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Abstract

There are concerns that the ability of language
models (LMs) to generate high quality syn-
thetic text can be misused to launch spam, dis-
information, or propaganda. Therefore, the re-
search community is actively working on de-
veloping approaches to detect whether a given
text is organic or synthetic. While this is a
useful first step, it is important to be able to
further fingerprint the author LM to attribute
its origin. Prior work on fingerprinting LMs
is limited to attributing synthetic text gener-
ated by a handful (usually< 10) of pre-trained
LMs. However, LMs such as GPT2 are com-
monly fine-tuned in a myriad of ways (e.g.,
on a domain-specific text corpus) before being
used to generate synthetic text. It is challeng-
ing to fingerprinting fine-tuned LMs because
the universe of fine-tuned LMs is much larger
in realistic scenarios. To address this chal-
lenge, we study the problem of large-scale fin-
gerprinting of fine-tuned LMs in the wild. Us-
ing a real-world dataset of synthetic text gener-
ated by 108 different fine-tuned LMs, we con-
duct comprehensive experiments to demon-
strate the limitations of existing fingerprinting
approaches. Our results show that fine-tuning
itself is the most effective in attributing the
synthetic text generated by fine-tuned LMs.

1 Introduction

Background & motivation. State-of-the-art lan-
guage models (LMs) can now generate long, co-
herent, and grammatically valid synthetic text
(Devlin et al., 2019; Radford et al., 2018, 2019;
Brown et al., 2020). On one hand, the ability
to generate high quality synthetic text offers a
fast and inexpensive alternative to otherwise labor-
intensive useful applications such as summariza-

∗Supplementary contains dataset, source code, and an
appendix (including hyper-parameter setting and additional
results). The code and dataset are available at https:
//github.com/LCS2-IIITD/ACL-FFLM .

tion and chat bots (Yoo and Jeong, 2020; Yu et al.,
2020; Wang et al., 2019; Liu and Lapata, 2019).
On the other hand, such high quality synthetic text
can also be misused by bad actors to launch spam,
disinformation, or propaganda. For example, LMs
such as Grover (Zellers et al., 2019) are shown to
be capable of generating full-blown news articles,
from just brief headlines, which are more believ-
able than equivalent human written news articles.
In fact, prior work has shown that humans cannot
distinguish between organic (i.e., human written)
and synthetic (i.e., generated by LM) text (Ippolito
et al., 2020; Jawahar et al., 2020; Munir et al.,
2021). Thus, this ability to generate high qual-
ity synthetic text can further be misused for social
impersonation and phishing attacks because users
can be easily misled about the authorship of the
text.
Problem statement. To mitigate the poten-
tial misuse of LMs, the research community has
started developing new text attribution techniques.
However, as shown in Figure 1, the attribution of
synthetic text is a multistage problem. The first
step is to distinguish between organic and syn-
thetic text (P1). Prior work has used the LM’s
output word probability distribution to detect syn-
thetic text (Ippolito et al., 2020; Gehrmann et al.,
2019; Zellers et al., 2019). However, there are sev-
eral publicly available pre-trained LMs that might
be used to generate synthetic text. Thus, the sec-
ond step is to detect the pre-trained LM used to
generate synthetic text (P2). Prior approaches
showed promising results by attempting to finger-
print the LM based on its distinct semantic em-
beddings (Pan et al., 2020; Uchendu et al., 2020).
However, pre-trained LMs such as GPT2 (Radford
et al., 2019) are commonly fine-tuned before be-
ing used to generate synthetic text. Thus, the third
step is to detect the fine-tuned LM used to generate
synthetic text (P3). To the best of our knowledge,
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prior work lacks approaches to effectively finger-
print fine-tuned LMs.

Technical challenges. It is particularly challeng-
ing to fingerprint fine-tuned LMs simply because
of the sheer number of possible fine-tuned vari-
ants. More specifically, a pre-trained LM can be
fine-tuned in a myriad of ways (e.g., separately
on different domain-specific text corpora), result-
ing in a large number of classes. Another chal-
lenge to fingerprint fine-tuned LMs is that we can-
not make assumptions about the nature of fine-
tuning (e.g., parameters, training data) or gener-
ation (e.g., prompts). Prior work on fingerprinting
pre-trained LMs is limited to evaluation on a small
number of classes (< 10 classes) and on synthetic
text that is artificially generated using set prompts.

Proposed approach. To fingerprint synthetic
text generated by fine-tuned LMs, we utilize the
RoBERTa model (Liu et al., 2019) and attach a
CNN-based classifier on top. We fine-tune the
RoBERTa model for the downstream task of sen-
tence classification using a synthetic text corpus.
The fine-tuned model is used to extract embed-
dings as features that are then fed to the CNN
classifier. We show that the fine-tuned RoBERTa
model is able to capture the topic-specific distin-
guishing patterns of the synthetic text. Upon visu-
alizing the generated features, the samples form
closely-condensed distinguishable clusters based
on the topic of the organic corpus the LMs have
been fine-tuned upon. Therefore, we conclude that
fine-tuning itself significantly helps fingerprinting
a fine-tuned LM. Note that our fingerprinting ap-
proach does not assume access to the text corpus
used for LM fine-tuning. We only assume access
to arbitrary synthetic text generated by fine-tuned
LMs.

Dataset. We gather a real-world dataset of syn-
thetic text generated by fine-tuned LMs in the
wild. More specifically, we extract synthetic text
from the subreddit r/SubSimulatorGPT2. Each of
the 108 users on r/SubSimulatorGPT2 is a GPT2
LM that is fine-tuned on 500k posts and com-
ments from a particular subreddit (e.g., r/askmen,
r/askreddit,r/askwomen). It is noteworthy that
users on r/SubSimulatorGPT2 organically interact
with each other using the synthetic text in the pre-
ceding comment/reply as their prompt.

Evaluation. We evaluate our models using a suite
of evaluation metrics. We also adapt confidence-
based heuristics, such as the gap statistic. Our best

Figure 1: Attribution of text formulated as a series of
three problems: P1, P2, and P3.

model is accurate for a large number of classes,
across a variety of evaluation metrics, showing
impressive results for the largest setting of 108
classes. While it obtains around 46% precision
and 43% recall, its top-10 accuracy is about 70%.
In other words, the correct class is one of the top-
10 predictions in about 70% of the cases. If we
give the model the option to not make a classifica-
tion decision, via confidence estimation, it doubles
the precision of the top classification from 46% to
around 87% with a decrease of recall from 43% to
27%.

We summarize our key contributions as follows:
1. Problem formulation. To the best of our

knowledge, we are the first to explore the prob-
lem of attribution of synthetic text generated by
fine-tuned LMs (P3). We are also the first to
investigate synthetic text attribution for a large
number of classes on a real-world dataset. We
also show that P3 is a much more challenging
problem as compared to P1 and P2.

2. Comprehensive model. We design and im-
plement a comprehensive set of different fea-
ture extraction techniques. We use them on a
variety of machine learning and deep learning
pipelines to build detection models.

3. Rigorous evaluation. We conduct rigorous
evaluation on a real-world dataset of synthetic
text generated by fine-tuned LMs. We use sev-
eral evaluation metrics such as top-k accuracy
and precision-recall tradeoff to compare differ-
ent detection models. We also provide insights
into the performance of different feature sets
and classification algorithms.

Paper Organization: The rest of the paper is or-
ganized as follows. Section 2 contextuailzes our
work with respect to prior literature. We analyze
the real-world dataset of synthetic text generated
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by fine-tuned LMs in Section 3. Section 4 de-
scribes different feature sets and classification al-
gorithms for fingerprinting fine-tuned LMs. Sec-
tion 5 presents the results of our experimental eval-
uation before concluding in Section 6.

2 Related Work

Figure 1 illustrates three different problem formu-
lations for attribution of synthetic text generated
by LMs. The first line of research (P1) aims to
distinguish between organic (by humans) and syn-
thetic (by LMs) text. Given synthetic text, the sec-
ond line of research (P2) further aims to attribute
the synthetic text generated by pre-trained LMs
such as BERT and GPT. Finally, in this paper, we
further aim to (P3) attribute the synthetic text gen-
erated by fine-tuned LMs. Here, we first discuss
prior work on P1 and P2 and then highlight the
importance and unique challenges of P3.

P1: As the quality of synthetic text generated
by LMs has improved, the problem of distinguish-
ing between organic and synthetic text has gar-
nered a lot of attention. Gehrmann et al. (2019)
aimed to distinguish between synthetic text gener-
ated by GPT2 and Heliograf versus organic text
by books, magazines, and newspapers. They
showed that humans had a hard time classifying
between organic and synthetic. Their proposed
GLTR model, which uses probability and ranks
of words as predicted by pre-trained LMs as fea-
tures, was able to achieve 87% AUC. Zellers et al.
(2019) developed Grover, a LM to generate fake
news. They also showed that humans had a hard
time distinguishing between organic and synthetic
text generated by Grover. A classifier based on
Grover achieved near perfect accuracy and sig-
nificantly outperformed other classifiers based on
pre-trained LMs. Ippolito et al. (2020) presented
an interesting trade-off between distinguishability
of organic and synthetic text. They showed that
synthetic text optimized to fool humans is actu-
ally much easily detected by automated classifi-
cation approaches. They generated synthetic text
from pre-trained GPT2 using different sampling
strategies and parameters, and used different clas-
sifiers such as GLTR that use pre-trained LMs
and a purpose-built fine-tuned BERT based clas-
sifier. They showed that their fine-tuned BERT
based classifier was able to significantly outper-
form other approaches as well as humans.

P2: Given synthetic text, recent work has fur-

ther attempted to attribute authorship of synthetic
text generated by pre-trained LMs. Uchendu et al.
(2020) fingerprinted pre-trained LMs by attribut-
ing synthetic text to its author LM. They con-
ducted exhaustive experiments using conventional
authorship attribution models (Kim, 2014; Zhang
et al., 2015; Cho et al., 2014) for eight pre-trained
LMs – GPT (Radford et al., 2018), GPT2 (Rad-
ford et al., 2019) , GROVER (Zellers et al., 2019),
FAIR (Ng et al., 2019), CTRL (Keskar et al.,
2019), XLM (Conneau and Lample, 2019), XL-
NET (Yang et al., 2019), and PPLM (Dathathri
et al., 2020). They showed that derived lin-
guistic features when used with simple classifiers
(Random Forest, SVM) perform the best. Pan
et al. (2020) prepared a corpus of organic text
and queried each of the five LMs – BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), GPT,
GPT2 and XLNET, to generate pre-trained embed-
dings. Then, they trained a multilayer perceptron
using the embeddings and obtained perfect accu-
racy in fingerprinting the pre-trained LM. Munir
et al. (2021) used stylometric features as well as
static and dynamic embeddings using ML classi-
fiers to attribute synthetic text generated by four
pre-trained LMs – GPT, GPT2, XLNet, and BART
(Lewis et al., 2020). They obtained near perfect
accuracy in fingerprinting pre-trained LMs on a
purpose-built dataset of synthetic text.

P3: In this paper, we further attempt to at-
tribute authorship of synthetic text generated by
fine-tuned LMs. This problem is relevant in the
real-world because malicious actors typically fine-
tune a pre-trained LM for domain adaption (e.g.,
to generate fake news articles vs. food reviews)
(Zellers et al., 2019). There are two main novel
aspects of P3 that make it more challenging than
P1 and P2. First, LMs can be fine-tuned in numer-
ous different ways. More specifically, an attacker
can use various datasets to fine-tune a pre-trained
LM and further set the fine-tuning parameters and
epochs in many different ways. Therefore, the
size of the universe of fine-tuned LMs is expected
to be quite large in P3. In P1, the problem is a
simple binary classification problem (organic vs.
synthetic). Similarly, in P2, the problem has still
limited number classes because only a handful of
pre-trained LMs are publicly available (e.g., GPT,
GPT2, etc.). For instance, Munir et al. (2021),
Pan et al. (2020), and Uchendu et al. (2020) re-
spectively considered a universe of four, five, and
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eight pre-trained LMs. In contrast, in this paper,
we consider 108 fine-tuned LMs. Second, prior
work mostly considered attributing authorship of
synthetic text generated in a controlled setting. For
example, synthetic text is often generated by pro-
viding a topical prompt (Uchendu et al., 2020).
As another example, the attribution classifier of-
ten assumes some information about the training
data (Zellers et al., 2019). In contrast, here we
consider the problem of attributing synthetic text
in an uncontrolled setting assuming no control or
knowledge about training or generation phases of
fine-tuning LM.

3 Dataset

Prior work on detection and attribution of syn-
thetic text has relied on artificial purpose-built
datasets in a controlled environment. We
overcome this issue by gathering a real-world
dataset of synthetic text by different GPT2 bots
on the R/SUBSIMULATORGPT2. Note that
R/SUBSIMULATORGPT2 is independently de-
signed and operated by its moderators. Each
user on the r/SUBSIMULATORGPT2 subreddit
is a GPT2 small (345 MB) bot that is fine-
tuned on 500k posts and comments from a
particular subreddit (e.g., r/askmen, r/askreddit,
r/askwomen). The bots generate posts on
r/SUBSIMULATORGPT2, starting off with the
main post followed by comments (and replies)
from other bots. The bots also interact with each
other by using the synthetic text in the preceding
comment/reply as their prompt. In total, the sub-
reddit contains 401,214 comments posted between
June 2019 and January 2020 by 108 fine-tuned
GPT2 LMs (or class). The complete details of
various design choices are described here: https:
//www.reddit.com/r/SubSimulatorGPT2Meta/

Table 1 lists some representative examples of
the synthetic text generated by three different fine-
tuned GPT2 LMs on our dataset. We note that
the synthetic text is fairly coherent and also cap-
tures the unique vocabulary and style of the sub-
reddit used for fine-tuning. For example, the ex-
cerpt from r/conspiracy reads like a conspiracy
discussion, the excerpt from r/confession men-
tions a suggestive reply to the main post, and the
excerpt for r/wallstreetbets uses the specialised fi-
nance terms like “puts”.

Next, we quantitatively compare and contrast
synthetic and organic texts corresponding to dif-

Subreddit Synthetic text excerpt

r/conspiracy

I’m sure the elite have been working to
control what they do, but I don’t think
they have the resources or manpower

to control something as massive as the
global economy.

r/confession

You need to tell her how you feel! She
needs to know how you feel so that you

can work out how to make the right
decision. You can tell her how much

you hate being a coward and how you’d
never be able to live up to your promise.

r/wallstreetbets

There’s a huge amount of volatility
right now that I don’t know how well
my eyes can handle. I’m not going
to buy any puts for the next week.

Table 1: Excerpts of synthetic text generated by GPT2
LMs fine-tuned on different subreddits.

ferent subreddits. To this end, we collect organic
text from the corresponding subreddits. Specifi-
cally, we randomly sample 1,000 comments from
each subreddit class of synthetic and organic text.
We contrast basic lexical characteristics, vocabu-
lary, and readability of synthetic and organic text.

Lexical. First, we contrast the following ba-
sic lexical features: average/standard deviation of
number of words/sentences per comment. We also
measure the Pearson correlation coefficient (ρ) be-
tween pairs of synthetic and organic texts in Fig-
ures 2a to 2d. We note a high correlation (ρ >
0.83) across all lexical features. Thus, we con-
clude that there is a strong dependency between
the lexical characteristics of the synthetic and or-
ganic text. This finding indicates that synthetic text
generated by fine-tuned GPT2 models indeed cap-
tures the lexical characteristics of the correspond-
ing organic text used for fine-tuning.

Vocabulary. Second, we compare the vocabu-
laries of synthetic and organic text of each class.
We do some basic pre-processing: lower-case, to-
kenize, and lemmatize all words, remove all punc-
tuation and emojis, and replace hyperlinks and
numbers with standard tags. Figure 2e compares
the vocabulary size of synthetic and organic text.
While organic text seems to have a large vocabu-
lary than synthetic text, we note a strong correla-
tion (ρ = 0.76) between their vocabulary sizes.
We further compute Jaccard similarity to mea-
sure pair-wise vocabulary overlap between dif-
ferent synthetic and organic texts. Figure 3 vi-
sualizes the similarity matrices between all pairs
classes – synthetic-synthetic, organic-organic, and
synthetic-organic. It is noteworthy that the left

https://www.reddit.com/r/SubSimulatorGPT2Meta/
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(a) Average #Words (b) SD Words (c) Average #Sentences

(d) SD Sentences (e) Vocabulary Size (f) KF Readability

Figure 2: A class-wise comparison of organic and synthetic text indicating strong correspondence in terms of:
(a) average number of words; (b) standard deviation of number of words; (c) average number of sentences; (d)
standard deviation of number of sentences; (e) vocabulary size; and (f) Kincaid-Flescher readability. ρ is the
Pearson correlation coefficient and m is the slope of the linear fit.

diagonal represents much higher overlap between
corresponding pairs of synthetic and organic text
classes, even across synthetic-organic text classes.
This finding indicates that the fine-tuned GPT2
models indeed pick up the vocabulary from the or-
ganic text in the corresponding subreddit. It is
also noteworthy that the average vocabulary over-
lap among synthetic text classes in Figure 3a is
much higher than that among organic text classes
as shown in Figure 3b. This indicates that syn-
thetic text vocabulary combines information from
both pre-training and fine-tuning – the text corpus
used to pre-train the base GPT2 model as well as
the text corpus from the particular subreddit used
to fine-tune it.

Readability. Finally, we compare the readabil-
ity of the synthetic and organic text. Figure 2f
compares the Kincaid-Flescher readability score
(Kincaid et al., 1975) of synthetic and organic text.
We note that the average readability of synthetic
text (16.8) is less than that of organic text (11.5).
This observation corroborates the findings in re-
cent prior work (Uchendu et al., 2020). Similar to
lexical and vocabulary analysis, we note a strong
correlation (ρ = 0.84) between the readability of
synthetic and organic text.

Additionally, using the organic text as refer-
ence, we measure the quality of the synthetic text

using well-known metrics – METEOR (Baner-
jee and Lavie, 2005) and BLEU (Papineni et al.,
2002). We observe that the synthetic text achieves
high average scores across all the metrics. We in-
clude the results in the appendix.

Overall, we have two key takeaways: (1) syn-
thetic text is coherent although with lower over-
all readability than organic text; (2) synthetic text
captures the characteristics of the organic text
used to fine-tune it.

4 Methods

Fingerprinting fine-tuned LMs needs to operate
under the following realistic assumptions. (i) Fin-
gerprinting methods cannot assume any knowl-
edge about the nature of the LM, fine-tuning (e.g.,
parameters, layers) or generation (e.g., prompt).
(ii) They also cannot assume any access to the
organic text used for LM fine-tuning. (iii) Since
a LM can be fine-tuned in a myriad of ways,
these methods need to consider a large number of
classes. (iv) These methods are assumed to have
access to a limited sample of synthetic text gener-
ated by each of the potential fine-tuned LMs.

4.1 Pre-processing

We lower cased the comments and replaced all hy-
perlinks with a standard tag [LINK]. Next, we to-
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(a) (b) (c)

Figure 3: Pair-wise vocabulary overlap between classes of (a) synthetic text, (b) organic text, and (c) cross-
comparison of organic and synthetic text. The higher intensity in (a) indicates more vocabulary overlap between
classes of (a) synthetic text as compared to (b) organic text. The dark diagonal (highlighted in red box) in (c)
indicates significant vocabulary overlap between the synthetic and organic text from the same subreddit.

kenized the comments. Any comment with 5 or
fewer tokens was removed. The maximum num-
ber of tokens in a comment is limited to 75. In
case a comment is larger, only the first 75 tokens
in a comment are taken into consideration. This
is consistent for all the models we experimented
with. The limit was decided based on the limit of
the size of the GPU (11GB) used for fine-tuning
GPT2 and RoBERTa models.

4.2 Features

We consider several different feature extraction ar-
chitectures to encode the synthetic text into rep-
resentation vectors. As we discuss later, these
representation vectors are then fed to classifiers.
Writeprints: Writeprints feature set has been
widely used for authorship attribution (Iqbal et al.,
2008; Pearl and Steyvers, 2012; Abbasi and Chen,
2006). We extract a total of 220 features that in-
clude lexical (e.g., total number of words, total
number of characters, average number of char-
acters per word, digits percentage, upper case
characters percentage), syntactic (e.g., frequen-
cies of function words, POS tags unigram, bi-
grams, trigrams), content-based (e.g., bag of
words, bigrams/trigrams) and idiosyncratic (e.g.,
misspellings percentage) features.

GLTR: Gehrmann et al. (2019) used pre-
trained LMs to extract word likelihood features
– word ranks and probabilities. We follow the
original approach to average the word probabil-
ities of the text based on pre-trained BERT and
GPT2. We also bin the word ranks into 10 un-
equal ranges. The bins are: [1], [2-5], [6-10],
[11-25], [26-50], [51-100], [101-250], [251-500],
[501-1000], [> 1000].

Glove: Glove embeddings (Pennington et al.,

2014) have been commonly used in large-scale au-
thorship attribution (Ruder et al., 2016). We fol-
low (Kim, 2014; Zhang et al., 2015) to create a
representation vector of the size (max # tokens ×
100, where max # tokens is set to 75) using Glove.

Pre-trained LMs (GPT2 and RoBERTa): We
also extract the embeddings for each comment us-
ing the pre-trained GPT2/RoBERTa model. Sim-
ilar to Nils and Gurevych (2019); Feng et al.
(2020); Zhu and de Melo (2020), we take the
[CLS] token representation from the last layer to
extract the embeddings of size 1 × 768. The final
embeddings are then scaled between the values of
[-3, 3] using min-max normalization.

Fine-tuned (FT) LMs (GPT2 and
RoBERTa): We add a softmax classification
layer to the pre-trained GPT2/RoBERTa model.
Then, we fine-tune the LM for the task of sen-
tence classification using the synthetic text in the
training dataset. We again extract the embeddings
(size = 1 × 768) by taking the [CLS] token
representation from the second last layer. The
final embeddings are then scaled between the
values of [-3, 3] using min-max normalization.

4.3 Classifiers

Shallow classifiers: We use a probabilistic clas-
sifier – Gaussian Naive Bayes (GNB), an en-
semble decision classifier – Random Forest (RF),
and a feed-forward multilayer perceptron (MLP)
across all of the feature representations.

CNN classifier: We experiment with a stacked
CNN model where convolution layers with differ-
ent kernel sizes are stacked before the embedding
layer (Kim, 2014). In this architecture, we attach
two stacked convolution 1D layer, followed by a
batch normalisation layer and a max pooling layer.
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Architecture Classifier Macro Top-k
Prec Recall 5 10

GLTR
GNB 5.5 4.4 12.9 20.9
RF 7.8 6.6 12.6 19.0
MLP 3.6 6.3 15.6 23.7

Writeprints

GNB 8.2 5.8 14.1 21.4
RF 10.2 8.4 14.9 21.8
MLP 16.9 14.7 30.8 42.1

GloVE

GNB 19.2 9.3 21.9 31.2
RF 20.5 16.9 27.1 36.2
MLP 29.7 27.2 44.4 54.1
CNN 31.1 26.7 44.2 53.5

GPT2

GNB 24.8 12.4 27.8 37.7
RF 10.5 7.8 15.8 27.1
MLP 44.9 29.0 47.5 56.9
CNN 30.9 28.7 49.1 59.1

RoBERTa

GNB 39.2 15.8 30.8 41.0
RF 11.1 8.4 16.6 25.8
MLP 44.0 34.8 54.8 62.5
CNN 33.5 32.0 53.1 63.0

FT-GPT2

GNB 40.1 37.0 56.9 66.0
RF 27.6 22.8 34.8 45.2
MLP 40.2 36.4 55.7 64.0
CNN 44.6 42.1 60.9 68.9

FT-RoBERTa

GNB 47.7 41.5 57.9 64.9
RF 42.0 36.8 46.9 53.2
MLP 42.8 41.5 58.2 65.3
CNN 46.0 43.6 62.0 69.7

Table 2: Performance of multi-class classifiers based
on macro Precision (Prec), Recall and top-k accuracy
(k = 5, 10) for the largest setting of 108 classes.

The output is then fed to two dense layers, the lat-
ter of which is a softmax layer.

In addition, we also experiment with other
shallow classifiers (SVM, Decision Tree) and
two more types of feature generators (fine-tuned
GLTR, trainable word embeddings). We report
additional results, observations and the hyper-
parameters for all the models in the appendix.

5 Evaluation

We conduct experiments to evaluate these methods
using the real-world Reddit dataset as described
in Section 3. Our training, validation, and test
sets consist of 800, 100 and 200 synthetic com-
ments respectively from each of the 108 subreddit
classes. In total, our training, validation and test
sets comprise 86k, 11k and 22k comments respec-
tively. For evaluation, we use macro precision and
recall. We also measure top-k accuracy based on
the confidence score to assess the accuracy of the
classifiers in k (k = 5, 10) guesses for 108 classes.

5.1 Results
Table 2 lists the results of different feature rep-
resentations and classifiers. Overall, classifiers
based on fine-tuned LM embeddings perform
the best, with RoBERTa slightly outperforming
GPT2. Fine-tuned embeddings are successfully
able to capture the domain of the organic text

(a) Fine-tuned RoBERTa (b) Pre-trained RoBERTa

(c) Fine-tuned GPT2 (d) Pre-trained GPT2

Figure 4: Visualisation of fine-tuned (a,c) and pre-trained
embeddings (b,d) of specific classes. Closely condensed clus-
ters specific to the domain of the organic text form in the fine-
tuned embeddings.

the LM is fine-tuned on. To provide further in-
sights into our best performing feature represen-
tations, we visualize the feature embeddings of
pre-trained and fine-tuned RoBERTa and GPT2.
Figure 4 plots the 2D projection of synthetic text
(using t-SNE) generated by different LMs that are
fine-tuned on various subreddits. Fine-tuned em-
beddings form more cohesive and separated clus-
ters than pre-trained embeddings. Thus, we con-
clude that fine-tuning these embeddings is benefi-
cial in attributing synthetic text generated by dif-
ferent fine-tuned LMs. Note that certain clusters
are more cohesive and better separated than others.
For example, the most distinct cluster is observed
for r/wallstreetbets in Figures 4a and 4c for fine-
tuned embeddings. However, it is not quite dis-
tinct in Figures 4b and 4d for pre-trained embed-
dings. We also note that some clusters with high
topical similarity (e.g., r/science and r/askscience)
are closer to each other. On the other hand, some
clusters with likely lower topical similarity (e.g.,
r/socialism and r/conservative) are far apart.

Despite combining word probabilities from
both BERT and GPT2, GLTR is ineffective. We
find that synthetic texts generated from differ-
ent fine-tuned models have similar word proba-
bilities because perhaps they are more impacted
by the pre-training process rather than the subse-
quent fine-tuning. This shows that the classifier
that performs well for distinguishing between or-
ganic and synthetic text (P1) does not work well
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(a) Micro (b) Macro

Figure 5: (a) Micro and (b) Macro precision-recall trade-off
by varying the gap statistic threshold. The comparison with
all baselines is included in the appendix.

for distinguishing between synthetic text by dif-
ferent fine-tuned LMs (P3). Writeprints feature set
provides some improvement but is still ineffective.
Our finding corroborates Manjavacas et al. (2017),
who reported that linguistic and stylistic features
as used in Writeprints are not effective in distin-
guishing between synthetic text. GloVE again of-
fers some improvement over Writeprints but its
performance remains significantly worse than that
of our best performing method.

Overall, fine-tuned RoBERTa embeddings with
CNN performs the best with 46.0% precision and
43.6% recall. In about 44% of the cases, this
classifier can correctly fingerprint fine-tuned LM
amongst 108 classes; in about 70% of cases the
correct prediction is one of the top-10 guesses.
It is noteworthy that Random Forest which per-
formed exceedingly well in prior work on finger-
printing pre-trianed LMs (Uchendu et al., 2020),
does not perform well for fingerprinting fine-tuned
LMs. Surprisingly, a relatively simple classifier
like GNB achieves comparable precision and re-
call for our top guess. However, CNN outperforms
GNB by a small margin, achieving the best top-10
accuracy of 69.7% for FT-RoBERTa.

5.2 Discussion

Next, we analyze the performance of our best per-
forming RoBERTa feature representation and clas-
sifier (CNN) under different conditions.1

Precision-Recall trade-off. We evaluate the
precision-recall trade-off by imposing a threshold
on the confidence of our prediction. To this end,
we use the gap statistic, defined as the difference
between the probability of the highest and second
highest prediction (Narayanan et al., 2012). If the
gap statistic is lower than our threshold, the clas-
sifier chooses to not make a prediction for the test

1Other baseline results are reported in the appendix.

sample. This invariably has an impact on precision
and recall. Typically, the precision of the classifier
increases, since it can more accurately predict the
correct class for the samples it has a high confi-
dence in. Due to certain samples not being pre-
dicted for, recall is expected to decrease. Note that
since the classifier may make different number of
predictions across classes, micro and macro preci-
sion/recall could be different.

Figures 9a and 9b respectively plot the micro
and macro precision/recall as we vary the gap
statistic. Overall, the classifier using FT-RoBERTa
embeddings achieves a better precision-recall
trade-off compared to using standard RoBERTa
embeddings. As expected, precision improves at
the expense of recall for larger values of gap statis-
tic. Micro precision increases 46% to over 87%
with a reduction in the micro recall from 43% to
27%. Similarly, despite potential class imbalance,
macro precision increases 46% to over 81% with
a reduction in the micro recall from 43% to 26%.
Thus, we conclude that the confidence of our best
performing fingerprinting method can be tuned to
achieve very high precision with some compro-
mise on recall.

Impact of number of training samples. Next,
we evaluate the impact on the performance of our
best models by varying training size from 50 to
800 samples per class. As we vary the training
data, we keep the same test set, i.e., 200 samples
from each class. Figures 8a and 8b, respectively
show that precision and recall of FT-RoBERTa
plateau at around 400 samples per class. Despite at
twice the training data, using training 800 samples
per class has similar precision/recall as compared
to using 400 training samples per class. We con-
clude that having more training samples of syn-
thetic text may not always lead to a significant im-
provement in fingerprinting performance.

Impact of number of classes. We further vary
the number of classes from 10 to 108 and re-
port the performance of our best models. Fig-
ures 8c and 8d show that for a 10-class prob-
lem, FT-RoBERTa + CNN achieves 63.0% preci-
sion and 61.7% recall. As expected, both preci-
sion and recall decrease as the number of classes
increases. For 108 classes, the same classifier
achieves 46.0% precision and 43.6% recall. This
indicates that fingerprinting a fine-tuned LM is
highly challenging when the universe of potential
fine-tuned LMs is larger.
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Figure 6: Comparison between the performances of pre-trained and fine-tuned RoBERTa by varying different parameters. (a)
Precision and (b) Recall with the varying training size. (c) Precision and (c) Recall with the varying number of classes. Overall,
fine-tuned RoBERTa outperforms pre-trained RoBERTa. The comparison with all baselines is included in the appendix.

6 Conclusion

In this paper, we studied the problem of attribu-
tion of synthetic text generated by fine-tuned LMs.
We designed a comprehensive set of feature ex-
traction techniques and applied them on a num-
ber of different machine learning and deep learn-
ing pipelines. The results showed that the best
performing approach used fine-tuned RoBERTa
embeddings with CNN classifier. Our findings
present opportunities for future work on finger-
printing LMs in even more challenging open-
world scenarios, where the list of potential LMs
might be incomplete or synthetic text is not avail-
able to train attribution classifiers.
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Figure 7: Comparison of different metrics on the syn-
thetic corpus taking the reference of the organic corpus.
The classes are sorted by increasing CHRF scores.

A Appendix

A.1 Implementation, Infrastructure,
Software

We run all experiments on a 24-core machine with
two Intel(R) Xeon(R) Silver 4116 CPU@2.10GHz
CPU’s and 512 GB RAM. Additionally, the server
has a GeForce RTX 2080 Ti (11 GB) GPU card.
We use huggingface, pytorch (1.4.0) and Tensor-
flow (v.1.23.0) to implement and evaluate all deep
learning models in the paper. For classical ML, we
utilize scikit-learn (v.0.23.1). All implementations
are done using Python language (v.3.7).

A.2 Hyper-parameters
Fine-tuned RoBERTa + CNN: We attach 2 CNN
convolutional 1D of kernel sizes 2 and 3 layers
back to back. The stride for both the layers is 1.
The number of output filters for each of the two
convolutional layers is 16. We then attach a batch
normalization layer of size 16. This is followed by
a max pooling layer of size 2 with stride 1. We
fine-tuned the model for 15 epochs and monitored
the validation loss. If the validation loss did not
improve for 5 consecutive epochs, we stopped the
fine-tuning.
Fine-tuned RoBERTa + Dense: We used
RoBERTaForSequenceClassification wrapper
from the huggingface module, which attaches a
softmax layer on top of pre-trained RoBERTa
model. We extracted the embeddings of the
second to last layer of size 1x768. For all of
our models, we used a AdamW optimizer with a
learning rate of 0.00005. We used batch size of 48
and only picked the first 75 tokens of each token.
We did not use any padding.

For the soft classifiers, using the fine-tuned
RoBERTa embeddings, we obtained the best re-

sults with the following parameters -
SVM: C = 0.1, cachesize=200, classweight =

None, coef0 = 0.0, degree=3, gamma=‘scale’,
kernel=‘linear’, tol=0.001
MLP: activation=‘relu’, alpha=0.01,epsilon=1e-
08, hiddenlayersizes = 64, learn-
ingrate=‘adaptive’, learningrateinit=0.0001
RF - criterion=‘entropy’, maxdepth=None,
maxfeatures=‘auto’, maxleafnodes=None, min-
samplesleaf = 1
DT - criterion = ‘entropy’, maxdepth = None,
maxfeatures = None, maxleafnodes=None, min-
samplesleaf = 1
GNB - Default sklearn parameters performed the
best

A.3 Running Time
All fine-tuned models took a maximum of 8 min-
utes per epoch. For the soft classifiers, MLP and
SVM took the maximum time. Due to the large
size of the dataset and the large embedding space,
SVM took about 6 hours to train. MLP took an
average of 3 hours. Rest of the classifiers took less
than an hour for training.

A.4 Additional Results
A.4.1 Additional Dataset Analysis
Besides the analaysis in the dataset section of the
main text, we used 4 metrics - METEOR, BLEU,
GLEU and CHRF for measuring the coherency of
the synthetic text, using the organic text as ref-
erence. Using 1000 comments from each class
of synthetic and organic text, we obtained high
class-wise average scores on all metrics - ME-
TEOR (0.31), BLEU (0.58), GLEU (0.63) and
CHRF (0.51). This provides further evidence that
synthetic text is coherent and readable when com-
pared to its organic counterpart. In figure 7 , we il-
lustrate the scores for each individual class, sorted
by increasing CHRF scores.

A.4.2 Feature extraction
Besides the feature extraction methods we men-
tioned in the Methods section of the main text, we
also experimented with two more methods:
1. Fine-tuned GLTR: Using the training set, we
fine-tuned separate BERT and GPT2 models for
each class for the task of mask completion. All
models were then used for extracting GLTR word
likelihood features for the complete training and
test sets. Subsequently, the training representa-
tions were then fed to a sequential neural classi-
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Figure 8: A comparison between the performances of various embeddings by varying problem parameters. (a) Precision and
(b) Recall with the varying training set size. (a) Precision and (b) Recall with the varying number of classes. Overall, fine-tuned
RoBERTa outperforms all the baselines.

(a) Micro (b) Macro

Figure 9: (a) Micro and (b) Macro precision-recall trade-off
by varying the gap statistic threshold.

Base Architecture Classifier Macro Top - 5 Top - 10Precision Recall

Writeprints DT 6.9 6.6 6.6 6.6
SVM 19.3 16.3 33.2 44.8

GLTR DT 5.7 5.5 5.57 5.58
SVM 7.3 7.0 10 13.1

RoBERTa DT 6.3 5.3 6.3 6.3
SVM 8.3 6.9 7.8 8.9

Trainable-Word MLP 20.4 18.9 34.3 44.3
CNN 28.6 27.0 44.0 53.1

FT RoBERTa
Dense 44.0 42.3 60.8 68.9
DT 29.5 28.7 28.7 28.7
SVM 42.7 41.1 58.3 65.6

Table 3: Results of Decision Tree (DT) and SVM with
the embeddings. We also include the results of the
trainable word embeddings model.

fier like Bi-LSTM. The intuition was that word
likelihoods extracted using the class’s fine-tuned
GLTR model would be high for synthetic text gen-
erated for the class’s language model. For ex-
ample, a r/wallstreetbets fine-tuned GLTR feature
extractor would extract higher word likelihoods,
as compared to other GLTR models, from a syn-
thetic comment generated by the language model
fine-tuned on r/wallstreetbets. However, for an
extremely small setting of 5 classes, we only ob-
tained a precision and recall of around 33% each.
Due to the (a) expensive cost of fine-tuning 108
BERT and GPT2 models, (b) expensive cost of ex-
tracting GLTR features for a dataset of 100k exam-
ples, (c) extremely poor results of the approach on

a small setting, we did not continue with experi-
menting the model in a larger setting.
2. Trainable word embeddings - We tokenized
and represented each comment using an allocated
set of integers based on the vocabulary of the train-
ing set. Then, similar to the GloVE feature extrac-
tion, we passed the representation into a trainable
word embedding layer, followed by MLP or CNN.
The results for these were slightly worse than that
for the GloVE features. We report the results in
Table 3.

Additionally, for all the feature representations
mentioned in the main text, we tested SVM and
decision tree. Overall, they were outperformed by
the other classifiers with one notable exception.
For Writeprints features, SVM showed the best re-
sults of precision and recall of 19.3% and 13.3%
respectively. We report the results in Table 3.

A.5 Other baselines
Precision-recall trade-off. For the precision-
recall trade-off in the results section of the main
text, we presented a comparison with additional
baselines in Figure 9. Fine-tuned RoBERTa per-
forms the best among all methods for both micro
and macro precision-recall trade-offs. They are
followed in a decreasing order by the pre-trained
RoBERTa embeddings, the trainable word embed-
dings, the GloVE word embeddings, Writeprints,
and GLTR respectively.
Training set size and classes. We report the com-
parison with all other baselines for the varying
training size and the number of classes in Fig-
ure 8. Similar to the precision-recall trade-off,
the fine-tuned RoBERTa embeddings perform the
best, followed by pre-trained RoBERTa embed-
dings, GloVE word embeddings, trainable word
embeddings, Writeprints, and GLTR.


