
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 4562–4568
August 1–6, 2021. ©2021 Association for Computational Linguistics

4562

Domain-Aware Dependency Parsing for Questions

Aparna Garimella∗
Adobe Research

garimell@adobe.com

Laura Chiticariu
IBM Research

chiti@us.ibm.com

Yunyao Li
IBM Research

yunyaoli@us.ibm.com

Abstract

Parsing natural language questions in specific
domains is crucial to a wide range of applica-
tions from question-answering to dialog sys-
tems. Pre-trained parsers are usually trained
on corpora dominated by non-questions, and
thus perform poorly on domain-specific ques-
tions. Retraining parsers with domain-specific
questions labeled with syntactic parse trees is
expensive, as these annotations require linguis-
tic expertise. In this paper, we propose an
automatic labeled domain question generation
framework by leveraging domain knowledge
and seed domain questions. We evaluate our
approach in two domains, and release the gen-
erated question datasets. Our experimental re-
sults demonstrate that auto-generated labeled
questions indeed lead to significant (4.9% −
9%) increase in the accuracy of state-of-the-art
(SoTA) parsers on domain questions.

1 Introduction

Understanding questions is the first step towards
building accurate and reliable natural language in-
terfaces. Recent works on Google Assistant, or
IBM Watson focus on building domain-specific
conversational agents. In this paper, we focus
on syntactic parsing of domain-specific questions,
which is crucial in domain-specific agents. The
accuracy of syntactic parsers is known to depend
on the syntactic similarities between the training
data and application text. However, questions are
often underrepresented in classic training corpora.
In Penn TreeBank, only 0.5% of sentences from
the Wall Street Journal are questions, with majority
being rhetorical in nature, and those occurring in
conversations (starting with interrogatives wh-/how,
imperatives show me, name, or yes/no questions)
are heavily underrepresented. Recognizing this

∗This work was done when the author was at IBM Re-
search.

problem, Judge et al. (2006) introduced Question-
Bank, a labeled corpus of 4,000 general questions.

However, domain-specific questions are often
underrepresented in general purpose question cor-
pora, leading to their poor parsing performances;
e.g., in Show me Neil’s insider transactions since
2011, a SoTA parser (Nivre et al., 2016a) trained on
Universal Dependencies (UD) English TreeBank
(Silveira et al., 2014) and QuestionBank attaches
since to show, instead of transactions, causing the
system to misinterpret Neil’s insider transactions
since 2011, to all his transactions. In Will it rain
tomorrow by noon?, tomorrow is attached to rain
with a wrong dependency relation (dobj instead of
nmod:tmod), causing the system to miss the tempo-
ral aspect of the question.

A natural solution to obtain accurate domain-
specific parsers is to train them on domain-specific
corpora. However, obtaining domain-specific ques-
tions is difficult. Moreover, annotating questions
for parse trees is tedious, prone to errors and incon-
sistencies, and requires linguistic expertise. Petrov
et al. (2010) proposed uptraining, training a parser
on the output of a slower, more accurate parser.
For acceptable performance, the unlabeled corpus
must be large (100,000 questions). Our method is
applicable when such a large corpus is not avail-
able. Inspired by (Wang et al., 2015) who showed
that semantic parsers can be built “overnight” us-
ing domain expertise, we seek to reduce the effort
required to handle a new domain using domain
knowledge: (1) a domain schema modeling the
concepts and relationships in a domain, and (2)
a knowledge base of data instances that populate
the schema (Hamon et al., 2017; Julien Gobeill
and Ruch, 2015; Damljanovic et al., 2010). To the
best of our knowledge, this is the first work to use
domain knowledge to improve syntactic parsing.

This paper makes two main contributions. (1)
We propose a framework to automatically generate



4563

Question	
Generation

Template	
Abstraction

Domain	Seed	
Questions

Generate	Training	Corpus Train	the	Parser

Domain	Schema

Domain
Knowledge	

Base

Question	
Templates

Generated	
Questions

Parser	
Training

Trained	
Parser

Generic
Question	
Bank

Figure 1: Overview of our approach.

a large training corpus of domain-specific questions
for syntactic parsing in English, from a few seed
domain questions using domain knowledge. We
evaluate our approach in general (Weather) and spe-
cialized (Finance) domains. The parsers trained on
the data augmented with our method have signifi-
cant improvements (4.9%−9% LAS, 4.8%−8.8%
UAS) over those trained on UD Treebank and Ques-
tionBank. Our method is robust to small seed, im-
proving accuracy with as few as 10 seed questions.
(2) We release the datasets and generated questions
to the community.1

2 Question Generation

We automatically generate large training corpora
by combining (1) domain seed questions labeled
with syntactic dependencies using the Universal
Dependencies v1.4 (Nivre et al., 2016b) guideline,
and (2) domain knowledge. We use a two-stage
pipeline: For each seed question, a question tem-
plate is created that maintains its general structure,
but abstracts away details of specific entities. Next,
new questions are generated by automatically fill-
ing the templates with new entities obtained using
domain schema and knowledge base. The domain
schema is further annotated to ensure naturalness
of generated questions (Figure 1).

2.1 Template Abstraction

Given labeled seed, this stage involves abstracting
templates from their parse trees. We focus on two
entity types, based on the dependency relation of
nodes to their parent in parse trees of questions:
Subject Entity (qsubj) is the subject in a question.
In wh-interrogatives, it occurs as the nominal sub-
ject (nsubj) of root. (QENT1 in Fig. 2a). In imper-
atives, it occurs as the direct object (dobj) of the
imperative verb. (QENT1 in Fig. 2b).

1https://github.com/System-T

(a) Finance question Q1.

(b) Finance question Q2.

(c) Template TQ1 .

(d) Template TQ2 .

(e) Generated question QN
1 .

(f) Generated question QN
2 .

Figure 2: Finance questions (a,b), their templates (c,d) and
examples of generated questions (e,f).

Modifier Entity (qmod) is a (noun phrase) node that
modifies another node. In parse trees, they usually
relate via an nmod dependency.2 In Fig. 2a, ‘James
Dimon’ and ‘company’ are qmod entities of ‘in-
sider holdings’. Given a question, its template has
qsubj and qmod entities replaced by placeholders.
Algorithm 1 details template abstraction.
Domain Schema and Knowledge Base We as-
sume domain schema as a set of classes with
properties, relations between classes, and knowl-
edge base conforming to the schema with few
data instances; e.g., title is a property of class
AssignmentHistory with instances ‘CEO’ and

2We also account for other dependencies (nmod:poss,
appos, xcomp) modifying qsubj.

https://github.com/System-T


4564

‘COO’ in the Finance domain. Figure 5 in Section
B shows an example schema for financial domain
and a few data instances in a knowledge base KB
conforming to this schema.

2.2 Template Filling
Given a template, questions are generated by sys-
tematically filling qsubj and qmod with new values
obtained from domain schema and knowledge base.
The main challenges include: (1) which new values
are suitable for filling? and (2) how to automati-
cally construct parse trees for generated questions?
To address the first challenge, we propose tem-
plate replacement heuristics: qsubj is replaced
with properties of a class, while qmod is replaced
with properties of other classes in relation to that
class. Further, we introduce one-level nesting on
the filled qmod by expanding them using the relative
pronoun whose (further details in Section C).

We address the second challenge by construct-
ing parse trees for template fillers as follows. (1)
For each class property, we manually provide the
parse tree. This incurs a small one-time effort
proportional to the size of the domain schema,
which is small compared to the knowledge base.
(2) For each instance of a class property, we au-
tomatically generate the parse tree by making
the last word as root, and attach the preceding
words (Fig. 3a). (3) For qmod, we construct rel-
ative pronoun expansion node by attaching to it
the parse tree of a property of a related class
with tag acl:relcl and whose. Fig. 3b expands
qmod1 = Person:name=‘Neil Smit’ using the
parse tree of Holding:value with a prepositional
attachment for a value (i.e., 20,000). The preposi-
tion is changed to an appropriate copular verb (is,
are).

(a) (b)

Figure 3: Parse trees for template fillers based on heuristics
for data instances (a), and and relative pronoun expansion (b).

Tab. 1 shows example questions generated in the
Finance domain (QN

1 to QN
4 ).

While the generated questions exhibit variety,
most are unnatural; more natural formulations are
QF

1 to QF
4 . The common sources of unnaturalness

are the following.
Incorrect preposition for qmod In QN

1 , the orig-
inal preposition by is incorrect for the choice of
qsubj and qmod2; it should instead be in.

Incomplete usage of dependent property In QN
2 ,

the choice of property for qsubj is incomplete;
start date is not independent by itself and should be
associated with a title the person holds.

Incomplete semantics of property In QN
3 , the us-

age of property for qsubj is misleading as it refers
to the value of a company, while the intent is to
query the value of holdings in the company.

Incorrect question word In QN
4 , what should be

replaced with who, since qsubj is filled with a
person, as opposed to an object.

2.3 Schema Annotations

A random sample of 100 generated questions con-
tains 68 incorrect prepositions, 47 incomplete de-
pendents, 64 incomplete semantics, and 2 incorrect
question words. We address them using simple
annotations to the domain schema, provided by a
domain expert, in a one-time effort that is linear
with the size of the schema.

Class Relations. between classes are anno-
tated with connective words (usually preposi-
tions), e.g., AssignmentHistory in−→ Company and
AssignmentHistory

of−→ Person in Figure 5. This
annotation addresses the incorrect prepositions for
qmod (e.g. QF

1 ).

Heading Properties. are those that can be queried
independently without referencing others. Each
property is annotated as heading or non-heading
for all the classes in the schema. While heading
properties and their instances can be used to fill
qsubj and qmod independently, we devise rules to
use non-heading ones (Appendix D). This anno-
tation modifies the use of non-heading property
start date in QN

2 by associating it with an instance
‘CEO’ of heading property title in QF

2 .

Class-dependency of Properties. This addresses
the incomplete semantics of properties. Certain
properties are ambiguous, and querying them re-
quires specifying their class names to add context;
e.g., one would ask What are the values of holdings
in Citigroup? as oppose to What are the values in
Citigroup? Properties in the schema are annotated
as class-dependent or not. This annotation leads to
QF

3 , a more natural version of QN
3 .

Possible Question Words. To address the incor-
rect question words (QN

4 ), we annotate all proper-
ties and their instances with corresponding possible
wh- question words (QF

4 ).



4565

Naively generated question Final question

QN
1 : What are the titles of Neil Smit by Citigroup Inc? QF

1 : What are the titles of Neil Smit in Citigroup Inc?
QN

2 : What are the start dates of Neil Smit by Citigroup
Inc?

QF
2 : What are the start dates as CEO of Neil Smit in Citi-

group Inc?
QN

3 :What are the values of Citigroup Inc by Neil Smit? QF
3 : What are the values of holdings in Citigroup Inc of

Neil Smit?
QN

4 : What are the CEOs of Citigroup Inc? QF
4 : Who are the CEOs in Citigroup Inc?

Table 1: Questions generated from “What are the insider holdings of James Dimon by company" with template: “What are the
qsubj of qmod1 by qmod2?"

DATASET DOMAIN# SENT.

UD UD Treebank General 16,622
GQ QuestionBank General 4,000

DQF Domain-specific questions Finance 250
DQW labeled by linguist Weather 250

Table 2: Datasets in our experiments.

FINANCE WEATHER

DATASET LAS UAS LAS UAS

UD 78.44 80.71 74.26 78.09
UD+GQ 80.62 82.7 79.48 82.44
UD+DQ 85.06 86.96 79.06 82.26
UD+NDQ 86.34 88.61 79.47 82.89
UD+GQ+DQ 86.05 87.88 81.97 84.42
UD+GQ+NDQ 88.31∗ 90.41† 84.37∗ 87.21†

UD+GQ+DQ+NDQ 89.67∗ 91.53† 84.82∗ 87.49†

Table 3: Performance of Malt with different training sets.
LAS with ∗ (UAS with †) are statistically significant compared
to all other settings using McNemar’s test (p < 0.05).

3 Experiments and Results

We evaluate our approach with 5-fold cross-
validation in the Finance (9 classes, 16 relations,
63 props., 3,028 instances) and Weather (9 classes,
1 relation, 85 props., 66 instances) domains.
Data. Table 2 summarizes different datasets used
in our experiments. For each domain, we ran-
domly sample 250 questions from the query logs
of an internal QA system, and manually annotate
them with dependency parse information (DQF and
DQW). We group the questions based on their tem-
plate structure, resulting in 148 and 166 unique tem-
plates for Finance and Weather, respectively. Ques-
tions corresponding to 20% templates are used for
training in each fold, resulting on average in 38
and 54 seed questions from 30 and 34 templates for
Finance and Weather, respectively. The remaining
questions (212 and 196 questions for Finance and
Weather) are used as test sets to evaluate the trained
parsers. In this way, the train and test sets do not
have any overlap even at the template-level.

From DQ, we generate new questions NDQ us-

FINANCE WEATHER

DATASET LAS UAS LAS UAS

UD 72.31 80.19 69.87 76.27
UD+GQ 76.41 84.50 72.76 78.44
UD+DQ 80.47 86.10 77.30 82.24
UD+NDQ 80.56 86.34 77.98 83.07
UD+GQ+DQ 81.99∗ 87.84† 80.44∗ 84.80†

UD+GQ+NDQ 82.43∗ 88.54† 81.03∗ 85.34†

Table 4: SyntaxNet results with different training sets.

ing our approach. As the number of questions
generated from each seed question is very large
(140,325 for Finance), and they have similar syn-
tactic structures, we include in NDQ a maximum of
50 questions randomly selected from those gener-
ated from each seed question (this value is chosen
from validation experiments).
Models. We use two parsers with default parame-
ters: Malt (Nivre et al., 2016a), as it is fast to train,
and SyntaxNet, a SoAT neural model (Andor et al.,
2016). We measure parser performance using UAS
(Eisner, 1996) and LAS (Nivre et al., 2004) metrics,
on the test portions of DQF and DQW.

Effectiveness. Tables 3 and 4 shows the re-
sults of Malt trained on different combinations
of datasets. SyntaxNet displays similar trend,
though with lower scores. Adding GQ to UD
improves performance in both domains. Adding
DQ leads to greater improvements for Finance,
though GQ contains many more questions than DQ.
This confirms the importance of domain-specific
questions in the training data for specialized do-
mains such as Finance. Adding generated ques-
tions NDQ leads to comparable, if not better, per-
formances over UD+GQ and UD+GQ+DQ for both
domains, with small sizes (1,150 questions for Fi-
nance, 1,136 for Weather, on average), illustrat-
ing the effectiveness of our algorithm in gener-
ating labeled domain questions. UD+GQ+NDQ

and UD+GQ+DQ+NDQ achieve the best perfor-
mance: LAS gain of 4.9%−9% over UD+GQ, and



4566

DATASET FINANCE WEATHER

UD 64.54 64.56
UD+DQ 65.14 64.75
UD+DQ+NDQ 66.00 65.26

Table 5: LAS of Malt parser on GQ as test.

10 20 30 40 50 60 70 80 90 100
75%

80%

85%

90%

Number of seed domain questions

LA
Si

n%

1 (Finance) 2 (Finance)
1 (Weather) 2 (Weather)

Figure 4: Malt performance trained with increasing sizes of
DQ (1: UD+DQ, 2: UD+DQ+NDQ).

2.3%− 3.6% over UD+GQ+DQ. This shows that
our framework generates effective labeled domain-
specific questions which help improve parser per-
formances when used for training them.

Table 5 shows LAS of Malt parser trained on
domain-specific seed and generated questions, and
evaluated on GQ. The improvements with the addi-
tion of DQ and NDQ on general questions illustrate
that our framework does not overfit to a specific
domain; instead, the augmented training sets only
facilitate an increase in the performances.
Effect of Schema Annotations. Schema annota-
tion is a one-time effort and is proportional to the
schema size; it required an average of 2 hours for
the authors to annotate each schema. The domain
understanding required for this can be acquired in
a fairly small amount of time as the annotations are
straight-forward, as opposed to the heavy linguis-
tic expertise required to annotate questions with
parse trees, which generally requires weeks or even
months of effort to obtain a decently large train-
ing data. Moreover, large-scale human dependency
tree annotations are error-prone, inconsistent and
intensive, as annotators may tend to forget the many
linguistic rules involved, and need to constantly en-
sure that the same rules are applied everywhere.
Another sample of 100 questions, generated using
the schema annotations, do not exhibit the anoma-
lies listed in Section 2.2. Moreover, the inclusion
of schema annotations leads to 0.4%−0.94% gains
in LAS, thus compensating the effort required to
annotate the ontology.
Robustness to Size of Domain Seed. To study
the performance variation with the size of training

data, we randomly sample 1/3rd templates as test
(49 Finance and 55 Weather questions), and train
the parser on questions from remaining templates
with varying sizes. Figure 4 shows LAS averaged
over 5 runs with Malt in two settings: UD+DQ
and UD+DQ+NDQ. Our framework leads to signif-
icantly better performances in both domains, and
even with only 10 seed questions, LAS improves
by 2.03% (Finance) and 2.82% (Weather). We also
note that in the Finance, adding 10 domain ques-
tions to UD leads to comparable performance to
adding entire QuestionBank, and 30 questions are
needed for achieve the same in Weather (UD+GQ
in Table 3). As Finance is a specialized domain,
NDQ from even a small seed set have a higher effect
compared to a more general domain like Weather.

4 Conclusions

We proposed a method to automatically generate
labeled domain-specific questions from small seed
set using domain knowledge, to compensate for
the lack of training data. We introduced ontol-
ogy annotations that enhance the naturalness of the
automatically generated questions. Our approach
resulted in a significant increase in the LAS of
2.3%− 2.4% over training with standard corpora
and domain seed in two domains, and is robust to
the seed set size. With sufficient labeled data, some
of these heuristics could potentially be learned from
the data. We believe our work paves way to de-
velop domain-independent question parsing meth-
ods with very little or possibly no training data.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), ACL 2016, pages 2442–2452, Berlin, Ger-
many.

Danica Damljanovic, Milan Agatonovic, and Hamish
Cunningham. 2010. Natural language interfaces
to ontologies: Combining syntactic analysis and
ontology-based lookup through the user interaction.
In Proceedings of the 7th International Conference
on The Semantic Web: Research and Applications
- Volume Part I, ESWC’10, pages 106–120, Herak-
lion, Crete, Greece.

Jason M Eisner. 1996. Three new probabilistic mod-
els for dependency parsing: An exploration. In Pro-
ceedings of the 16th conference on Computational

https://doi.org/10.18653/v1/P16-1231
https://doi.org/10.18653/v1/P16-1231
https://gate.ac.uk/sale/eswc10/freya-main.pdf
https://gate.ac.uk/sale/eswc10/freya-main.pdf
https://gate.ac.uk/sale/eswc10/freya-main.pdf
http://aclweb.org/anthology/C96-1058
http://aclweb.org/anthology/C96-1058


4567

linguistics-Volume 1, COLING 1996, pages 340–
345, Copenhagen, Denmark.

Thierry Hamon, Natalia Grabar, and Fleur Mougin.
2017. Querying biomedical linked data with natural
language questions. Semantic Web, 8(4):581–599.

John Judge, Aoife Cahill, and Josef Van Genabith.
2006. QuestionBank: Creating a corpus of parse-
annotated questions. In Proceedings of the 21st In-
ternational Conference on Computational Linguis-
tics and the 44th annual meeting of the Association
for Computational Linguistics, ACL 2006, pages
497–504, Sydney.

Emilie Pasche Dina Vishnyakova Pascale Gaudet
Amos Bairoch Julien Gobeill, Arnaud Gaudinat and
Patrick Ruch. 2015. Deep question answering for
protein annotation. Database: The Journal of Bio-
logical Databases and Curation, bav081.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In Proceedings
of the Eighth Conference on Computational Natural
Language Learning (CoNLL-2004) at HLT-NAACL
2004, New York City, USA.

Joakim Nivre, Johan Hall, and Jens and Nilsson. 2016a.
Malt Parser, v1.9, released June 4 2016. http://
www.maltparser.org/download.html.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016b. Universal dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation, LREC 2016, pages 1659–1666, Por-
torož, Slovenia.

Slav Petrov, Pi-Chuan Chang, Michael Ringgaard, and
Hiyan Alshawi. 2010. Uptraining for accurate de-
terministic question parsing. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2010, pages 705–
713, Cambridge, MA, USA.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,
John Bauer, and Christopher D. Manning. 2014.
A gold standard dependency corpus for English.
In Proceedings of the Ninth International Confer-
ence on Language Resources and Evaluation, LREC
2014, pages 2897–2904, Reykjavik, Iceland.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), ACL IJCNLP
2015, pages 1332–1342, Beijing, China.

A Template Abstraction

We refer to qmod entities that have temporal values
as qtmp.

Algorithm 1 Template Abstraction
Input: Question Q and its syntactic parse tree PQ.
Output: Template TQ for Q.
1: procedure ABSTRACTTEMPLATE(Q, PQ)
2: Identify the qsubj entity in PQ.
3: Identify all qmod entities attached to qsubj’s head

in PQ.
4: Recursively identify qmod entities for each of qmod.
5: Among all qmod entities, mark those that are qtmp.
6: Let TQ be PQ with qsubj and qmod replaced with

placeholders.

B Domain Schema

Fig. 5 shows an example schema for financial do-
main and a few data instances in a knowledge
base KB conforming to this schema. The schema
models a subset of the Finance domain, including
people and companies with some of their related
classesR such as address and financial metrics. It
also models several relations of interest including
a person’s holding in a company, and a person’s
job assignment as an officer of a company. Ellipses
represent classes; rectangles show class properties
and their data types; For example, title is a prop-
erty of class AssignmentHistory with instances
‘CEO’ and ‘COO’ in Finance domain.

We denote properties as class:property and
their instances as class:property=‘instance’.
For classes with a property name, we consider in-
stances of name as instances of the class (e.g., ‘Cit-
igroup Inc’ is an instance of class Company). La-
beled arrows denote relations between classes. For
example, in Fig. 5, AssignmentHistory is related
to Company and Person, modeling the relationships
between a person’s assignment within a company;
e.g., Neil Smit is the CEO of Citigroup.

C Template Filling

We detail the template replacement heuristics for
each entity type here. If sufficient labeled data is
available, some of these heuristics could potentially
be learned from the data.
Entity qsubj can be filled with either (1) a
class property,3 or (2) an instance of a class
property of type string, provided that the prop-
erty is not name and the instance is not a

3If the part-of-speech tags of the property and qsubj do
not match, appropriate changes are made to the template.

http://www.semantic-web-journal.net/system/files/swj1356.pdf
http://www.semantic-web-journal.net/system/files/swj1356.pdf
http://aclweb.org/anthology/P06-1063
http://aclweb.org/anthology/P06-1063
http://aclweb.org/anthology/W04-2407
http://www.maltparser.org/download.html
http://www.maltparser.org/download.html
http://www.lrec-conf.org/proceedings/lrec2016/pdf/348_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/348_Paper.pdf
http://www.aclweb.org/anthology/D10-1069
http://www.aclweb.org/anthology/D10-1069
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1089_Paper.pdf
https://doi.org/10.3115/v1/P15-1129


4568

Figure 5: Domain schema for the finance domain, and example data instances. Classes, properties (their data types), and
relations between classes are shown as ovals, rectangles and labeled arrows. Data instances are shown next to corresponding
properties in quotes.

proper noun. For example, qsubj in TQ1

can be filled with AssignmentHistory:title or
AssignmentHistory:‘CEO’ resulting in What is
the title of ..? and Who is the CEO of ..? The
proper noun restriction avoids generating meaning-
less questions such as What is the 224-540-1232 of
..? The restriction on name and string type avoids
questions such as What is the Citigroup Inc ..?, and
What is the 20,000 of ..?

Entity qmod is filled based on the QENT it modifies.
If QENT is a class property, qmod is filled with an
instance of a related class. In TQ1 , when qsubj is
filled with AssignmentHistory:title, the qmod1

slot can be filled with Person:name=‘Neil Smit’,
resulting in What are the titles of Neil Smit ..? If
QENT is a class instance, it is changed to the name
of the class, and qmod is filled with a Vp of property
p of a related class. For example, in TQ2 , if qmod1
is filled with Company:name=‘Citigroup Inc’, it
will be changed to ‘company’, and qmod2 can be
filled with Vp value of 20,000 of Holding:value
as Holding is related to Company.

Relative pronouns for qmod expansion. To gen-
erate more complex questions, we introduce one-
level nesting on an already filled qmod by expand-
ing it using relative pronoun whose. If qmod is not
a Vp of any property p, we replace it with its corre-
sponding class name, and attach a relative modifier
clause using Vp of a property p of one of its re-
lated classes. In TQ1 , when qmod1 is filled with
Person:name=‘Neil Smit’, the relative pronoun
expansion of qmod1 is person whose value is 20,000
using related class Holding of Person.

Entity qtmp is always retained as temporal values
do not change the syntactic context of questions.
In Fig. 2f, see QN

2 generated from TQ2 .

(a)
AssigH:start_date

(b)
Holding:value

Figure 6: Templates for non-heading property (a) and class-
dependency (b).

D Heading Property Heuristics

While heading properties and their instances can be
used to fill QENT entities independently, we adopt
the following rules for non-heading properties:

• For classes with a single heading property with
an instance (e.g. AssignmentHistory:title

with ‘CEO’), the instance is used along
with a non-heading property to query it
using prepositional connectives which are
also annotated along with heading properties
(AssignmentHistory:start_date as CEO).
The QENT replacement is automatically con-
structed by attaching the heading property’s in-
stance as nmod using prepositional connective to
the parse tree of non-heading property (Fig. 6a).

• For classes with more than one heading prop-
erty, only they can be queried (Holding:value,
Holding:expiration_date). E.g., what is the
value of ..?, what is the expiration date of ..?


