.5 turns out to work well in all
our experiments. Denote the clipped scaling by
s′D(z) = max{min{sD(z), 2}, 0.5}.

For the optimization of the consistency loss
Lc, we adopt the reparametrization trick from
Kingma and Welling (2014) and estimate it by
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Algorithm 1: TILGAN
Input: initial φ, θ, β, ψ, ξ, batch-size N , local size M
while not convergence do

// Update discriminators
Sample {xi}Ni=1 ∼ pr(x), {εi}Ni=1 ∼ pε
Compute
zi = Eφ(xi), ẑi = gβ(εi), z̃i = Eφ(Gθ(ẑi))

Update ψ by descending the gradient:
1
N

∑N
i=1∇ψ[ln(1+e

−Dψ(zi))+ln(1+eDψ(ẑi))]
Randomly sample local blocks z′i and ẑ′i with size
M

Update local discriminator by descending:
1
N

∑N
i=1∇ξ[ln(1 + e−dξ(z

′
i)) + ln(1 + edξ(ẑ

′
i))]

// Update encoder, decoder and latent-generator
Obtain xi, εi,zi, ẑi, z̃i, z′i and ẑ′i as above
Compute φ-gradient:

1
N

∑N
i=1[∇φL̂c(xi,zi)+λ∇φDψ(zi)+λ∇φdξ(z

′
i)]

Compute β-gradient:
− 1
N

∑N
i=1 λ[s

′
D(ẑi)∇φDψ(ẑi)+s′d(ẑ′i)∇φdξ(ẑ′i)]

Compute θ-gradient:
1
N

∑N
i=1[∇θL̂c(xi,zi)+λ1s

′
D(z̃i)∇φDψ(z̃i)]

Update parameters φ, θ, β using the gradients
Return: φ, θ, β

1
n

∑n
i=1 L̂c(xi, zi) where xi ∼ pr(x), zi =

Eφ(xi), and L̂c(xi, zi) = − ln pθ(xi|zi). The
whole training procedure is summarized in Algo-
rithm 1, where the colored parts stand for the en-
hanced decoder (green) and the multi-scale discrim-
inator (blue and orange) introduced later.

2.3 Architecture

In this section, we present the Transformer-based
architecture incorporated with multi-scale discrim-
inators. We propose a Transformer autoencoder
framework where both the encoder and decoder are
self-attention layers with three novel ingredients
specific to improve the generation performance in
both quality and diversity: (i) a latent-generator g
to transform Gaussian noises into an implicit prior
distribution, (ii) decoder enhancement, and (iii)
multi-scale discriminators. Figure 1 illustrates the
entire architecture of TILGAN.

As mentioned in Section 1, we introduce mul-
tiple discriminators over the Transformer’s latent
space to utilize the semantic information on differ-
ent scales, each of which operates on a different
window of representations as the input. Specifi-
cally, given an input sentence x = [x1, x2,. . . , xn]
where xi stands for the i-th word, it is passed
through the Transformer encoder which results in a
sequence of latent states z = [z1, z2,. . . , zn] where
zi is the vector representation corresponding to
xi. We introduce a global discriminator Dψ tak-
ing the whole sequence of representations z as the

input, and a local discriminator dξ with parame-
ter ξ taking only a local neighborhood of the M
randomly-sampled adjacent representations, e.g.,
z′ = [zi−1, zi, zi+1] with M = 3, as the input. 2

Notably, the local discriminator takes the generated
pieces of sequences into account, so it provides
signals of phrase-level fidelity and local coherence,
while the global discriminator is able to assess the
general realism and the degree of natural coherence
for the whole sequence.

2.4 Extension to Conditional Generation
Our proposed framework can be readily extended
to conditional generation tasks such as story com-
pletion. To be specific, the goal is to learn a condi-
tional real data distribution pr(x|c) where c is the
given context following pr(c) with some missing
content x to complete. We propose to feed c into
all three components—encoder E, decoder G, and
latent-generator g—of our model, and modify the
terms in objective function (2) as follows

L′c(φ, θ) = −Epr(x,c)Eqφ(z|x,c)[ln pθ(x|z, c)],

L′g(φ, β) = DKL(qcφ(z)‖pcβ(z)),

where pr(x, c) = pr(x|c)pr(c), and the marginal
distributions of E(x, c) and g(ε, c) are given
by qcφ(z) = Epr(x,c)[qφ(z|x, c)] and pcβ(z) =
Epr(x,c)[pβ(z|x, c)] respectively. Then the final
objective is to minimize L′c(φ, θ) + λL′g(φ, β).

3 Theoretical Justification

The goal of generative modeling is to learn the gen-
erated distribution pG(x) that is close to the real
data distribution pr(x). Our proposed formulation
in (2), however, does not explicitly optimize a dis-
tance measure between pG and pr, so it is unclear
whether our method can match the distributions in
the data space. In this section, we provide justifica-
tion for the proposed formulation (2) by connect-
ing it with the above goal, based on the analysis of
WAE (Tolstikhin et al., 2018).

Let PG and Pr be the induced probability mea-
sures of pG(x) and pr(x) respectively. We have
the Kantorovich’s formulation of the optimal trans-
port (OT) problem with the L1 cost:

W1(Pr,PG) = inf
Γ∈P(x∼Pr,y∼PG)

Ex,y∼Γ[c(x,y)],

2We have considered sampling multiple different neigh-
borhoods within a given sequence as well, whose empirical
performance was shown to be comparable with our proposed
scheme with one local neighborhood, so we only reported the
latter since it is simpler to implement.
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TASK UG CG

DATASET MSCOCO WMTNEWS ROCSTORY

VOCAB 27842 5728 20000
AVG LEN. 10.4 27.8 10.0

TRAIN S# 120K 278K 390K
DEV S# - - 50K
TEST S# 10K 10K 50K

Table 1: The statistics of the datasets. Avg Len. means
the average length of sentences. S# refers to number of
sentences. UG and CG stand for unconditional genera-
tion and conditional generation, respectively.

where c(x,y) = ‖x−y‖1 is the cost function and
P(x ∼ Pr,y ∼ PG) is a set of all joint distribu-
tions of (x,y) with marginals Pr and PG respec-
tively. Note that W1(Pr,PG) is also known as the
1-Wasserstein distance between Pr and PG. Then
we have the following theorem which gives an up-
per bound of the 1-Wasserstein distance, whose
proof is given in Appendix B.

Theorem 1. Let pθ(x|z) be a multivariate multino-
mial distribution with mean matrix Ḡ(z) ∈ Rm×n
which is a common choice for text modeling, i.e.,
each one-hot token xi|z follows a multinomial with
mean Ḡi(z) ∈ simplex ∆m−1 for i = 1, . . . , n.
Then we have W1(Pr,PG) is upper bounded by

inf
q(z|x):qz(z)=pβ(z)

−2Ex∼prEz∼q(z|x)[ln pθ(x|z)],

(4)
where qz(z) = Ex∼pr(x)[q(z|x)] is the aggregated
posterior and pβ(z) is the implicit prior.

Hence by minimizing (4) with respect to θ and β,
we learn the composite generatorGθ(gβ(ε)) : E →
X that minimizes an upper bound of W1(Pr,PG),
which is consistent with the standard goal of genera-
tive modeling. However, this optimization problem
is generally intractable due to the equality con-
straint and the nonparametric nature. Our formula-
tion (2) can be regarded as an approximate problem
of it by parametrizing q(z|x) with a distribution
family induced by a stochastic encoder mapping
Eφ, and relaxing the hard constraint qz(z) = pβ(z)
by introducing the relative entropy regularization
DKL(qz(z)‖pβ(z)).

4 Experiment Settings

4.1 Datasets
We conduct our experiments on three bench-
mark datasets, MSCOCO (Lin et al., 2014),
WMTNEWS (Guo et al., 2018), and ROC-

STORY (Mostafazadeh et al., 2016). All of the
preprocessing steps are the same as Chen et al.
(2018) and Wang and Wan (2019). The statistics
of the resulting datasets are reported in Table 1.

4.2 Baselines
Unconditional Generation Three simplified vari-
ants of TILGAN are implemented for comparison:
• TILGANP: a plain baseline using our backbone

model, that is, a Transformer autoencoder and a
GAN in the latent space based on KL divergence.
• TILGANE: TILGANP equipped with decoder

enhancement.
• TILGANMD: TILGANP with the multi-scale

discriminator.
In addition, the following existing models are
adopted: recurrent neural network language
model (RNNMLE), SeqGAN (Yu et al., 2017),
RankGAN (Lin et al., 2017), GSGAN (Kusner
and Hernández-Lobato, 2016), LeakGAN (Guo
et al., 2018), textGAN (Zhang et al., 2017), FM-
GAN (Chen et al., 2018), ARAE (Zhao et al., 2018),
Transformer language model (TMLE) (Vaswani
et al., 2017).
Conditional Generation For conditional gen-
eration, we compare our model with Trans-
former (Vaswani et al., 2017), IE+MSA (Guan
et al., 2019), Seq2Seq (Bahdanau et al., 2015),
HLSTM (Li et al., 2015), CVAE (Sohn et al., 2015),
and T-CVAE (Wang and Wan, 2019).

4.3 Automatic Evaluation Metrics
Unconditional Generation
• TESTBLEU (Yu et al., 2017): a quality metric

comparing the n-gram similarity between gener-
ated samples and the whole test set.
• SELFBLEU (Zhu et al., 2018): a diversity met-

ric calculating the similarity between one gen-
erated sentence and the whole remaining gen-
eration. The lower the SelfBLEU score is, the
higher diversity we obtain in the generation.
Specifically, following Chen et al. (2018), we

report BLEU-2/3/4/5 for TestBLEU and BLEU-
2/3/4 for SelfBLEU.
Conditional Generation
• BLEU (Papineni et al., 2002): the BLEU score

is calculated by taking the geometric mean of
the n-gram BLEU scores where n is from 1 to 4.
• DIVERSITY (Li et al., 2016): the proportion of

distinct n-grams in the generated results which
evaluates the degree of diversity. D1 and D2 are
reported for unigram and bigram, respectively.
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(a) MSCOCO

METHODS
SELFBLEU TESTBLEU HUMAN

B2% B3% B4% B2% B3% B4% B5% Q D

RNNMLE 75.4 51.1 23.2 82.0 60.7 38.9 24.8 3.33 2.8
SEQGAN 80.7 57.7 27.8 82.0 60.4 36.1 21.1 3.86 2.8
RANKGAN 82.2 59.2 28.8 85.2 63.7 38.9 24.8 3.26 2.6
GSGAN 78.5 52.2 23.0 81.0 56.6 33.5 19.7 3.15 2.4
LEAKGAN 91.2 82.5 68.9 92.2 79.7 60.2 41.6 3.07 3.0
TEXTGAN 80.6 54.8 21.7 91.0 72.8 48.4 30.6 3.55 2.8
FMGAN 83.1 63.2 32.5 94.2 81.2 61.8 41.4 4.06 2.2
ARAE 63.2 41.6 19.1 86.7 69.3 44.2 24.5 2.93 3.0
TMLE 70.6 47.6 27.3 92.8 81.9 56.2 33.1 3.75 3.4

TILGAN 61.6 35.6 9.9 96.7 90.3 77.2 53.2 4.38 3.8
TILGANP 61.7 45.9 18.2 94.7 86.6 63.1 39.9 - -
TILGANE 70.5 50.1 28.7 98.8 94.5 81.3 52.5 - -
TILGANMD 63.5 38.7 11.8 95.1 84.9 64.8 44.1 - -

IMP_POST 73.3 63.8 47.7 95.5 87.1 69.8 31.5 - -
JSGAN 76.7 67.9 51.8 75.1 54.2 32.1 11.0 - -
WGAN 90.4 80.9 69.0 73.0 53.8 34.2 12.5 - -

(b) WMTNews

SELFBLEU TESTBLEU HUMAN
B2% B3% B4% B2% B3% B4% B5% Q D

66.4 33.7 11.3 76.1 46.8 23.1 11.6 3.65 2.8
72.8 41.1 13.9 63.0 35.4 16.4 8.7 3.29 3.4
67.2 34.6 11.8 77.4 48.4 24.9 13.1 2.98 3.8
68.2 41.0 23.1 72.3 44.0 21.0 10.7 3.39 2.6
85.7 69.6 37.3 92.0 72.5 50.2 32.1 2.51 2.8
80.6 54.8 28.7 77.7 52.9 30.5 16.1 3.43 3.2
83.1 68.2 38.5 93.2 77.1 55.2 39.9 3.40 3.2
53.4 30.4 17.3 84.4 62.9 39.8 22.0 2.29 2.6
61.3 43.7 25.1 87.5 74.8 44.2 26.4 3.31 3.6

66.3 44.5 28.0 92.9 81.7 61.7 40.7 3.81 4.0
64.8 48.2 34.9 88.9 76.5 56.5 27.5 - -
62.7 43.3 23.0 91.5 79.2 59.6 33.9 - -
53.1 33.2 20.6 92.6 78.2 53.9 29.5 - -

71.2 59.7 47.1 73.1 68.2 46.6 20.1 - -
64.7 49.9 39.6 80.8 64.9 41.1 14.2 - -
93.3 91.0 88.6 89.1 77.4 50.2 26.7 - -

Table 2: SelfBLEU and TestBLEU results on MSCOCO and EMNLP WMTNews datasets. Q and D denote the quality and
diversity evaluated by human, respectively. The results of previous baselines are listed in the top region, our method TILGAN
together with simplified variants are shown in the middle, and more variants for further ablation studies are at the bottom. The
bold numbers are the best results in each column.

• ADVERSARIAL SUCCESS (Li et al., 2017): the
fraction of instances in which a model is capa-
ble of fooling a fine-tuned BERT classifier with
the above 95% accuracy on the development set
of the classification task. Higher values are bet-
ter. The positive examples are original stories
and negative examples are stories consisting of a
random sentence from another story.

4.4 Implementation

Unconditional Generation We implement a
Transformer-based autoencoder with 2 layers, 4
heads, 512 embedding dimensions, and 512 hidden
dimensions. The generator and discriminator are
implemented by 3 layers multi-layer perceptron
(MLP). We set the maximum sequence length to 15
and 32 for MSCOCO and WMTNews, respectively.
During training, each sentence is padded to the
maximum length when fed into the encoder, and
then the encoder produces a latent vector for every
input token. During testing, the latent-generator
generates a sequence of latent vectors with the
same maximum length, and then, conditional on
the latent vectors, the decoder generates a sentence
which ends when a special token, <EOS>, is gen-
erated. We adopt Adam (Kingma and Ba, 2015)
as the optimizer with a learning rate of 0.00025
and 0.0001 for autoencoder and GAN structure,
respectively with a dropout rate of 0.3.
Conditional Generation We adopt the same
Transformer encoder-decoder architecture as the

backbone model and similar setups as Wang and
Wan (2019). The Transformer structure has 6 lay-
ers, 8 self-attention heads, 512 dimensions for hid-
den states, and uses shared attention layers for en-
coder and decoder which allows the decoder to
attend to the encoder state and the decoder state at
the same time to make the completed story more
coherent. The generator has 3 layers and the dis-
criminator has 4 layers. We adopt Adam (Kingma
and Ba, 2015) as the optimizer with a learning rate
of 0.0001 and a dropout rate of 0.15.

More details of the experimental setup and hyper-
parameter settings are shown in the Appendix A.

5 Experimental Results

5.1 Unconditional Generation

• Generation Quality The first experiment is to
compare the quality of generated sentences of dif-
ferent models. In general, as shown in Table 2,
TILGAN outperforms all baseline models in Test-
BLEU on both MSCOCO and WMTNews datasets,
which clearly indicates the advantages of our pro-
posed framework. We make five main observations.
Firstly, we notice that TMLE is comparable to most
GAN baselines, which shows the powerful fitting
capacity of the Transformer architecture as well as
the inferior performance of previous GAN imple-
mentations. Despite this, TILGANP outperforms
TMLE by a wide margin, demonstrating that our
backbone model combining a Transformer autoen-
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coder and a GAN can not only take advantage of
the Transformer’s capacity, but also exhibit bene-
fits from our GAN formulation to further boost
the performance. Furthermore, compared with
TILGANP, our full version TILGAN achieves an
improvement of 13.3% and 13.2% for TestBLEU5
on MSCOCO and News, respectively. This con-
firms the effectiveness of the proposed multi-scale
discriminators and decoder enhancement. In detail,
when comparing the simplified variants TILGANE

v.s. TILGANMD, the improvement of TILGANE

over the plain baseline TILGANP is larger than
that of TILGANMD, which illustrates that incor-
porating TILGANE is more crucial to improving
the generation quality. Lastly, we compare TIL-
GAN with all previous methods and observe an
average improvement of 6.3% for TestBLEU5 on
two datasets against the previous state-of-the-art
FMGAN, which suggests the superiority of our
method.

• Generation Diversity The generation diversity
is evaluated by SelfBLEU scores, which are shown
in Table 2. First, compared with the baselines
with comparable and worse TestBLEU, e.g., FM-
GAN and LeakGAN, our TILGAN achieves lower
SelfBLEU scores, which indicates a better quality-
diversity trade-off from TILGAN. We notice that
RNNMLE achieves the best SelfBLEU score on
WMTNews but its quality shown by TestBLEU
is pretty low and tends to generate incoherent or
meaningless segments, which can be confirmed by
the generated samples in Appendix C. In addition,
from the results of TILGANMD, we find that in-
corporating the multi-scale discriminator leads to
a significant drop in SelfBLEU, suggesting that
most of the performance gains in generation di-
versity are attributed to our design of multi-scale
discriminators in contrast to decoder enhancement.
Moreover, when comparing the performance across
two datasets, we find that the SelfBLEU scores of
our models are lower on MSCOCO than that on
WMTNews, illustrating that it is easier to gener-
ate more diverse texts on MSCOCO. One possible
reason is that the texts in MSCOCO are shorter
than the texts in WMTNews as shown in Table 1.
When generating long sequences, models are prone
to generate repeated tokens and phrases. The same
phenomenon was also observed for many other
baseline models like ARAE and FMGAN.

5.2 Conditional Generation

In addition to unconditional generation, we test
our model in a story completion task to verify its
ability in conditional generation. Table 3 shows
the automatic metrics in four metrics, with sev-
eral observations. (i) Overall, among all models,
TILGAN achieves new state-of-the-art results on
the ROCStory dataset, showing the superiority of
our method. (ii) Our model obtains substantial
improvement in the quality metrics of generated
answers, with 0.32% gains in BLEU, 6.92% gains
in the adversarial success. It demonstrates that
the generated plots are in high coherence, which
not only share a higher proportion of word overlap
with ground-truth answers, but also have a higher
success rate fooling the BERT classifier. (iii) As
for diversity, TILGAN improves upon the state-of-
the-art methods from 3.63% to 3.88% on D1 and
23.46% to 25.61% on D2, showing that TILGAN
produces stories consisting of more diverse and
distinct n-grams.

5.3 Human Evaluation

Due to the limitations of automatic evaluation met-
rics, we invite 5 judges to rate 100 sentences gen-
erated by different models on a scale from 1 to 5
for both unconditional and conditional generation
tasks. The results for unconditional generation are
shown in Table 2. TILGAN shows a superior per-
formance, which confirms that our model is able
to generate more realistic samples than the base-
line models on two datasets. Among all baseline
models, FMGAN has a high quality score but a
low diversity score, which indicates that most of its
generated samples are repeated sentences that lack
diversity. Additional evidence is shown through
the case study in Section 6.2.

In addition, the human evaluation results on story
completion are shown in Table 3 where we only
compare TILGAN with the best baseline, i.e., T-
CVAE. We use Gram metric to evaluate whether
the generated story plot proceeds naturally, and
Logic metric to evaluate whether the plot is reason-
able and coherent following Wang and Wan (2019).
Compared with T-CVAE, TILGAN is better in
both Gram and Logic, demonstrating that the gen-
erated story plots of TILGAN are more natural
and coherent.
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METHODS BLEU% D1% D2% AS% GRAM LOGIC

SEQ2SEQ 2.90 2.69 15.95 80.97 - -
HLSTM 2.31 2.63 14.80 72.46 - -
CVAE 3.03 2.72 16.32 81.18 - -
TRANS. 3.05 2.93 16.75 82.51 - -
T-CVAE 4.25 3.63 23.46 87.54 3.32 3.24

TILGAN 4.57 3.88 25.61 94.46 3.58 3.60

Table 3: Results on story completion task. AS refers
to adversarial success score. TRANS. denotes a vanilla
Transformer model.

6 Analyses

6.1 Ablation Study

To examine the impact of KL loss and the implicit
prior, we conduct ablation studies of different de-
signs. We construct three variants of TILGAN and
conduct experiments on two datasets of uncondi-
tional generation, whose results are shown in the
bottom region of Table 2.
• Impact of KL Loss First, we implement two
variants named JSGAN (Goodfellow et al., 2014)
and WGAN (Arjovsky et al., 2017) by replacing the
KL loss term with JS divergence and Wasserstein
distance, while keeping the same architectures.
In general, TILGANP outperforms JSGAN and
WGAN in terms of SelfBLEU and TestBLEU on
two datasets. Particularly, it is observed that with
KL loss, the SelfBLEU4 score drops from 51.8%
and 69.0% to 18.2% over JSGAN and WGAN on
MSCOCO, and similar downward trends are ob-
served on WMTNews. It demonstrates that mini-
mizing KL loss indeed benefits the generation di-
versity, which is consistent with previous findings
in Shen et al. (2020). In addition, the TestBLEU of
TILGANP achieves an improvement of 28.9% and
27.4% for TestBLEU5 on MSCOCO over JSGAN
and WGAN, respectively.
• Implicit Prior v.s. Implicit Posterior In addi-
tion to imposing an implicit prior, one can instead
impose an implicit posterior as well by moving the
transformation network of the latent-generator to
the encoder and leaving a Gaussian prior. This
results in a variant with nearly the same total
number of parameters, named IMP_POST. We
see from Table 2 that IMP_POST performs worse
than TILGANP with an implicit prior, suggesting
that enlarging the distribution family of posterior
qφ(z|x) contributes less to improving the overall
generation performance than enlarging that of prior
pz(z), which is consistent to the analysis in the
second paragraph of Section 2.1.

6.2 Case Study

To further analyze the real quality and diversity
of the generated sentences, some are examined
and presented in Table 4 and more examples are
shown in Appendix C. First, the samples generated
by TILGAN are more coherent and semantically
meaningful. The majority of texts of TILGAN are
in subject–verb–object order while those of other
models are not. In addition, TILGAN exhibits
more diverse sentence structures and word choices
than others. For example, although each sentence
generated by FMGAN looks good in quality, there
are many repeated sentences or phrases, leading to
a low diversity. The case study is consistent with
the human evaluation results in Section 5.3.

7 Related Work

Conventional text generation models leverage max-
imum likelihood estimation (MLE) with teacher
forcing and have shown powerful generation ca-
pabilities (Mikolov et al., 2010; Cho et al., 2014;
Bahdanau et al., 2016; Radford et al., 2019; Brown
et al., 2020) but they suffer from the exposure bias
problem. To address this, several solutions were
introduced including scheduled sampling (Bengio
et al., 2015), professor forcing (Lamb et al., 2016),
and Gibbs sampling (Su et al., 2018).

GAN-based text generation methods can be cat-
egorized into three classes: reinforcement learn-
ing (RL) based methods, Gumbel-Softmax (GS)
based methods and latent feature matching meth-
ods. RL-based methods (Yu et al., 2017; Lin et al.,
2017; Che et al., 2017; Guo et al., 2018; Fedus
et al., 2018) design a reward incorporated with the
discriminators, and use policy gradient or actor-
critic approaches to update the generator to resolve
the gradient propagating issue over discrete tokens.
However, they suffer from high variance and mode
collapse issues caused by the unstable policy gra-
dient training process and the lack of a reliable
guiding signal (Zhang et al., 2017; Chen et al.,
2018). GS-based methods (Kusner and Hernández-
Lobato, 2016) apply Gumbel-Softmax which is a
continuous relaxation technique for transforming
the output of a generator to be as close to one-hot
as possible in order to make the samples from a dis-
crete distribution like a multinomial differentiable
with respect to the distribution parameters.

Latent feature matching methods (Zhang et al.,
2017; Zhao et al., 2018) learn a manifold in the
latent space instead of the discrete output space.
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RankGAN: (1) A blue blue train sits on tracks with his residential asian toys.
(2) A reflection of two birds walking by a sidewalk.

FMGAN: (1) A man is standing on a table with a dog.
(2) A man is standing on a table with a dog on a field.
(3) A man is standing on a field of a large building.

TILGAN: (1) A little boy sitting on a bench with a little girl.
(2) A blue and white public transit bus is driving down acity street.
(3) A train is going down the tracks in a forest.

Table 4: Examples of generated sentences from RankGAN, FMGAN and our model.

This kind of methods usually incorporates an au-
toencoder to build the feature space and force the
generator’s latent output distribution to approach
the real data latent distribution. Our method also
resides in this category. To ease adversarial train-
ing, Zhang et al. (2017) introduce adversarial fea-
ture matching method by incorporating a kernel-
ized discrepancy metric to match high-dimensional
latent representations of real and synthetic sen-
tences. ARAE (Zhao et al., 2018) extends AAE
(Makhzani et al., 2015) to model discrete sequences
and learns a parameterized prior by a generative
model trained with WGAN. In contrast to our TIL-
GAN whose Transformer-based encoder and de-
coder are both stochastic, ARAE uses RNN-based
encoder and decoder which are both deterministic,
as required in their theory, which reduces the model
expressiveness and results in much poorer perfor-
mance than ours as shown in Table 2. iVAE (Fang
et al., 2019) proposes a VAE (Kingma and Welling,
2014) with an implicit posterior which is inferior
to the implicit prior that we adopt according to the
ablation study in Section 6.1. WAE-S (Bahuleyan
et al., 2019) is a WAE(Tolstikhin et al., 2018) with
a stochastic encoder trained using MMD with a dis-
tinct goal of improving the reconstruction ability.

8 Conclusion

In this paper, we proposed Transformer-based Im-
plicit Latent GAN (TILGAN), for text generation.
It combines a Transformer autoencoder and a GAN
through matching the distributions of multi-token
sequences in the Transformer’s latent space based
on KL divergence. To improve the local and global
coherence, we introduced a multi-scale discrimina-
tor to utilize the semantic information on varying
scales. To train the decoder reliably, we enhanced
the objective function by another KL term, forc-
ing the decoder to be compatible with the latent-
generator. We theoretically connected the proposed

formulation with the standard goal of generative
modeling. Empirically, TILGAN achieved the
state-of-the-art performance on three widely used
datasets for unconditional tasks and story comple-
tion task, which demonstrated the effectiveness of
our method to generate texts of high quality and
diversity compared with the existing approaches.
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A Reproducibility Checklist

• Description of Computing Infrastructure Tesla V100S-PCIE-32GB
• Average Runtime

MODEL UG CG

DATASET MSCOCO WMTNEWS ROCSTORY

TARAE 5.8 9.2 -
ENHANCED 7.5 11 -
LOCALD 8 12 -
TILGAN 8.5 13.4 106

Table 5: The average runtime per epoch for each model, estimated in minutes. UG and CG refer to unconditional
generation and conditional generation, respectively.

• Number of Parameters

MODEL UG CG

TILGAN 25.4M 30.8M

Table 6: The number of parameters of each model. UG and CG refer to unconditional generation and conditional
generation, respectively.

• Validation Performance No validation evaluation for unconditional generation and conditional gener-
ation tasks.
• Number of Runs We conduct 60 runs for unconditional generation tasks and 30 runs for conditional

generation tasks.
• Bounds and Best Setting for Hyperparameters Please refer to Table 3 for unconditional generation

task and Table 4 for conditional generation task.

MSCOCO WMTNews

Bound Best-performing Bound Best-performing

max len 15 15 32 32
batch size [32,256] 256 [32,256] 256
emb size [256,1024] 512 [256,1024] 512
hidden size [256,1024] 512 [256,1024] 512
num layers [1,6] 2 [1,6] 2
num heads 4 4 4 4
squeezed hidden size [28,256] 56 [28,256] 56
noise size [50,512] 100 [50,512] 100
niters autoencoder [1,3] 1 [1,3] 1
niters discriminator [1,3] 1 [1,3] 1
niters enhanceD [1,3] 1 [1,3] 1
niters generator [1,3] 1 [1,3] 1
niters gan into encoder [1,3] 1 [1,3] 1
learning rate autoencoder [0.01,10] 0.08 [0.01,10] 0.24
learning rate gan encoder [1e-5,1e-2] 1e-4 [1e-5,1e-2] 1e-4
learning rate generator [1e-5,1e-2] 1e-4 [1e-5,1e-2] 1e-4
learning rate discriminator [1e-5,1e-2] 1e-4 [1e-5,1e-2] 1e-4

Table 7: The bounds for each hyperparameter and best-performing setting for unconditional generation task.
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ROCStory
Bound Best-performing

num layers [1,8] 6
hidden size [256,1024] 512
num heads [4,12] 8
emb size 300 300
latent dimension [32,256] 64
batch size [32,128] 64
learning rate [1e-5,1e-2] 1e-4
droupout rate [0,0.5] 0.15

Table 8: The bounds for each hyperparameter and best-performing setting for conditional generation task.

B Proof of Theorem 1

Proof of Theorem 1. In this proof, we let x be the real data, y be the generated data, and z be the latent
variable. Let pG(y, z) = pβ(z)pθ(y|z) be the joint distribution of (y, z), where z is sampled from prior
pβ(z) and then y is sampled from the decoder conditional pθ(y|z). Further let Px,y,z denote the set of
all joint distributions of (x,y, z) such that x ∼ pr(x), (y, z) ∼ pG(y, z), and x ⊥⊥ y|z; let Px,z be the
set of marginal distributions of (x, z) induced by Px,y,z, that is, the set of distributions with marginals
x ∼ pr(x) and z ∼ pβ(z).

Recall that n is the sequence length and m is the number of words in the vocabulary. For the i-th word
xi which is an m-dimensional one-hot vector, indicator 1(xi = j) = 1 if the j-th dimension of xi is equal
to 1 and 1(xi = j) = 0 otherwise, for j = 1, . . . ,m. Then we have

W1(Pr,PG) ≤W †1 (Pr,PG) := inf
p∈Px,y,z

Ez∼pβ(z)Ex∼p(x|z)Ey∼pθ(y|z)[c(x,y)]

= inf
p∈Px,z

Ez∼pβ(z)Ex∼p(x|z)

2

n∑
i=1

m∑
j=1

1(xi = j)(1− Ḡij(z))


< inf

p∈Px,z

Ez∼pβ(z)Ex∼p(x|z)

−2
n∑
i=1

m∑
j=1

1(xi = j) ln Ḡij(z)


= inf

q(z|x):qz(z)=pβ(z)
Ex∼prEz∼q(z|x)

−2
n∑
i=1

m∑
j=1

1(xi = j) ln Ḡij(z)


= inf

q(z|x):qz(z)=pβ(z)

{
−2Ex∼prEz∼q(z|x)[ln pθ(x|z)]

}
,

where the first inequality comes from Tolstikhin et al. (2018, eq. 9), and the second inequality is due to
the fact that 1− l < − ln l for all l ∈ (0, 1), leading to the desired result.
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C Generated Examples

Table 9: Generated samples on ROCStory dataset.

story: ____________________. when i got to the stop sign , the check engine light started
flashing . i panicked and carefully drove the van to the nearest mechanic shop . they
checked it out but could not repair the van . the van had to be sold for parts and i had
to get a new vehicle .

T-CVAE: i was driving my van down the street one day .
TILGAN: i was driving my van to work one day .

story: krista was organizing her office .____________________ . they were big and heavy .
she assembled them carefully . when she put all her books on them , they collapsed !

T-CVAE: she had a bunch of books .
TILGAN: she bought some new books .

story: the man won a contest . he went to the station to collect . ____________________ .
he did n’t really like the band . he tried to sell them back to the radio employees .

T-CVAE: he got a ticket for a band .
TILGAN: he saw some band members .

story: billy is bored . billy sits with his friends thinking of something to do . billy suggest they
all head to the lake to go fishing . ____________________ . billy takes his friends to go
fishing and has great time .

T-CVAE: billy and his friends go fishing together .
TILGAN: billy and his friends go fishing .

story: ____________________ . her house was full of dust . she could n’t believe how filthy
it was . alicia then decided to clean it . when she was done cleaning and it sparkled .

T-CVAE: alicia was in the basement .
TILGAN: alicia was cleaning her house .

Table 10: Generated samples on MSCOCO dataset.

TextGAN: - a train traveling down a street . SeqGAN: - a red stop sign .
- a train station . - a couple of people are walking on a log and trees .
- a street sign on a street . - the train car traveling mannequin driving down the tracks .
- is in a bathroom with a sink controls . - people standing next to a large building .

RankGAN: - a blue blue train sits on tracks with his resi-
dential asian toys .

MLE: - an orange booth contains the in traffic light under a
sign

- a reflection of two birds walking by a sidewalk . - a man with hat on the horse in the street
- a man tourist train in the egret - a couple walking around city tracks with people
- a white fire hydrant stands next to each other . - the bird are walking next to a small blue coop

LeakGAN: - a table topped with pots . . FM-GAN: - a man is standing on a skateboard on the beach
- a bathroom with a glass shower , sink , toilet and sink . - a man on a tennis game with a kite
- a woman wearing a glass is sitting on a cupboard . - a man on a table with a red and white and a building
- a group of men talking . - a man is standing on a table with a dog

ARAE: - a city street sign in the park bench parked in the
group group the man

TILGAN: - a little boy sitting on a bench with a little girl

- two people standing at motorcycles on the bench - a group of people in the middle of a field
- two people standing at motorcycles on the bench at white
kitchen

- a large passenger plane flying through the sky

- there is a city bus on their city street sign parked in blue
blue bus

- a woman is sitting in a kitchen next to a restaurant

- a white plane on the air plane parked in snow group their
plane parked

- a small bird sitting on a branch of a tree
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Table 11: Generated samples on EMNLP WMT dataset.

SeqGAN: - it said the yield on our most traveled to china ’ s capital for “ the annual bank of cost credit against cuba .
- the cars ( , taiwan argues that the cease - fire contained included already reported on the outlook .
- “ both the republican leader in the years of leadership she was in rome and signed a close cabinet , ” she said .
- russia has said in its twitter documents since january which demanded that lawmakers had clearly been involved about .

RankGAN: - the lakers left the us to hope of the office and chose the general administration to build a further mission .
- ms . bush had been remembered in a red ring after it taking these sunday week made focusing himself against the
number of games .
- “ “ i ’ d thought something i am running everything i saw my own american life usually respect at all , as some
equipment they have that .
- and i was hoping that management does still even bring to hillary carson , and listen to a guy playing off back .

MLE: - what we need do this case if anybody had now touched a in - town community , all your kids in exchange
barriers are needed
in , no more , all may come out the coming in reflect the options .
- so the scottish government is significant until not extension you own very so hard to change my job for your six points
at half , social opinion and take beyond .
- us president - elect donald trump will re consider an effort to set out that it would be to accept from the us - city solution
to the world .
- local judges ask for her children and went into a video itself , she said for 2016 ’ s early next day , he said .

LeakGAN: - picture west eight my might confidence , zero confidence my either nazi a a time having accounts , skills a
difference x having must difference time having a develop pakistan confidence time time killed wilson partners nazi
unfair zero phones develop vital confidence a might showed a having confidence develop a
- pupils evidence accounts having confidence confidence theft abortion time time sized time west coming a unfair time
affecting time my theft a a killed killed phones , , time questioned pakistan a partners evidence sized confidence unfair
my eight time pakistan zero zero confidence partners either seventh having , killed a

GsGAN: - i hope that i do something like that it ’ s a very important thing , i know what you want to see this i didn ’ t
know , i think it does not be able to work out this way that ’ s not a lot better needs to
- the actor is it , well , which was a good job in a writing - christmas time out of a three - year - old woman who had been
charged for the murder , he said that he was investigating the government ’ s decision to 19 . 6 million
- to give the first time , it added , he had a few days and now he ’ s not just a new administration , he will do the same
time before .
- it is that , but the two - year - old woman he didn ’ t agree on : they had been a right ago because i wanted to have to do
something i was trying to kill them , i am , but i can do it had to stay

FM-GAN: - The United States , the United States has been a major group of the United States in the United States , the
United States in the United States .
- We have to be able to pay the money to be able to pay the money to be able to pay the money to pay for the same time
," he said .
- " It ’ s a lot of people who have been a woman , and I have been told the police ," she said .
- The man ’ s death was a " bit of the incident , but the police said that the police had been taken to the city , and the
police officer was a " very dangerous - driving area .
- We have to be able to do the government to be able to do the government to be able to leave the country ," he said .

ARAE: - a more . 5 per cent the company said it would not be expected to rise if he hit the 2 percent year , it said , rose
2 , 500 ,when the only reason only be the best way for the best time for the best time for the best time for them and not
being able to have done with much
- the fact : the fact only now not being able to have done with a much more time for the age amount time with a much
time for the best time for
- the fact the only reason only be the best way .
- the fact : the fact only now being a more person with a person with each person with a much time with the best time for
them as much as a person

TILGAN: - many people who died , although they didn ’ t have been on the same day , not just because of those who
had been out of them .
- " i had to be able to get a good deal with the right time ," he said in a statement .
- that ’ s why , in my life is now that ’ s not the same thing , and how much money is .
- we are still working closely with the community who is still in the world , but we can ’ t be the best .
- we can ’ t get some good players in the league , but not only because we ’ ve played well .


